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Abstract

By means of a global mode analysis of ideal MHD modes for Mercier-unstable equilibria in a planar
axis L = 2=M = 10 heliotron/torsatron system with an inherently large Shafranov shift, the conjecture from
local mode analysis for Mercier-unstable equilibria has been confirmed and the properties of pressure-driven
modes have been clarified. According to the degree of the decrease in the local magnetic shear by the Shafranov
shift, the Mercier-unstable equilibria are categorized into toroidicity-dominant (strong reduction) and helicity-
dominant (weak reduction) equilibria. In both types of equilibria, interchange modes are destabilized for low
toroidal mode numbers n < M , where M is the toroidal field period of the equilibria, and both poloidally and
toroidally localized ballooning modes purely inherent to three-dimensional systems are destabilized for fairly
high toroidal mode numbers n � M , For moderate toroidal mode numbers n � M , tokamak-like poloidally
localized ballooning modes with a weak toroidal mode coupling are destabilized in toroidicity-dominant equi-
libria, and in contrast, in the helicity-dominant equilibria, interchange modes are destabilized. The interchange
modes are localized on the inner side of the torus, because the Shafranov shift enhances the unfavorable mag-
netic curvature there rather than on the outer side of the torus. A continuous or quasi-point unstable spectrum
is briefly discussed.

1. INTRODUCTION

From the local mode analysis of high-mode-number ballooning modes in an L = 2=M = 10 pla-
nar axis heliotron/torsatron system with an inherently large Shafranov shift (where L and M are the
polarity and toroidal field period of the helical coils, respectively)[1], it was previously conjectured[2]
that the global structure of pressure-driven modes for Mercier-unstable equilibria would have the fol-
lowing properties: Tokamak-like poloidally localized ballooning modes or interchange modes appear
when their typical toroidal mode numbers are relatively low. As the typical toroidal mode numbers
become higher, ballooning modes inherent to three-dimensional systems appear with larger growth
rates and localized in both the poloidal and toroidal directions.

The purposes of this work are to prove the above conjecture and to clarify the inherent properties
of pressure-driven modes, through a global mode analysis of the ideal MHD modes.

2. CATEGORIZATION OF MERCIER-UNSTABLE EQUILIBRIA

The changes in the local mganetic shear and the normal magnetic curvature by the Shafranov
shift are related to toroidicity. The Shafranov shift decreases the local magnetic shear on the out-
side of the torus, leading to the reduction of the field line bending stabilizing effect on ballooning
modes[1]. On the other hand, the Shafranov shift enhances (reduces) the local unfavorable normal
magnetic curvature on the inner (outer) side of the torus. According to the degree of the decrease in
the local magnetic shear by the Shafranov shift, the Mercier-unstable equilibria can be categorized
into two types, namely, toroidicity-dominant and helicity-dominant equilibria. The former (latter)
equilibria are characterized by properties that the local magnetic shear is strongly (weakly) reduced
by the Shafranov shift, so that ballooning modes are easy (difficult) to destabilize. The former (latter)
equilibria are basically created with peaked (broad) pressure profiles under the currentless condition.
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3. GLOBAL MODE ANALYSIS IN MERCIER-UNSTABLE EQUILIBRIA

The global mode analysis of ideal MHD modes in Mercier-unstable equilibria is done by using the
CAS3D2MN code[3] with the shift-and-invert Lanczos algorithm[4]. The three-dimensional equilib-
ria considered here have toroidal field periodM , and this is what mainly determines the toroidal period
of the local magnetic curvature due to helicity. Therefore, we investigate the properties of pressure-
driven modes for various cases of relative magnitude between the typical toroidal mode number n of
the perturbation and the toroidal period M of the local magnetic curvature due to helicity: namely,
n < M , n �M , and n�M .

For low toroidal mode numbers n < M , interchange modes occur, which feel the average mag-
netic curvature, for both types of Mercier-unstable equilibria. One of them is shown in Fig. 1. The
radial distribution of the Fourier components of the normal displacement ~� �r is shown in Fig. 1(a)
with the origin of the poloidal angle on the inner side of the torus. Three resonant mode structures
with n = 4 are visible and the amplitudes of modes with different toroidal mode numbers are quite
small. The mode structure is similar to that of a ballooning mode except that each Fourier mode has
both positive and negative parts, which means that the perturbed pressure P̃ = �rP � ~� due to this
type of interchange mode has a tendency to extend radially on the inner side of the torus and to change
phase in the radial direction on the outer side of the torus through poloidal mode coupling as shown
in Figs. 1(b) and (c). In other words, this type of interchange mode is anti-ballooning with respect to
the poloidal mode coupling. This is because the normal magnetic curvature is more unfavorable on
the inner side of the torus than on the outer side of the torus by the Shafranov shift.

For moderate toroidal mode numbers n � M , the modes begin to feel the local structure of the
magnetic curvature. Since the Shafranov shift strongly reduces the stabilizing effects due to the local
magnetic shear on the outer side of the torus in the toroidicity-dominant Mercier-unstable equilibrium,
tokamak-like poloidally localized ballooning modes with weak toroidal mode coupling occur. This
is shown in Fig. 2 with the origin of the poloidal angle on the outer side of the torus. The typical
toroidal mode numbers are still so small that the modes can not feel the local structure of the magnetic
curvature effectively, and hence the toroidal mode coupling is weak. Three groups of Fourier modes
for the normal displacement ~� � r with different toroidal mode numbers are visible, namely, n =
22, n = 32, and n = 42 in Fig. 2(a). Each group, however, consists of many Fourier modes with
different poloidal mode numbers caused by the poloidal mode coupling, so that the structure of each
group due to the poloidal mode coupling is quite similar to that of ballooning modes in tokamak
plasmas. The corresponding contours of the perturbed pressure P̃ = �rP � ~� are shown in Figs. 2(b)
and (c). In contrast, for the helicity-dominant equilibria with a weak reduction of the stabilizing
term of ballooning modes by the Shafranov shift, interchange modes still occur as shown in Fig. 3.
The toroidal mode coupling of interchange modes becomes stronger as the toroidal mode number
increases, as shown in Fig. 3(a) where the origin of the poloidal angle is on the inner side of the torus.
Just as for interchange modes with n < M , the interchange modes with n �M also have a tendency
to be radially extended on the inner side of the torus and to change phase in the radial direction on the
outer side of the torus, as shown in Figs. 3(b) and (c).

For fairly high toroidal mode numbers n � M , the modes can easily distinguish the local fine
structure of the magnetic curvature. This results in the appearance of ballooning modes inherent to
three-dimensional systems for both types of Mercier-unstable equilibria. These ballooning modes
have such strong poloidal and toroidal mode couplings as to localize in both the poloidal and toroidal
directions as shown in Fig. 4. There are eight groups of Fourier modes for ~� � r with different
toroidal mode numbers as shown in Fig. 4(a), where the origin of the poloidal angle is on the outer
side of the torus. Neighboring groups of Fourier modes have opposite phase to each other, just as in
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Fig. 2(a). This relative phase difference of the neighboring groups leads to the clear localization of
the perturbed pressure in the toroidal direction, as shown in Figs. 4(b) and (c). On the outer side of
the torus, the perturbed pressure, which localizes on the horizontally elongated poloidal cross section
with the locally unfavorable magnetic curvature at the outside of the torus, almost disappears on the
vertically elongated poloidal cross section with the locally favorable magnetic curvature at the out-
side of the torus. Moreover, the strong toroidal mode coupling causes a type of poloidal localization
that is different from the kind only due to poloidal mode coupling as shown in Fig. 4(d). It shows the
corresponding contours of the perturbed pressure on the (�; �) plane with one period in the poloidal
direction and one-tenth of a period (one field period) in the toroidal direction at the normalized radial
coordinate r = 0:734. In Fig. 4(d), it can be seen that regions where the perturbed pressure has large
amplitude (indicated by dark diagonal stripes) alternate with regions of quite small amplitude (denot-
ed by white diagonal stripes). Judging from the value of the rotational transform on this flux surface,
namely, �́́ = 0:58, we conclude that these high-amplitude and low-amplitude stripes are aligned along
magnetic field lines, and that the strong toroidal mode coupling in addition to the poloidal mode cou-
pling makes the perturbation be localized on selected flux tubes.

4. DISCUSSIONS

Since the interchange modes basically localize along mode rational magnetic field lines driven
by the average unfavorable magnetic curvature, the toroidal mode coupling merely influences the
localization in the toroidal direction but does not have an essential affect on the magnitude of the
eigenvalues. This may lead to the existence of a narrow continuous or quasi-point unstable spectrum.
In contrast, the ballooning modes basically localize near the locally unfavorable magnetic curvature,
so that toroidal mode coupling significantly influences the eigenvalues. Thus, ballooning modes may
be unable to have a continuous or quasi-point unstable spectrum, except perhaps for case with ex-
tremely high toroidal mode numbers (n!1).
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Fig. 1 (a) ~� �r vs. r with the dominant toroidal mode number, and the corresponding contours of P̃ = �rP �~�
on the vertically (b) and horizontally (c) elongated poloidal cross sections.
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Fig. 2 The same quantities as in Fig. 1 for n �M in a toroidicity-dominant equilibrium.
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Fig. 3 The same quantities as in Fig. 1 for n �M in a helicity-dominant equilibrium.
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Fig. 4 (a) ~� � r vs. r with the dominant toroidal
mode numbers, and the corresponding contours of P̃ =
�rP � ~� on the vertically (b) and horizontally (c) elon-
gated poloidal cross sections, and (d) on the (�; �) plane
at r = 0:734, where the Fourier mode with n = 208 has
its maximum amplitude.
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