Full Paper
Contents  Return  Previous Page  Next Page  Index


Return To: Session IFP - Inertial Fusion Energy
Prev Page: (IFP/09) 100 TW CPA Nd:Glass Laser for Fast
Next Page: (IFP/13) A Distributed Radiator, Heavy Ion Driven Inertial


(IFP/12) Integrated Code Development and Analysis of Implosion and Hydrodynamic Experiments

H. Takabe, H. Nagatomo, H. Azechi, K. Fujita, M. Murakami, S. Naruo, K. Nishihara, H. Nishimura, N. Ohnishi, Y. Ochi, Y. Sentoku, K. Shigemori, A. Sunahara, A. I. Mahdy, K. Mima

Institute of Laser Engineering, Osaka University Yamada-oka 2-6, Suita, Osaka 565-0871 Japan

T. Johzaki, Y. Nakao

Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University Hakozaki, Fukuoka 812-8581, Japan

H. Nakashima

Department of Advanced Energy Engineering Science Kyushu University, Kasuga, Fukuoka 816-8580, Japan

M. Honda

Max-Planck-Institut fur Quantenoptik Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

H. Ruhl

Theoretische Quantenelektronik TU Darmstadt, Hochschulstrasse 4A, 64289 Darmstadt, Germany

R. Ishizaki
National Institute of Fusion Science 322-6 Oroshi-cho, Toki, Gifu 509-5292 Japan

Abstract.  The computational simulations play an important role in the study of inertial confinement fusion physics. For the understanding of the physics, integrated implosion code which includes all physics important in the implosion has been developed. On the other hands, several computational codes have been developed in order to verify the physics models and analyze experimental results. The characteristics of these computational codes and recent progress of implosion, ignition, Rayleigh-Taylor instability, ripple shock propagation, and burn dynamics analysis are reported here.

Read the full paper in PDF format.


IAEA 2001