Fast Neutron Imaging for SNM Detection

Victor Bom Delft University of Technology

Special Nuclear Materials

- Terrorist threat
- Detection by fast neutron emissions
 - passive
 - active

CNIM	forma		Gamma-rays		Neutrons	
51NIVI	ютш	Energy	Intensity	Energy	Intensity	
Uranium	Highly enriched	d	1.001	$\leq 10^4$	≈ 2	1
		u	2.6	2.7×10^4		
plutonium	Mixed Oxide		0.769	10^{5}	≈ 2	$pprox 5 imes 10^5$
	Weapons grade	e	0.769	2.3×10^5	≈ 2	$\approx 6 \times 10^4$
Californium 252						$\approx 2 \times 10^6$

Fast Neutron Imaging2/15

Flux from 1 kg plutonium (WGP)

TUDelft

Fast Neutron Imaging

3/15

Neutron back ground

- Neutron back ground
 - cosmic
 - sun
 - earth crust
- Flux
 - varies
 - in time -> solar activity
 - with height / location
 - 10⁻³ n cm⁻² s⁻¹ MeV⁻¹
 - for 1-10 MeV 0.01 n cm⁻² s⁻¹
 - equal to Pu rate at 7 m!

Fast Neutron Imaging4/15

Imaging

- Back ground reduction
 - angular resolution, say 10°
 - reduction factor

$$\frac{\pi (r \tan 10^\circ)^2}{4\pi r^2} = \frac{\tan^2 10^\circ}{4} = \frac{1}{128}$$

- now 1 kg WGP detectable up to 70 m distance above back ground
- Need direction sensitive detector for fast neutrons

Back ground from cargo

- Standard detection portals?
 - not direction sensitive
- Activity present in normal cargo
 - p.e. Tiles

 filling fraction 	10%	
 fraction K 	1%	$\int G_{\rm W} 106 \mathbf{D}_{\rm c}$
 ⁴⁰K fraction 	0.012%	OXIU° BQ
 half life 	ر 10 ⁹ yr	J

• decay by β -emission (80%)

Detection principle

- One large organic scintillator
- Two successive n-p elastic scattering
- Determine:
 - interaction positions
 - energy scattered neutron $E_{n'}$
 - direction scattered neutron
 - energy of the first recoil proton p_1
- Determine the incident neutron energy

$$E_n = E_{p1} + E_{n'}$$

- Calculate scatter angle $\Theta = \arcsin \Theta$
- Construct cone

ŤUDelft

Common direction on several cones points to the source

Fast Neutron Imaging7/15

Detector schematic

- Interaction positions
 - light distribution on PMTs
- Time difference t_{p2} - t_{p1}
 - scintillation light flash timing
- Energy first proton
 - light intensity
- Positions and time difference gives $E_{n'}$ and direction scattered neutron
 - time differences ~ ns
 - track lengths ~ cm
- Fast scintillator necessary

TUDelft

plastic fast scintillator

Fast Neutron Imaging8/15

Scintillation light pulses

TUDelft

NE111

decay: 1.4 ns 10200 photons/MeV

LaBr like decay 16 ns 80000 photons/MeV

Perovskite

decay: 0.4 ns 4000 photons/MeV

Fast Neutron Imaging

9/15

Position determination

- Anger principle
 - accuracy ?

Fast Neutron Imaging10/15

Direction determination

- Assume
 - time resolution 0.4 ns
 - position resolution 5 mm
 - energy resolution 16%
- Calculate (fully drawn lines)
 - scatter angle
 - 1 σ error ~ 12°
- Disregard events (dashed lines)
 - E_{p1} < 200 keV
 - track length < 5 mm
 - time difference < 0.4 ns
 - \Rightarrow offset

TUDelft

Fast Neutron Imaging11/15

Efficiency

- n-p and n-C interactions
- n-C interactions
 - small light yield \Rightarrow go undetected
 - but change n-direction
- only n-p interactions useable
 - for hydro-carbon scintillator (10 cm cube) \Rightarrow 27% of all events

• other scintillators?

Efficiency

ŤUDelft

- Simulation of 2.5 MeV neutrons in10 cm³ cube scintillator
 - E_{p1} versus time difference t_{p2} - t_{p1} theory: flat distribution of E_p

Fast Neutron Imaging 13/15

(Xe) 1750 (Xe) 1500

1250 Ebroton (Ebroton 1000)

0 <u></u>

Neu

TEUs

Fast Neutron Imaging 14/15

Application

- Port of Rotterdam
- Container stack
 - 50 x 50 m2 ~ 2500/(2.5x12) ~ 80 TEUs
 - stacked 4 layers \Rightarrow over 300 containers
 - 1 kg Pu, 10 cm³ cube detector at 25 m, rate: $\frac{6.10^4}{4\pi(2500)^2}100 \text{ cm}^2 = 0.076 \text{ n/s}$
 - back ground rate: $\frac{\pi (r \tan 12^\circ)^2}{4\pi r^2} 0.01 \times 100 \text{ cm}^2 = 0.011 \text{ n/s}$
 - in 10 minutes:
 - \Rightarrow 90 Pu counts on a background of 14 counts

