Operation of a variable energy RFQ accelerator system to produce intense beams of neutrons for cargo interrogation.

Chris Franklyn

Head:P-LABS Radiation Science Dept. Necsa South Africa

Generation of intense beams of neutrons through d(d,n)³He reaction

Yield ~ 10¹⁰ n.s⁻¹ at 100 μ A

To achieve this, several pre-requisites:

1. Beam of D⁺ ions of defined energy.

- 2. Suitable deuterium target.
- 3. Suitable neutron detection system.

Two accelerator systems are now in operation at Necsa with the following attributes:

Operating specifications for the two accelerator systems.

Features	ADM	D-100	
operating frequency (MHz)	425	200	
injection energy (keV)	25.0	35.0	-
output energy (MeV)	3.6 - 4.9	3.7 - 5.1	
injector output current (pulsed)(mA)	12	55	
booster output current (pulsed)(mA)	8	50	
maximum beam pulse width (ms)	0.1	2	
repetition rate (Hz)	20-200	20-100	
maximum RF duty factor	1.2 %	20 %	
pulsed RF power requirement (kW)	280/160	1000/200	
linac length (m)	4.4	4.5	/
Neutron flux (n.s ⁻¹)	10 ¹⁰	10 ¹²	

necsa 🛓

ADM RFQ accelerator system

D-100 RFQ accelerator system 16 발 Detector Magnets Ion Source LINAC Gas Target necsa 🙏

ADM

Deuterium gas target

Yield for 3 cm 3 bar D_2 gas target at 100 μ A

Density comparison of various common substances

Ref. L Grodzins. NIMB56/57(1991)829

The detection system originally developed for the ADM RFQ:

A static imaging system using a single CCD camera coupled to an image intensifier to record scintillations from a 20 cm diameter scintillator.

A dynamic imaging system using several CCD cameras recording scintillations from a 40 cm X 40 cm scintillating fibre bundle array.

Conventional radiography configuration - ADM

Recent work has involved extending the detection area by using an amorphous silicon detector coupled directly to an array of scintillating fibres

Amorphous Si array, pixel size 400 µm

D-100 detection system

A dynamic imaging system using several CCD cameras recording scintillations from a 40 cm X 40 cm scintillating fibre bundle array.

