

Acquisition of neutron-induced gamma signatures of chemical agents

B. Perot* ¹, C. Carasco¹, R. Vogler², E. Cusset², J.-L. Ma¹, P. Pras², M. Gmar³, G. Sannie³, S. Normand³

¹CEA, DEN, Cadarache, F-13108 St Paul-lez-Durance, France ²CEA, DAM, DIF, F-91297 Arpajon, France ³CEA, DRT, LIST, F-91191 Gif-sur-Yvette, France

bertrand.perot@cea.fr

CADARACHE Perot, Carasco, Vogler et al. – SM-EN-07 – IAEA 4-8 May 2009

1

- French R&D program for the detection of CBRN & E threats
- Neutron interrogation
 Chemical detection
 (Improvised Chemical Device hidden in an abandoned luggage)
 - ➤ X-ray imaging ⇒ presence, position and shape of suspicious items
 - > Analysis of gamma rays induced by fast and thermal neutrons
 - ⇒ suspicious element identification : F, Na, P, S, Cl, As, Br, I, Hg, Tl...
 - Coupling neutron interrogation techniques
 - Associated Particle Technique (APT): 3D localization of gamma rays produced by fast neutrons reactions (n,n'), (n,2n), (n,p), (n,α)...
 - > Pulsed Fast Thermal Neutron Analysis (PFTNA) : neutron capture (n,γ)

Associated Particle Technique (APT)

Pulsed Fast and Thermal Neutron Analysis (PFTNA)

Acquisition of APT gamma-ray signatures

Comparison with MCNPX calculation (e.g. arsenic)

CADARACHE Perot, Carasco, Vogler et al. – SM-EN-07 – IAEA 4-8 May 2009

6

Comparison with PFTNA gamma-ray spectra (e.g. sulfur)

5"x5"x10" Nal(TI) APT gamma-ray signatures

5"x5"x10" Nal(TI) APT gamma-ray signatures (continued)

APT detection tests with Teflon[®], **S**, and **P samples**

CADARACHE Perot, Carasco, Vogler et al. – SM-EN-07 – IAEA 4-8 May 2009 10

Phosphorus

APT detection tests with NaCl and PVC samples (~200 ml)

20 min. at 10^7 n/s (\Leftrightarrow 10^5 tagged n/s) with one 5"x5"x10"NaI(TI)

Acquisition of PFTNA gamma-ray signatures

- Pulsed DT Neutron generator SODERN GENIE 16T 14 MeV, 5.10⁷ n/s
- Compton Suppression Spectrometer 70% (HP)Ge + BGO veto shield
- Efficient shielding steel + polyethylene + lead
- FNA spectrum during neutron pulses TNA spectrum between neutron pulses (+ delayed spectrum after irradiation)

PFTNA detection tests (e.g. mercury)

Conclusion and perspectives

- Detectors
 - ➢ APT: large volume Nal(TI) or LaBr₃(Ce)
 - PFTNA: high efficiency HP Ge or LaBr₃(Ce)
 - Shield against neutron irradiation (polyethylene, lead...)
- APT gamma-ray signatures
 - Several useable gamma rays for Cl, Na, S, P, F
 - ➤ Low-energy peaks for As, Br, Tl ⇒ to be tested with LaBr₃(Ce)
 - Difficult for I and Hg
 - Inconsistencies between experiment and nuclear data / calculations
- PFTNA gamma-ray signatures
 - ➢ FNA spectra ⇒ help analyzing APT signatures
 - ➤ TNA ⇒ elements difficult to detect with APT (e.g. Hg)

➤ Work under progress...

Thank you for your attention

French R&D program for CBNR & E detection

APT acquisitions performed with the EURITRACK system (FP6, EU) installed in the seaport of Rijeka, Croatia.

Many thanks to:

Rijeka Custom Office and Port Authority, Croatia

- A.C.T. d.o.o. and Institute Ruder Boskovic (IRB), Croatia, for the implementation of the system in Rijeka, and for their constant support to logistics and measurements
- EURITRACK partners who took part with to the development and commissioning of the Tagged Neutron Inspection System: INFN, JRC, CAEN, SODERN, and IPJ

