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Abstract. The influence of equilibrium shear flows on the evolution of neoclassical tearing

modes is an important issue for future long pulse experiments on tokamaks and for reactor

grade machines like ITER. Sheared flows can be generated in a tokamak plasma due to a variety

of reasons, such as due to neutral beam injection, ion cyclotron heating and self-consistent drift

turbulence. In this paper we study certain aspects of this problem through numerical solutions

of a set of generalized reduced MHD equations that includes viscous force effects based on

neoclassical closures. Our principal findings are that differential flow has a strong stabilizing

influence leading to lower saturated island widths and mode energy for the neoclassical tearing

modes. Velocity shear on the other hand is seen to make a destabilizing contribution. An analytic

model calculation, consisting of a Rutherford island evolution equation is also presented.

1. Introduction

It is now widely recognized that the β limit of advanced tokamaks is determined by
the nonlinear instabilities associated with neoclassical tearing modes (NTMs) and not
by the linearized theory of ideal MHD instabilities [1–3]. In recent years a great deal
of work has been carried out on the Rutherford theory of neoclassical tearing modes
and many important results on critical β values and their improvement by the use of RF
current drive and heating methods, stabilization by the use of external helical current coils
etc. have been obtained [4–6]. There are, nevertheless, a number of issues related to the
origin of excitation of the mode, its excitation threshold, its nonlinear behaviour and its
interaction with error fields and equilibrium shear flows that have not been satisfactorily
resolved and need to be better understood [7]. The influence of shear flows is a particularly
important issue since sheared velocity flows are known to be widely prevalent in tokamak
devices and can be generated by neutral beams, ion cyclotron heating and self-consistent
drift turbulence. A number of past studies have examined the effect of flows on tearing
modes, particularly in the linear regime and for simplified geometries [8]. There have also
been a few nonlinear studies [9, 10] but the problem is quite complex, particularly in
realistic toroidal geometries, and is an important area of present and future study for
major numerical initiatives such as NIMROD [11]. In this paper we report on numerical
studies that we have begun on this problem with the help of a finite difference code NEAR
that solves a set of generalized reduced MHD equations [12] and that includes viscous
force effects based on neoclassical closures. While not as comprehensive or sophisticated
as the NIMROD initiative, the present numerical model and the code is a lot simpler
to implement and has been tested in the past for the effect of flows on linear resistive
tearing modes. Our emphasis in this work is to extend the investigation to the nonlinear
regime for both classical tearing modes and NTMs. To complement the numerical work
and to gain some physical insight we also present an analytic calculation that describes
the evolution of a single helicity NTM within the framework of an extended Rutherford
model.
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2. Model Equations

Our numerical simulations are based on the solutions of a set of reduced MHD equations
originally proposed by Kruger et al in 1998 [12]. These equations, which are valid at any
aspect ratio, are derived using k‖/k⊥ as a small expansion parameter. In the limit of
β ∼ δ1/2(δ � 1), a simplified set of the evolution equations are as follows,
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where the notations are standard (for a more detailed discussion see [12]). The equilibrium
toroidal velocity which is conveniently expressed in terms of a function Ω(ψ) is ordered
such that V0/VA ∼ ε � 1 so that the flows are restricted to the sub-Alfvenic range. The
above equations have been programmed into an initial value code, called NEAR, which
is a derivative of an older code called FAR. An early benchmarking of this code was
carried out in [13], where terms proportional to Πe, Π and ∇ · q were dropped and the
tests were restricted to the linear growth regime of classical tearing modes. Our emphasis
in the present work is to explore the effects of shear flow in the nonlinear regime and in
particular to examine its influence on the evolution of neoclassical tearing modes.

3. Numerical simulation results

3.1. Neoclassical tearing modes

As is well known, the neoclassical tearing mode is driven unstable by a perturbation of
the bootstrap current To study the evolution of neoclassical tearing modes it is therefore
necessary to retain the stress tensor terms in the reduced MHD equations in order to
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Figure 1. Benchmark results showing the existence of a threshold amplitude and threshold β
for the (3, 1) NTM.
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Figure 2. The pressure variance σ2
p as a function of χ‖/χ⊥ and benchmark result showing

eigenfuction for a typical NTM evolution.
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Figure 3. Equilibrium toroidal flow profiles and nonlinear evolution of the (2, 1) NTM for those
profiles: no flow (solid curve), flow profile-1 (heavy dotted curve), flow profile-2 (dashed curve).

provide the drive term and to keep the heat flow terms in the pressure evolution equation.
For the neoclassical viscous stress tensor we have used the following closure ansatz [12],

∇ · ~Πj = ρjµj

〈
B2

〉 vs.∇θ
(B · ∇θ)2

∇θ, (6)

where j = i, e and µj is the viscous damping frequency of each species j.
Before investigating the effect of flows on NTMs we have benchmarked the NEAR code
by reproducing these characteristic features of the NTMs and paid particular attention to
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pressure equilibration [14]. Here we generate an equilibrium profile by numerically solving
the Grad-Shafranov equation with the help of an equilibrium code called TOQ [15]. Using
this equilibrium in NEAR we study the evolution of the tearing modes from an initial
perturbation. The typical ratio of χ‖/χ⊥ in most of our runs has been of the order of
106or more and the Reynolds number S has been kept at 105 or higher. In Fig. 1, we
show the dependence of the mode evolution on the initial amplitude and the existence
of a threshold amplitude and threshold β for the destabilization of the mode. Fig. 2 is
showing the pressure equilibration which is key for NTM physics and the characteristic
eigenfunctions of NTMs obtained from numerical runs on NEAR. In Fig.3 we have shown
toroidal flow in the system using equilibrium flow profiles 1 and 2 and the island width
evolution for three different cases - the top curve is without any flow, the bottom curve
is for flow profile 1 (pure differential flow) and the intermediate curve is for flow profile 2
(differential flow + shear). It has been observed that the differential flow have a stabilizing
influence and leads to a lower level of mode saturation as shown by the lowest curve of in
Fig. 3. When we use profile 2 we find a decrease in the stabilization effect (the intermediate
curve in Fig. 3 indicating that velocity shear has a destabilizing trend.

4. Rutherford model equations in the presence of sheared flows

To gain some analytic understanding of the nature of the sheared flow contributions we
have tried to construct a Rutherford model description of the island evolution in the
presence of flows. The nonlinear evolution equation of the magnetic island is derived from
the matching conditions obtained by integrating Ampere’s equation across the nonlinear
region, where the longitudinal current can be obtained, following standard procedures by
perturbative solutions of the parallel Ohm’s law [16]. The polarization drift term, which
is proportional to the plasma inertia incorporates the flow effects through the potential Φ
Using the lowest order solution of the parallel Ohm’s law, φ̃ can eventually be obtained
in the form,

φ̃ =
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ckθ

ω′
E

2
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and is the flow contribution, and ω′
E = kθcΦ

′′
0
(r = rs)/B0 is the flow shear contribu-

tion. The function λ(ψ) is an integration constant which is chosen to provide the correct
asymptotic behaviour for φ̃. Our final island evolution equations are as follows,
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where, Dneo
R = c2/4πσneo is the magnetic diffusion coefficient calculated using the

neoclassical resistivity, βθ = 8πpe/B
2

θ , Lp = −(dlnp/dr)−1, Lq = (dlnq/dr)−1. In eqn.(8)
the second termm on the RHS is the perturbed bootstrap current contribution which
drives the mode unstable when it is larger than the (∆′

c < 0) term. For evaluating the
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neoclassical contribution we have adopted the standard procedure outlined in [16] The
factor W 2/(W 2 + W 2

χ) in the neoclassical term is the usual effect associated with finite

radial thermal diffusion and sets a critical island width Wχ =
√

RqLq

m

(
χ⊥

χ‖

)1/4

, below

which radial transport becomes significant and the pressure is no longer flattened across
the island. The fifth term of Eqn.(8) is the contribution from velocity shear and is seen
to be of a destabilizing nature. Eqn.(9) is the evolution equation for the mode frequency
obtained from the second matching condition with the flow shear correction.

5. Summary and Discussion

Our present set of numerical results, using two different profiles of toroidal equilibrium
flow, indicate that differential flow has a strong stabilizing influence on the nonlinear
evolution of neoclassical tearing modes whereas velocity shear has a destabilizing effect.
While a quantitative comparison with any existing analytic model is not possible some
qualitative features of the results can be understood on the basis of past theoretical work
on shear flows as well as nonlinear evolutionary studies of tearing modes in the absence
of flows. The destabilization effect of weak shear flows is consistent with the findings
of earlier linear studies as well as the simple Rutherford model derived in the previous
section. A major source of the stabilization is due to the influence of differential flow on
toroidal mode coupling and equilibrium modifications of the pressure profile caused by
the centrifugal effects of flow [17]. Further explorations with different flow profiles and
different neoclassical closure models are currently in progress to study their influence on
the nonlinear evolution of neoclassical tearing modes.
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