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Abstract. The nonlinear interaction of relativistic electrons with electron-cyclotron waves in a constant magnetic 
field is studied. The electron diffusion across the magnetic field is analyzed over and near the local threshold to 
chaos for ionosphere plasma parameters assuming that the ampitude of the wave is constant. The diffusion is 
found to obey simple power law in time and the scaling exponent is indicant of sub-diffusion. The anomalous 
difusion is caused by the effect of the resonant phase-space islands in the particle motion. The self-consistent 
treatment uses a closed set of nonlinear equations consisting from the equations of motion under the 
electromagnetic field as well as the wave equation for the evolution of the vector potential. The electron motions 
drive the evolution of the wave amplitude and frequency mismatch through the current. We use the above model 
to study the relativistic electron-cyclotron absorption in the ionosphere and in fusion plasma.  

1. Introduction 

The nonlinear interaction of electrons with electron-cyclotron waves is of great importance for the 
laboratory and astrophysical plasmas. This problem has been investigated in detail for the last forty 
years [1][2][3]. Under conditions of resonance between the electron's cyclotron motion and the 
Doppler-shifted wave frequency, the wave-particle interaction is characterized by a significant energy 
exchange and an electron acceleration [3]. This effect has been considered in the study of electron-
cyclotron instabilities [4] as well as for the interpretation of radiation observations in the ionosphere, 
and it is widely applied in fusion experiments for plasma heating and current drive. The linear theory 
for the wave absorption and the quasilinear theory for the electron distribution function are currently 
the main tools for the study of wave-particle interactions. However, in cases where nonlinear effects 
are important, the validity of these theories becomes questionable. In a recent work, electron-cyclotron 
heating simulations were performed using a nonlinear treatment, in contrast with the linear and 
quasilinear theories [5]. The results show that the deviation can be strong for present day fusion 
experiments. Furthermore, in numerous publications it is shown that the quasilinear theory breaks 
down due to the presence of resonant islands in the system phase-space [6][7]. These formations cause 
large time-space scaling of the particle kinetics, and thus non-Gaussian diffusion. In this report, we 
focus on the interaction of magnetized relativistic electrons with electron-cyclotron waves. We present 
the results of a recent analysis on the anomalous diffusion of electrons in the presence of a 
monochromatic electron-cyclotron wave of constant amplitude, without using a quasilinear 
approximation for the phase space [8]. The complex formation of the phase-space is underlined, which 
is strongly connected to the anomalous particle diffusion. We also perform a self-consistent analysis of 
the wave-electron interaction. A set of nonlinear and relativistic equations is derived, which account 
for the effects of electron motions on the temporal evolution of the wave. As an application, the 
problem of electron-cyclotron absorption for the cases of ionosphere and fusion plasma is studied. 
 
2. Anomalous electron diffusion under a constant-amplitude wave 

We briefly discuss the results of Ref. [8] on the interaction of magnetized relativistic electrons with an 
electron-cyclotron wave (ω,k), which propagates at an angle θ with respect to a uniform magnetic field 
B=B0z. We assume that the wave does not have a temporal evolution other than the phase-term ei(k·r-ωt). 
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The knowledge obtained from this simplified approach are a guide towards a more complete, self-
consistent treatment. The wave field is described by the normalized vector potential 

(0 ˆ ˆ=A cosθsinφ +cosφ -sinθsinφA x y )ẑ                                              (2.1) 

where φ=k·r-ωt is the wave phase. In (2.1), the amplitude A0 is normalized with mec2/e, where c is the 
speed of light and e, me are the electron charge and rest mass. A value A0 corresponds to a power flux 
S≈30Ν0

2ω2A0
2 (W/cm2). The spatial coordinates are normalized with c/ωe, the time with ωe

-1, the 
frequencies with ωe and the wave-vectors with ωe/c, where ωe=eB0/mec is the cyclotron frequency. The 
wave-particle interaction can be described by the two-dimensional, autonomous Hamiltonian [9] 

1 22 2 2
x 0 y 0 z 0 z 0H= 1+(p +A cosθsinφ) +(p +x+A cosφ) +(p -A sinθsinφ) -p N cosθ⎡ ⎤⎣ ⎦             (2.2) 

where H is normalized with mec2 and the canonical momenta with mec. We study the system for 
parameters corresponding to radio-wave heating of the night-time ionosphere: the frequency is 
ω/2π=3MHz, the magnetic field is B0=3.5·10-5T, the plasma density is ne=102cm-3 and the initial 
electron distribution is monoenergetic with E0=1.279MeV. For this case, the dispersion relation for 
circularly polarized waves, N0

2=1-ωp
2/ω(ω-ωe), where N0 is the refraction index and ωp=(4πnee2/me)1/2 

the plasma frequency, is a good approximation. An extensive study on the dynamics of the 
Hamiltonian (2.2) has been performed in Ref. [9]. It is found that significant chaos exists only for 
amplitudes larger than a critical value A0cr, which depends on the other wave parameters ω, θ. A local 
estimate of A0cr can be found by utilizing the fact that acceleration comes together with chaos. The 
complexity of the phase space is visualized in Fig. 1(a), where we present a Poincarè surface-of-
section for θ=400 and A0=0.1. Clearly, the phase space is a highly-complex, inhomogeneous mixture 
of periodic and stochastic behavior. The time-scaling of the diffusion is determined by the exponent α 
of the power-law <(r-r0)2>~tα. In Fig. 1(b) we show the exponent α as a function of A0 for θ=400. We 
observe that for all A0>A0cr≈0.03 it is α<1, which corresponds to sub-diffusion. This is connected to 
the resonant islands of the phase-space seen in Fig. 1(a). These formations cause particle trapping, 
which suppresses the diffusive behavior. Obviously, this is a case where the quasilinear theory breaks 
down because chaos is not complete. Also, the wave slows down the radial transport of the electrons, 
acting as a barrier, and this may have important consequences for the overall particle transport. 

 

FIG. 1. (a) Poincarè surface-of-section (x,px), (b)  Scaling exponent α as a function of amplitude A0.  

3. Self-consistent model for wave-particle interaction 

In this section, a self-consistent treatment for the nonlinear interaction of electron-cyclotron waves 
with magnetized relativistic electrons is presented. The model relies on the coupling of the relativistic 
equations of motion under the electromagnetic field with the wave equation. The vector potential is 
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given again by (2.1), but in the self-consistent model the amplitude A0 and frequency ω have a time 
dependence. The electron motions drive the temporal evolution of the wave amplitude and frequency 
through the current density. The normalized equations of motion are 

 ( )ˆ= - × γ+ × × γ  ∇p A + z p p A ,     γ=- γpA                                       (3.1) 

where p is the relativistic mechanical momentum and γ the Lorentz factor. The normalizations applied 
in (3.1) are the same as in Sec. 2. Using (2.1) for the vector potential, the equations of motion become 

                    
( ) ( )

( )
p = -A cosθcosψsinφ+sinψcosφ -Aω cosθcosψcosφ-sinψsinφ

                    -Akp cosθsinψsinφ-cosψcosφ γ
⊥                     (3.2.a) 

( )p = -Asinθsinφ+Aωsinθcosφ-Akp cosψcosφ-sinψsinφ γ⊥                        (3.2.b) 

( ) ( )
( )

ψ=1 p γ+ A cosψcosφ-cosθsinψsinφ p + Aω cosψsinφ+cosθsinψcosφ p

                 -Aksinθsinφ γ -Akp cosθcosψsinφ+sinψcosφ p γ
⊥ ⊥

⊥

⊥          (3.2.c) 

φ= kp sinθcosψ γ+kp cosθ γ -ω⊥                                                (3.2.d) 

( ) ( )γ= Ap cosθcosψsinφ+sinψcosφ γ -Aωp cosθcosψcosφ-sinψsinφ γ

                             -Ap sinθsinφ γ+Aωp sinθcosφ γ
⊥ ⊥               (3.2.e) 

In (3.2), p||, p⊥ are the parallel and perpendicular momenta with respect to the magnetic field and ψ is 
the phase of the perpendicular momentum, ψ=tan-1(py/px), which depends on time. The normalized 
wave equation for the evolutiuon of the vector potential reads   

2
p- =-ω∇2A A j                                                                (3.3) 

where j is the current density, normalized with enec. Using again the representation (2.1) for A, we 
obtain equations for the temporal evolution of the amplitude A0 and the frequency ω 

( )2 2 2
0 0 pA +(k -ω )A =-ω j cosθcosψsinφ+sinψcosφ -j sinθsinφ⊥⎡ ⎤⎣ ⎦                    (3.4.a) 

( )2
0 0 pA ω+2ωA =-ω j sinψsinφ-cosθcosψcosφ +j sinθcosφ⊥⎡ ⎤⎣ ⎦                      (3.4.b) 

where j||, j⊥ are the parallel and perpendicular current densities. Assuming an initial electron 
distribution function f0(r0,p0), the normalized current density is given by ( )3 3

0 0 0 0=- d d f δ -∫∫j r p r r p . 

The right-hand sides in the equations (3.4), which represent the effect of the particle motions on the 
wave, are spatially-dependent through the wave phase and the current densities. This dependence is 
periodic in space, because the wave-number k is constant, and since we are interested in the temporal 
evolution of A0,ω, we may average (3.4) over space in order to obtain equations only over time. 
Taking into account the form of the current density, the result after the averaging is 

( )2 2 2
0 0 p 0 0 0 0A +(k -ω )A =ω p dp dp f p cosθcosψsinφ+sinψcosφ -p sinθsinφ γ⊥ ⊥ ⊥⎡ ⎤⎣ ⎦∫ ∫    (3.5.a) 

( )2
0 0 p 0 0 0 0A ω+2ωA =-ω p dp dp f p sinψsinφ-cosθcosψcosφ -p sinθcosφ γ⊥ ⊥ ⊥⎡ ⎤⎣ ⎦∫ ∫      (3.5.b) 
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where the mean values are taken over the plasma electrons. Equations (3.2), (3.5) form a closed self-
consistent set of equations describing the wave-particle system, where A0, ω in (3.2) are calculated as 
solutions of (3.5), while the integrals involved in (3.5) are determined from the electron orbits, which 
are solutions of (3.2). We apply this model to the case of electron-cyclotron absorption in the 
ionosphere and in fusion plasma. We reconsider the case of Sec. 2, in order to underline the 
connection of the self-consistent system to the simplified model. In Fig. 2(a), the amplitude A0 is 
shown as a function of time. The evolution of the amplitude is in accordance with the behaviour 
presented in Sec. 2. Wave power is absorbed by the plasma particles, which gain significant amounts 
of energy, until the amplitude reaches the threshold to chaos. After this point, the absorption procedure 
saturates due to electron trapping in regions of phase-space where the motion is regular. For small 
amplitudes, the phase-space is dominated by the islands and the absorption of the electromagnetic 
radiation is not possible. In Fig. 2(b) the evolution of the average electron energy is shown. The 
energy gain of the plasma electrons due to absorption of the electron-cyclotron wave is obvious. The 
results presented  in Fig. 2 imply a consistency with the energy conservation law. This consistency can 
be verified quantitatevily as follows: the energy conservation theorem in the plasma volume occupied 
by the test particles reads ωp

2∆<γ>+∆(Α0
2ω2)=0, where the first term stands for the total particle 

energy and the second for the wave energy. During the test-particle simulations, we numerically 
followed the validity of this relation, and the resulting accuracy was of the order 10-4-10-5. 

 

FIG. 2. (a) Amplitude A0 and (b) mean electron energy <γ> vs time for absorption in the ionosphere.  

We further consider a simple model for the absorption region in a fusion plasma. In our simulation, we 
consider the absorption of the 2nd harmonic X-mode injected in the infinite slab at an angle θ=600, 
which corresponds to a toroidal angle θ΄=300. We follow the wave-particle interaction for t≈1500Ωe

-1, 
which is approximately the time needed by the wave, moving with velocity c/N0, to cover the minor 
diameter dT=1m of the tokamak. The magnetic field is B0=2.5T, the plasma density is ne=1012cm-3 
and the initial wave-power is Pwav=400KW. We assume that the initial distribution is Maxwellian 
with temperature 2.55KeV. The refraction index is calculated using the cold plasma dispersion 
relation for the X-mode [10]. In Fig. 3(a), the vector potential amplitude A0 is plotted as a function of 
time, together with the result predicted by the linear theory of absorption. The nonrelativistic linear 
absorption coefficient reads [5] 

≈

( ) ( )2 2 2 2 4 2 2
L p th 0 1 0 1 2 0= π/8ω k sin θv sin θN +B N +C ωcosθ B N +CΓ 2                   (3.6) 

where vth is the thermal velocity and the coefficients B1, B2, C1, C2 are functions of the wave and 
plasma parameters θ, ω, ωp and ωe. The relation (3.6) is a good approximation for our case, where the 
Doppler effect is dominant over the relativistic corrections. This is verified by the fact that the relevant 
condition N0cosθ>vth/c [10] is valid during the entire simulation. The disagreement of the nonlinear 
result with the prediction of the linear theory is evident. The nonlinear calculations show a significant 
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reduction of the absorption. This is in accordance with recent results on the importance of nonlinear 
effects during electron-cyclotron heating [5]. In fig 3(b) the evolution of the wave frequency is shown. 
The frquency, despite its nonlinear variation, remains confined near the initial second-harmonic value. 

 

FIG. 3. (a) A0 ,together with the linear prediction, and (b) ω vs t for absorption in a fusion plasma. 

4. Conclusions 

In this report, we studied the nonlinear interaction of magnetized relativistic electrons with electron-
cyclotron waves. Using a simple model where the wave has constant amplitude, we demonstrated that 
the quasilinear theory breaks down because chaos is not complete and the phase space is an 
inhomogeneous mixture of periodic and stochastic orbits. The wave slows down the radial transport of 
the electrons, which may be of importance for the overall particle transport. The self-consistent 
analysis showed that the main characteristics of the constant wave amplitude particle dynamics are 
preserved, leading the absorption of the electromagnetic wave to a minimum value in a relatively short 
time. For the case of a fusion plasma, the disagreement with the linear theory is significant. We feel 
that there is a need to reconsider the importance of nonlinear effects during electron-cyclotron heating. 
The configuration used in this report is relatively simple and our current work focuses on more 
realistic tokamak slab geometries. 
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