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Abstract

The explicit stability threshold of the toroidal ITG mode instability is analytically de-
rived using the standard reactive fluid model. It is shown that in the peak density region, the
threshold gets significant smaller due to finite ion Larmor radius effects, and the marginal
unstable modes acquire finite wavelengths.

1. Introduction

Low frequency electrostatic turbulence driven by spatial gradients is believed to be the main
source of anomalous transport in magnetically confined fusion plasmas [1, 2]. During the last
years, a significant number of both theoretical and numerical investigations in plasma dynamics
has been focused on the effects related with the development of the ion temperature gradient
(ITG) mode instability [3]. This is due to the successful interpretations of various experimental
trends – related to the observed levels of turbulent transport in tokamak plasmas – which are
based on the dynamics of the ITG mode instability.

The derivation of a general ITG model can be obtained either from a low–frequency ex-
pansion of the general fluid equations [4] based on the drift velocity ordering, or by using as a
starting point the nonlinear gyrokinetic equation as in Ref. [5]. For the development of the ITG
instability, the ion temperature gradient is necessary to be combined with other effects: The
magnetic curvature, the parallel incompressibility or the presence of impurity species [6] are
main examples of such additional effects.

However, in a toroidal system the instability is mainly driven by the magnetic field curvature
[7] and it is termed toroidal ITG mode instability. The associated marginal instability threshold
has been determined and analyzed in numerous works and in a variety of interacting physical
processes, such as negative magnetic shear, electron trapping, or ion Landau damping. For in-
stance, we may refer to the analysis based on the advanced fluid model [8]– in Ref. [9] or more
recently in Ref. [10]. However, to our knowledge, the relevant investigations have derived the
marginal stability threshold without taking explicitly into account the finite ion Larmor radius
(FLR) effects. As a result, the derived thresholds either depend on the wavenumbers of the
marginally unstable modes, or correspond – as we will show here – to larger values than the
actual instability threshold. The resulting inaccuracy is reflected on the asymptotic behavior of
the conventional stability curveηi(εn, τ) →∞ whenτεn → 0 (e.g. Ref. [8], p.125).

2. ITG threshold

In what follows, the standard advanced reactive fluid model by Weiland [8] is adopted and
the linear stability properties of the toroidal ITG driven modes are investigated by keeping rig-
orously the FLR terms. Effects attributed to parallel ion dynamics, magnetic shear, electron
particle trapping, Landau damping or finite beta effects are omitted. By using a low frequency
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expansion based on the standard drift velocity ordering, the ion continuity and the ion tempera-
ture equations – which describe the dynamics of the ITG modes, can be written in the following
normalized form [8, 11], respectively
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The length and the time scales have been normalized with respect toρs = cs/ωci andLn/cs,
respectively, wherec2

s = Te/mi is the ion sound velocity defined at electron temperature,ωci =
eB0/mic is the ion gyrofrequency, andL−1

g = −dlng(r)/dr describes the inverse characteristic
scalelength of inhomogeneity, along the radial direction, of the plasma parameterg(r). The
electrostatic potential has been normalized byφ = eδφ/Te Ln/ρs, the perturbed density by
n = δn/n0 Ln/ρs, and the perturbed ion temperature byTi = δTi/Ti0 Ln/ρs. Furthermore,
the curvature of the magnetic field linesR and the ion temperature inhomogeneity scale length
LTi

are given in terms of the plasma inhomogeneity scale lengthLn by εn = 2Ln/R and
ηi = Ln/LTi

, respectively. Furthermore,τ denotes the ratio of ion to electron temperature,
τ = Ti/Te.

Considering quasi–neutral oscillations and assuming Boltzmann distribution for the electron
density response, i.e.ne = ni = φ, we linearize Eqs. (1) and (2) and by applying the usual
Fourier expansion for the perturbed quantities, i.eg̃(r, t) = g̃ exp(ik⊥ · r− iωt), the dispersion
relation for the toroidal ITG modes is derived. Here,k⊥ denotes the wave-vector perpendicular
to the toroidal axis of the magnetic field andω the frequency of the toroidal ITG mode. The
solution of the dispersion relation leads to the determination of the real frequencyωr and the
growth rateγk of the mode, which are given by
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respectively. The polynomialf(k2
⊥) under the square root of Eq. (4) can be written in the

following suitable form,
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The parametersηB andηC are given by
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The development of the toroidal ITG instability requires the conditionf(k2
⊥) > 0 to be hold.

As a consequence, unstable modes will be those with perpendicular wavenumber in the range
defined by the roots of equationf(k2

⊥) = 0, which are given by
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where

Dη = (1 + εn)2(ηi − ηB)2 + 4εnτ(ηi − ηC)
(
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3
εn

)2

. (8)

A sufficient condition for the development of the instability is these roots to be real and at
least one of them to be positive. Inspection of Eqs. (7, 8) leads us to the conclusion that for
ηi < ηB, ηC the toroidal ITG instability can not take place sincek2

⊥± < 0 . On the other hand,
instability certainly occurs when the conditionηi > ηC holds, independently on the value of
ηB. In this case, it isk2

⊥− < 0, and consequently the wavenumbers of the unstable toroidal ITG
modes range as0 < k2

⊥ < k2
⊥+. The valueηC is the conventional threshold of the toroidal ITG

instability [10, 11] obtained from Eq. (5) in the limit of negligible FLR effects. However, when
FLR effects are taken into account,ηC becomes the marginal stability thresholdonlywhenηC <
ηB, and the marginal unstable mode has wavenumberk⊥ = 0. In the opposite case, i.e. when
ηB < ηC , the thresholdηth is expected to beηB < ηth < ηC . For εn < 1, it is ηC > ηB for any
τ . The same inequality is valid also forεn > 1 whenτ belongs to the interval0 < τ < τCB(εn).

The parameterτCB(εn) is given byτCB(εn) = 3
[
εn − 1 +

√
(εn − 1) (7εn − 3) /5

]
/4εn, and

defines a curve whereηC = ηB. It is evident now thatηC is the actual marginal stability
thresholdonly whenεn > 1 andτ > τCB.

In what follows, we limit our analysis in the caseηC > ηB and we seek for a threshold
in the rangeηB < ηth < ηC . Since necessary condition for the existence of the toroidal ITG
instability isDη > 0, the roots of equationDη = 0 are appropriate candidates for the threshold.
These are:
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A rigorous analysis of Eqs. (6, 9) shows that in the range of present interest, i.e.ηC > ηB, the
derived rootsη∗, η± obey the following ordering:





η− < η+ < ηB < η∗ : whenεn < 1 for anyτ,
η− < η+ < ηB < η∗ : whenεn > 1, for τ < τ∗(εn), and
η− < η∗ < ηB < η+ : whenεn > 1, for τ∗(εn) < τ < τCB(εn)

The parameterτ∗(εn) is given byτ∗(εn) = 3 (1− 1/εn) /2, and defines a curve whereη∗(εn, τ∗) =
η+(εn, τ∗) = ηB(εn, τ∗). From the analysis above, we conclude that the explicit threshold of the
toroidal ITG instability is given by

ηth(εn, τ) =





η∗ for εn < 1,
η∗ for εn > 1 when 0 < τ < τ∗,
η+ for εn > 1 when τ∗ < τ < τCB, and
ηC for εn > 1 when τ > τCB.

(10)

It is evident that FLR effects are destabilizing for values ofεn smaller than unity, and reduce
slightly the threshold in the flat density regime. These results are in qualitative agreement with
the Nyquist analysis of the full gyrokinetic dispersion relation in Ref. [5], where the authors
claimed that critical condition for the instability to take place isηi > 2/3. It becomes well
understood now that forηi < ηC the growth of the toroidal ITG modes is attributed to FLR
effects and not to the parallel compressibility as was erroneously believed so far [8, 10].

Furthermore, there always exist a critical wavenumberk⊥m where a maximum growth oc-
curs for given conditions. This wavenumber can be determined by the conditiondγk/dk2

⊥ = 0,
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Figure 1: a. Instability threshold in the plane(εn, τ). The exact marginal stability threshold is
given byη∗(εn, τ) in the black regions, byηC(εn, τ) in the white region, and byη+(εn, τ) in the
gray one. b. Marginal stability curvesηi(εn) for different values ofτ . The black solid parts of
each curve corresponds toη∗, the dotted parts toηC , and the grey solid parts toη+.
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Figure 2: The marginal stability curveηi: a. versusεn, for τ = 0.6 and b. versusτ , for εn = 0.3.
The white and the gray areas denote the unstable and stable regions respectively, as defined by
the exact threshold. The dashed line represents the thresholdηC which is valid in absence of
FLR effects.
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Figure 3: The normalized growth rateγk of the toroidal ITG instability, for purely poloidal
propagation (kx = 0) andτ = 0.8: a. versusk2

⊥, for (i) εn = 0.8, ηi = 1.005η∗ (Region I in
Fig. 1a), (ii)εn = 1.1, ηi = 1.005ηC (Region II in Fig. 1a), and (iii)εn = 1.8, ηi = 1.0002η+

(Region III in Fig. 1a), b. versusεn for three distinct ITG modes;k2
⊥ = 0.1, 0.3 and0.5 for

ηi = 1.005η∗. 4



which leads to a cubic equation. Close to the marginal stability conditions, i.e.f(k2
⊥m) ' 0, we

determine fork⊥m:
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3
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3
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2 .
(11)

The first solution corresponds to the wavenumber of the most unstable mode whenηB < ηth '
ηi < ηC while the second solution is valid fork2

⊥ ¿ 1 and corresponds to the wavenumber of
the most unstable mode whenηi ' ηth = ηC < ηB.

3. Summary

In this work, the explicit marginal stability threshold for the development of the toroidal ITG
instability was derived in the frame of the standard advance reactive fluid model. It was shown
that FLR effects can decrease significantly the marginal instability threshold and the associated
marginally unstable modes acquire finite wavelengths. These results predict that a significant
activity of toroidal ITG turbulence can be present at regions of peaked plasma density, such as
the plasma edge, modifying the confinement in the hot ion mode regime of tokamak operation.
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