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                                                    Abstract 
 
 Excitation of zonal flows by ion temperature gradient driven modes have been studi using both fluid and 
kinetic models. Previous fluid derivations have shown that a strong excitation of zonal flows occurs 
through the nonlinearity in the energy equation and is enhanced by the fluid magnetic drift resonance. Thus 
a new derivation has been made  by nonlinear kinetic theory, confirming that a strong excitation occurs 
through the kinetic magnetic drift resonance. A new fluid derivation is also presented. Fluid and kinetic 
results are compared. 
         
 
 
Introduction 
The excitation of zonal flows, i.e. poloidal flows in tokamaks, has recently attracted strong 
interest1-5. This is mainly because it is a phenomenon of considerable theoretical interest which 
has also turned out to be relevant for turbulent transport in tokamaks. The discovery of the direct 
tokamak relevance was made in the Cyclone project1 where fluid transport models were tested 
against nonlinear gyrokinetic  codes. In plasma turbulence contexts, zonal flows are generally 
supposed to be generated nonlinearly by the turbulence itself.  Zonal flows can be regarded as 
convective cells which are very elongated in the poloidal direction. Thus mathematical tools 
developed for the study of convective cells can be used. For driftwave turbulence, zonal flows 
play two different roles. First they can provide the damping of long wavelength eddies in quasi 2d 
systems with dual cascade. Second they can give a nonlinear upshift (Dimits shift) in the critical 
temperature gradient needed for a steady turbulent transport. A majority of studies have been 
focused on effects of the Reynolds stress2. However, recent work3-5 has shown that the nonlinear 
upshift actually is caused by the convective nonlinearity in the energy equation. This is also in 
agreement with the nonlinear gyrokinetic simulations in the Cyclone work. The reason for this 
conclusion is that the nonlinear upshift regime turned out to be particularly sensitive to 
convergence with regard to number of particles. This convergence has later been shown to be 
critical in regions of wave particle resonances in velocity space6. Because the fluid closure enters 
in the energy equation this means that fluid results will be sensitive to the fluid closure. In the 
present paper we present an analytical kinetic derivation which confirms that the excitation of 
zonal flows is enhanced in the wave particle resonance region. The fact that the zonal flow gives 
an upshift in the critical gradient is also related to the fact that the linear threshold occurs exactly 
at the fluid resonance in the fluid description. The zonal flows will be mainly driven by toroidal 
drift waves which are mainly excited on the outside of a tokamak. Thus it is natural that the flow 



gets a slow poloidal variation due to this, Such modes are usually called Geodesic Acoustic 
Modes (GAM’s). 
 
Formulation 
We start by considering fluid theory. Using the closure with the diamagnetic heat flow we have: 
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This leads to the temperature perturbation: 
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With Boltzmann electrons we can rewrite this as                   
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with real frequency at threshold  given by: 
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This means that we have  a resonance in the temperature perturbation at marginal linear 
stability. This leads to a large nonlinear convective term in the energy equation.    
The linear dispersion relation can be written: 
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The convective nonlinearity in the energy equation is: 
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Substituting  (2b) into (5) and considering the generation of a slow mode with small poloidal  
Modenumber, the two contributions almost cancel and we have to expand  )(ωδ . This leads to 
A coupling factor of the form: 
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Here ithlη   is the linear threshold  in the pure toroidal ITG  (local limit). 
Due to cancellations   a+Ω2  in the denominator of (7) is the only resonance that finally 
remains.  For the Cyclone base case we have α  = 0.125 and the local and nonlocal thresholds are 
close so there is a resonance. We can also see from (11) that there is a strong sensitivity to the 
FLR parameter when  nε   is close to 1  (0.9 in Cyclone case). It actually gives an enhanced 
resonance for larger FLR for the Cyclone basecase. The sensitivity to magnetic shear was already 
pointed out.3,4  

 
Resonant ordering  
We now follow  Ref 5 and apply the resonant ordering from: K. Nozaki, T. Taniuti and K. 
Watanabe, J. Phys. Soc. Japan 46, 983 (1979).  We expand the fields as: 
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Here x=x, )(3/2 ty λεξ −= , t3/4ετ = , λ  is a velocity of the envelope and ε  is the small 
parameter of order Te /φ  which is considered to be of order 10-2 in the core. The parameter l  is 
the harmonic number. It is 1 for the linear drift waves and 0 for the flow. We assume a standing 
wave in the radial (x) direction.  This expansion leads to: 
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Here the dispersion relation is 0=lD  so only the second term remains.  It can be fulfilled only if 

θωλ k∂∂= /  thus λ  is the group velocity. 
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Here U is a quantity which vanishes for a particular group velocity  0λλ = . This velocity is a 
reference velocity for zonal flows.  
To orders 3/7ε  and  3/8ε  we now obtain the coupled equations for drift waves and flow as: 
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  These equations are similar to the Zakharov equations for Langmuir turbulence. However, here 
only first order derivatives occur for the flow. A nonlinear Schrödinger equation is obtained ff we 
neglect the time  derivative of the flow, integrate the flow equation in space and substitute its 
amplitude into the equation for the driftwave amplitude.  We have studied the coupling factor of 
the flow, nlD for the Cyclone base case parameters as shown in Fig’s (1a) and (1b). 
  
  
 
 
 
 
 
 
 
 
 

            Fig 1a   The normalized linear growth-rate as a function of                         Fig 1b  The absolute value of the coupling factor 
            temperature gradient for Cyclone base case parameters. The                       for zonal flow as a function of temperature 
            full line is for  the Weiland model and the dotted is with a                           gradient. The solid line represents the Weiland 
            simple Gyrofluid resonance included in Eq (8).                                            model, the dashed line the model including 

                                                                                                                       the Gyro-fluid resonance and the dotted line 
                                                                                                                       the   coefficient of the Reynolds stress                                                                              
 
In Fig 1a we note that the model with the Gyro-fluid resonance has the same linear threshold as the 
kinetic models and the IFS-PPPL model for the Cyclone base case172 and that the Gyro-fluid resonance 
reduces the growth rate as expected.  
From Fig 1b we conclude that the energy equation nonlinearity dominates in the nonlinear upshift region. 
A nonlinear upshift extending up to about 6/ ≈tLR as for the Dimit’s shift also seems quite reasonable 

for the reactive model. We note that the resonance has disappeared completely at 8.6/ ≈tLR  since there 
the excitation from the energy equation equals that from the Reynolds stress. At the Dimits upshift limit 

6/ ≈tLR  the reactive model shows a strength of the resonance comparable to that of the Gyro-fluid 

model at 5/ ≈tLR , the upshift obtained by the IFS-PPPL model in the Cyclone simulations. Note that 
these are only rough estimates to show that the results are reasonable. The result for the reactive model is 
also in good agreement with nonlinear simulations204. For comparison we note that the IFS-PPPL model, 
which had zonal flows included in the Cyclone comparison, recovered only half of the Dimits upshift.  
                                                                                     



Gyrokinetic calculation 
We now consider the full kinetic resonance using a nonlinear gyrokinetic equation7,8   We write the 
velocity distribution function as: 
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where  0f  is the unperturbed distribution function which depends slowly on space, 

)1(f  is the linear perturbation and )2(f  is the nonlinear perturbation. These parts fulfil: 
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from Ref 8 is then: 
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Now, integrating over velocity we obtain for three modes: 
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Now using quasineutrality and Boltzmann electrons we have  0, n
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We can now separate (5) into an FLR and a non-FLR part by subtracting and adding 1 to 2
0 )(ξJ . 
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The first part of Eq (17) is in the form used for deriving the Hasegawa-Mima equation where the  
nonlinearity is due to FLR effects.  However, here we have kept the resonances in the 
denominator. The second part would vanish due to Eq (7) upon summation over (k’-> k”) in the 
absence of the resonance in ϖ/1  as  in the derivation of the Hasegawa-Mima   equation.  
We will now consider the driven mode to have low frequency and to be slowly varying in θ .  
The matching of wave vectors is written: 
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expand the integrand as: 
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We note that the differentiation will make the denominator squared, i. e.. it will lead 
to an enhancement of the resonance.  After also expanding the Besselfunctions       
we then obtain: 
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The first part of (10) is clearly of FLR order. It represents the effect of Reynolds stress.  
However, the second part will also be of FLR order because  the differentiation of the factor   

ϖ
ωω ∗−

 depends on dispersion. Since dispersion is only caused by FLR terms this derivative 

becomes of FLR order. We may compare these terms by differentiating (7) with respect to θk . 
We can not use (13) directly in (12) because of the factors ϖ/1 .  However, we can conclude that 
the two parts of (12) are comparable.  This is because the nonlinear FLR term is here included in 
the Reynolds stress. However, The present results have been obtained by substituting the linear 
perturbation of the distribution function into the nonlinear terms. If we, however, use a resonant 
ordering, i.e. assume that ωϖ <<  the resonance becomes stronger and the energy equation 
nonlinearity becomes dominant. 
We can go to higher nonlinear order by including a nonlinear frequency shift: 
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after expanding the nonlinear terms in ω  and introducing the nonlinear frequency shift NLδω . 

The symbol {}∆  indicates difference between the values at 'k  and ''k .  Here eTe /φφ =
)

 . The 
usual Reynolds stress originates from the ion polarization drift. It is now clear that the resonance 
is important since it enters in both parts. Since, at the resonance, the linear temperature 
perturbation becomes large, we have to be careful when applying an expansion in the 
nonlinearity.  This calls for employing a systematic scheme like the reductive perturbation 
method. However, we have here expanded the nonlinear terms in ω , adding the effect of the 
nonlinear frequency shift δω .  Now, entering the linear dispersion relation in the nonlinear terms 
will not necessarily make them comparable. Expanding in ω  actually has the same effect as 
taking a resonant ordering since a small denominator means large nonlinear terms and we have to 
go to higher order in the nonlinearity. Thus the resonant ordering above should be applied also to 
the kineic equations. 
 
Summary 
We have shown that excitation of zonal flows through the wave particle resonance can be 
important. Since this resonance coincides with marginal stability of ITG modes, this is the 
dominant mechanism for the Dimits upshift1. The resonance comes through the resonant 
denominator in a gyrokinetic description but is stronger if wave-particle resonances modify the 
distr ibution function in such a way that a reactive closure is valid. Promising results have been 
obtained with our reactive model both in turbulence simulations 4 and in the excitation strength of 
zonal flows5 shown here. 
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