

FZK - EURATOM ASSOCIATION

STUDIES OF IN-VESSEL COMPONENT INTEGRATION FOR A HELIUM-COOLED DEMO FUSION REACTOR

L.V. Boccaccini, S. Hermsmeyer, U. Fischer, T. Ihli, G. Janeschitz, C. Köhly, D. Nagy, P. Norajitra, C. Polixa, J. Reimann, J. Rey

First IAEA Technical Meeting on "First Generation of Fusion Power Plant", Vienna, July 5-7th, 2005

- Introduction
- Blanket and divertors for DEMO and the first generation of FPP
- Reactor Integration
- Conclusions

in der Helmholtz-Gemeinschaft

PL FUSION

FZK - EURATOM ASSOCIATION

Integration of in vessel components in the fusion power plant

in der Helmholtz-Gemeinschaft

PL FUSION

FZK - EURATOM ASSOCIATION

Power Plant Concepts

	Model B	Model AB	Model C		
Blanket Type	НСРВ	HCLL	DCLL		
	(Solid Breeder)	(Stagnant liquid)	(Dual Coolant)		
Structural material	EUROFER	EUROFER	EUROFER (ODS in FW)		
BrederMaterial	Li4SiO4 – Li2TiO3	Pb/Li _{eut}	Pb/Li _{eut}		
Multiplier	Beryllium	"	"		
Coolant	Helium	Helium	Helium (40 %)		
			Pb/Li _{eut} (60 %)		
Divertor type	He-cooled	He-coooled	He-cooled		
Coolant	Helium	Helium	Helium		
Structural material	W-alloy / ODS steel	W-alloy / ODS steel	W-alloy / ODS steel		
Vienna, July 5th, 2005In-vessel component IntegrationL.V. Boccaccini# 4					

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

Design of the HCPB and HCLL Blanket for DEMO

HCPB: Helium Cooled Pebble Bed (FZK)

PL FUSION

HCLL: Helium Cooled Lithium Lead (CEA)

in der Helmholtz-Gemeinschaft

PL FUSION

FZK - EURATOM ASSOCIATION

Blanket Performances and coolant requirements

	НСРВ	HCLL	DCLL
Electricity power	1.3 GW	1.5 GW	1.5 GW
Blanket Thermal Power	4.3 GW	4.5 GW	3.5 GW
Coolant temperatures	He: 300-500°C	He: 300-500°C	He: 300-480°C
			PbLi: 480-700°C
Dimensions (major rad.)	8.6 m	9.6 m	7.5 m
Coolant mass flow	He: 4.9 t/s	He: 5.1 t/s	He: 1.5 t/s
			PbLi: 46 t/s
Coolant flow area (hot			
leg):	He: 13.1 m ² (5.6 %)	He: 13.6 m ² (4.7 %)	He: 4.6 m ² (2.3 %)
(~ 75 m/s for He)			<u>PbLi: 4.2 m² (2.6 %)</u>
(~ 1 m/s for PbLi)			tot: 8.3 m ² (4.9 %)

Vienna, July 5th, 2005

In-vessel component Integration

L.V. Boccaccini #7

Scheduled component replacement

- •The lifetime of the blanket is determined by the neutron damage in the structural material of the FW (EUROFER from 75 to 150 dpa, that means ~3 -> 6 FPY at 2.4 MW/m2 neutron wall load).
- •Divertors will be limited by erosion of the target plates, with an envisaged lifetime of ~2 FPY
- •Part of shield and manifolds can be designed as permanent o semi-permanent components

PI FUSION

- •For unscheduled maintenances these permanent components should be designed for RH.
- •The replacement strategy should assure a power plant plant availability >70%.

Forschungszentrum KarlsruhePL FUSIONin der Helmholtz-GemeinschaftFZK

FZK - EURATOM ASSOCIATION

"Transporter" concept for a Fusion Power Plant

Upper Port: 4 ports for RH of the 54 "Blanket Cassettes"

> Equatorial port: 4 ports for the RH of the equatorial IB and OB Blanket modules

Lower port: 4 ports for the 54 "Divertor Cassettes"

8.5 m plasma major radius, 1500 MW_{el}

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

From ITER to Reactor

	ITER	Fusion Power Plant		
Dimensions:	Major plasma radius 6.2 m	7.5 – 9 m (for 1000-1500 MW _{el})		
Power densities:	0.78 MW/m2 as neutron wall load	2.5 MW/m2		
	0.25-0.5 MW/m2 as surface heating	0.50 MW/m2		
Fluences	max 0.5 MWa/m2 at the FW	~100 MWa/m2 (for 40 FPY at FW)		
Pulse length:	400s (1000-3000 in advanced	10000 s and short dwell		
	scenarios) and long dwell: ~1200s	(or steady state)		
Blanket	No tritium production (but)	Tritium production and extraction		
	Low coolant temperatures (no	Higher temperatures for electricity		
	electricity production)	production		
	Water cooling	He cooling		
		High shielding capability		
Divertor	"Cold divertor"	Divertor integrated in the power		
		the reactor thermal power).		
Availability:	10%	>70-75%		

Vienna, July 5th, 2005

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

Vacuum Vessel and Low temperature shield

PL FUSION

Vacuum Vessel:

-T ≈ 150°C

-Water cooled

-permanent component

Low Temperature shield:

-T ≈ 150°C

-Water cooled

-semi-permanent component

Manifolds:

-T ≈ 300-500°C

- permanent components

Vienna, July 5th, 2005

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

Blanket and Divertor

PL FUSION

Blanket:

- T ≈ 300-550°C
- Helium Cooled
- replaceable

Divertors:

- -T ≈ 550-650°C
- -Helium Cooled
- -replaceable

Vienna, July 5th, 2005

in der Helmholtz-Gemeinschaft

PL FUSION

FZK - EURATOM ASSOCIATION

Blanket segmentation

System:	Overall	Units per 20°-segment	Pipes per 20°-segment	ID pipes	RH method
Blanket Cassettes	52 cassettes	3	6	200 mm	Cassette
Inboard Modules	108 modules	6	12	150 mm	In- vessel mach.
Outboard:					
- Upper Mod.	72 modules	4	8	200 mm	In- vessel mach.
- Middle Mod.	36 modules	2	4	170 mm	In- vessel mach.
- Lower Mod.	96 modules	5-6	10-12	200 mm	In- vessel mach.
- Port Plugs	36 modules	2 (1 plug)	4	200 mm	Plug
Divertor Cassettes	52 cassettes	3	6	200 mm	Cassette
Note: 10 t modules	400 blanket 52 divertor				

Vienna, July 5th, 2005

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

In-vessel machine for FPP (10 t)

Demo fusion reactor", this conference.

PL FUSION

Vienna, July 5th, 2005

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

Typical interface of a module (10 t)

PL FUSION

1) Mechanical attachment (red)

-3 shear keys, 4 flexibles

2) Coolant pipes (light blue):-2 x 150-200 mm pipes

[DCLL: 4x100 mm pipes]

- 3) Tritium recovery (violet):
- -2 x 70 mm pipes
- 4) Electrical grounding (orange):
- connecting straps (tbd)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

Cutting Rewelding of hydraulic connections with frontal access

PL FUSION

•The pipes have a diameter of 150-200 mm. It is questionable an access of only 3 cm-diameter.

•The cutting/welding zone is too deep in the low temperature shield and the re-weldeability criteria is not demonstrated.

•Helium cannot shield neutron like water !

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

In bore tools (J. Rey)

PI FUSION

1) Realisation of path reference:

- Optical detection
- Detection by 1-D tire roll motion
- Detection with 3-D gyroscopic system
- Detection with 3-D Laser scanner system

2) Cutting:

- Because of internal dust only LASER torch system
- With Inertgas radial dust outblow
- Internal vacuum system for dust minimisation

3) Re-welding:

- Axial, radial and missangle tollerances \Rightarrow TIG and Hybrid Laser with additional wire
- wall thickness 10-15mm
- Miniaturisation.

4) Inspection systems

- Visual with micro camera
- Eddy current (surface cracks)
- •Thermal mapping
- US
- He leakage tests

J. Rey: "In-bore tools for the Blanket Replacement in the Demo fusion reactor", this conference

Vienna, July 5th, 2005

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

DEMO transporter: pipe lay-out

PL FUSION

Upper Port:

- 6 pipes (out) for Inboard Blanket
- 6 pipes (in/out) for Blanket cassette
- 4 pipes (out) for Outboard

Middle Port:

- 14 pipes(in/out) for Outboard Blanket
- 4 pipes (in/out) for plug modules

Lower Port:

- 4-6 pipes (in) for Outboard Blanket
- 6 pipes (in) for Inboard Blanket
- 6 pipes (in/out) for Divertor Cassette

Vienna, July 5th, 2005

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

Requirements:

ID = 150-200 mm

Pipes thermal compensation (pipe fixed at the LTS)

PL FUSION

Vienna, July 5th, 2005

FZK - EURATOM ASSOCIATION

Conclusion 1

The adaptation of the transporter concept of ITER for a FG-FPP has been investigated:

- radial build-up
- blanket and divertor segmentation
- cutting/welding procedures for He pipes
- thermal compensation

PL FUSION

- piping lay-out
- mechanical attachment
- in-vessel RH machine

Further analyses will be concentrated on:

- critical technologies (in-bore tools and pipe thermal compensation)
- availability
- safety performances

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

DEMO Multi Module Segments

PL FUSION

Vienna, July 5th, 2005

Conclusions

- The engineering of the fusion core is one of the most challenging enterprise for the design of the first generation of fusion reactor.
- It is the key for reaching the high availability, that is essential for the economical competitiveness of the FPP in respect of other energy sources
- ITER is the first example of this integration, but it is not a power plant. The definition of specific requirements for the FPP is still under investigation.
- In FZK a study started last years to investigate the integration of the Helium cooled in vessel components. A model of ITER derivation has been analysed and the issued defined.
- Alternative configurations have been proposed and the most promising selected for future investigations.

PI FUSION