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• Fuel Cycle
– Fuelling
– Pumping
– Tritium processing

• Safe handling of tritium

• Minimization of tritium inventories and of tritium effluents and releases
– Water detritiation

• Recovery of tritium from breeding blanket

• Conclusions 
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Active Gas Handling System at JET
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Block Diagram of the DT Fuel Cycle for ITER
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Developing the technology for fuel cycle of a fusion reactor
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ITER Fuelling 

• Fuelling rate: 120 Pam3s-1 of D2, DT, T2

• Short burn pulse of 450 s (repetition time 
1800 s)

• Long burn pulse of 3000 s (repetition time 
12,000 s)

1. Gas fuelling system 
2. Pellet injector system 

- High density in the hot central plasma 
gives higher rate of fusion reaction and 
reduce the interaction with the surrounding materials

- Solution : to fire high speed pellets of solid frozen hydrogen or deuterium

Extrusion cryostat – solid hydrogenic rod is pushed out from screw extruder continuously
Chopping unit cuts a piece and directs  the pellet into centrifuge
Pellet is accelerated to the barrel periphery  and ejected to the flight tube
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Neutral Beam system  

• In combination with other heating systems (ion cyclotron, electron cyclotron, lower 
hybrid) the Neutral Beam system supports the plasma heating
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• The Neutral Beam Injectors system for 
ITER consists of three heating and current 
drive (H&CD) NB injectors and a diagnostic 
neutral beam (DNB) injector. The H&CD NB 
injectors are operated with deuterium. 
The injector incorporates a large cryopump 
in order to pump the gas that is fed into 
both the ion source and neutralizer . 

• To minimize the hydrogenic inventories 
in the cryopumps of the NB injectors, a 
staggered regeneration pattern is 
envisaged to be used during plasma dwell 
time.
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Vacuum pumping system for ITER

• High pumping speed and throughput at 
low pressure pump location should be 
close to the Torus

• High magnetic fields and highly mobile 
dust particles pumps without moving 
parts

• Cryopumps backed by roughing pumps

• Currently 8 cryopumps are envisaged to 
be used in ITER  
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Cryopumps operation 

• pumping mode
– cryopanels (activated charcoal coated panels) are 

cooled down to 5K, the cryosorbent is loaded with 
gas molecules

• regeneration mode (partial regeneration)
– cryopanels are heated up to ~90 K, hydrogenic gas 

molecules are desorbed from the panels, pressure 
inside the pump increase, pump housing is 
evacuated by torus roughing pumps 

• high temperature regeneration (total regeneration)
– cryopanels are heated up at 300K, impurities (Ar, N2, 

CH4, CO, CO2) are desorbed from the panels; water 
vapours and polytritiated carbons are desorbed at 
higher temperatures (>450K)    
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•During plasma operation only pumping mode and partial regeneration mode takes place
•To minimise the hydrogenic inventories, a staggered pattern for cryopumps regeneration is 
envisaged to be used (4 pumps pumping and 4 pumps under regeneration)
•High temperature regeneration is envisaged to be performed every night
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Test facility for ITER Model vacuum pump (TIMO)

The cryopump is a 1:2 scale model (pumping speed 
of 50 m³/s for DT) of the ITER 1998 

Pump performances have been tested:
- Pumping speed
- Ultimate pressure
- Regeneration mode (warm-up time (150s), 
evacuation time(300s), cooling time(150s) have been 
experimentally confirmed)
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The Three Step Process for Tokamak Exhaust Processing

Q2 (>95%) Q2 Q2

H2

Q2,Q2O,CQ4
He, CO, CO2

H2,H2O,CH4
He, CO, CO2

1.2*106 Ci/m3

<1 Ci/m3

Permeator Catalyst Bed PERMCATPermeator

To Normal Vent Detritiation System

To ISS To ISS To ISS

Chemistry of the 2nd step: (Q = H, D, T)

CQ4                     ↔ C + 2 Q2                                        CO + Q2O    ↔ CO2 + Q2

C + CO2 ↔ 2 CO                                 CO + 3 Q2      ↔ CQ4 + Q2O
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PERMCAT (Permeator/Catalyst) Principle for Final Clean-up

Chemistry of the PERMCAT:

H2 + CQ4 ↔ CH4 + Q2

H2 + Q2O   ↔ H2O+ Q2

Integrated tests with a TEP like system 
have been carried out at TLK, also under
conditions considerably beyond the 
design limits (tritium at higher 
concentrations and flow rates);

The tritium concentration at the outlet of 
the third step (PERMCAT) could be kept 
below the design target, i.e. 1 Cim-3

proving the decontamination of tritiated 
gases at levels required by ITER.
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Isotope Separation System of ITER 
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Large scale cryogenic distillation systen for tritium production is 
in operation in Darlington, Canada.
Investigations on ISS systems for fusion have been carried out 
at LANL, TFTR and JET.

The requirements of ITER ISS are to produce :
T2 (T> 90%)
D2 for Neutral Beam Injectors (T<200 ppm, H<0.5%)
D2 for fuelling (H<0.5%)
H2 (T<10-7 )

ISS will have to handle rapid fluctuations in feed 
compositions and flow rates 
Accurate dynamic modeling is compulsory, 
was developed and will be benchmarked at FzK

Pending R&D issues:
1. The constrol system of a multicolumn cascade system at 
rapid fluctuations in the feed flowrates and composition.
2.     The ability of WDS to process the protium reject stream 

from ISS
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Concentration profiles in the ISS CD columns
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Fast delivery getter beds for ITER
T2 and DT are stored in metal hydride getter beds,                

ZrCo hydride current reference material
– 2 ZrCo + 3T2 → 2 ZrCoT3 + Heat      
(low absorbtion pressure at room temperature)
– 2 ZrCoT3 + Heat → 2 ZrCo + 3T2            

(dissociation pressure >1 bar at 300-400°C)

• Full size (100g T2) fast-delivery getter bed has been 
designed, manufactured and currently tested at FzK

– Disproportionation:  2 ZrCoQ3 → ZrCo2+ ZrQ2 + 2Q2

– Reproportionation possible under certain conditions
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Diagram of Storage and Delivery System for ITER
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Tritium inventory measurements by in-bed calorimetry 
on a 25 g tritium storage bed (TPL Japan) with an  
accuracy of about 0.15 g at full tritium storage.

ITER target value 1% for 100g tritium storage bed 
(estimated necessary measuring time ~24h).
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Tritium Inventories 

• Dynamic modeling allows trade-off studies between Fuel cycle subsystems for tritium inventories minimization 

• It constitutes an important tool for tritium accountancy
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Effluents and Releases 
• Multiple confinement barriers implements Defense in Depth principle

• Implementation of ALARA in the ITER design was intensively checked 
– Detailed studies of all effluents and releases from ITER as specified in GSSR

• Site specific layout considered
• Local meteorological conditions taken into account

– Consequences analyzed for normal and accidental releases
– Low limits on tritium in liquid effluents 

• Project guidelines for ITER tritium releases during normal operation
– 1 ga-1 as HT
– 0.1 ga-1 as HTO

• Estimated ITER tritium releases
– 0.18 ga-1 as HT through protium discharge of the Isotope Separation System (ISS)
– 0.05 ga-1 as HTO

• 0.0004 ga-1 will be waterborne, 85% out of that is due to blow down of the cooling tower

• Tritiated water will be produced in all ITER atmosphere detritiation systems (ADS)
– ITER will operate a Water Detritiation System (WDS) with a capacity of < 20 kgh-1

to process the water from the regeneration of  ADS molecular sieves  
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Tritium Confinment phylosophy

– Removal of tritium permeated 
through hot structural materials 

– Recovery of tritium via the 
Tokamak Exhaust Detritiation 

System
– Specifications for primary and 

secondary containments
• Definition of leak tightness
• Outer jacket for tritium bearing 

components heated to temperatures 
above 150°C
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• Multiple barrier concept for the confinement of tritium
– Detritiation of all primary exhaust gases (except from Water Detritiation System) prior 

to discharge into the environment
– Atmosphere detritiation systems for secondary and tertiary containments
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Tritium Primary System Safety for ITER

• Management of functional safety (along with the international standard IEC 61508)
– P& ID`s are available for each Fuel Cycle subsystem
– Risk evaluations by Hazard and Operability (HAZOP) studies
– Analyze loop by loop of each safety instrumented function by a team of experts, 

including at least one senior, competent person not involved in the project design 
team

– Assignment of a specific Safety Integrity Level (SIL) is to each SIF
• Software solutions are accepted for low risks such as SIL 1 or in some cases SIL 2
• Hardware solutions are required for SIL 3
• None of the tritium primary system loops should involve the highest risk level (SIL 4)
• Feedback to the design if necessary
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Water Detritiation - Combined Electrolysis Catalytic Exchange Process
Requires a decontamination factor of about 108

• Temperature of the column: ~ 60°C;

• LPCE column is filled with mixtures of catalyst and 
packing;

• Achievable decontamination factor is given by the catalyst 
and packing separation efficiency; 

• Catalyst /packings are available from different 
manufacturers;

• Intense R&D program to study the simultaneous H, D, T 
transfer; 

• R&D on-going to investigate SPM lifetime, testing the 
mechanical properties of SPM after long-time exposure
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Expected Tritium Available

~ 2.5 kg/year for 20 CANDU units (Ontario OPG)
400t of heavy water in a CANDU unit (moderator+cooling) ; Generation rate 5 Ci/kgy; Recovery efficiency 90%

Korea is currently comissioning a Tritium Extraction facility (4 CANDU units)
Water Detritiation program undergoing in Romania ( 1 CANDU unit operational and 1 under construction)
China – 2 CANDU units  

Courtesy S. Willms, LANL
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Blanket Tritium Cycle for HCPB from DEMO
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Tritium Extraction System (TES)
-extraction of tritium from the blanket purge gas  
-a Cold trap combined with Thermal Swing Adsorption 
using a cryogenic molecular sieve bed
-the advantage is that tritiated hydrogen is not 
converted into tritiated water

Coolant Purification System (CPS)
- process the tritium permeated from the blanket into 
the primary helium coolant 

- a fraction of only 0.01-1% of the helium coolant 
stream is fed in CPS 

Final tritium recovery: 
- in the existing TEP/ISS for 
ITER
- a dedicated ISS is needed for 
DEMO

Proposal for ITER:
- a bed for oxidising Q2 to 
Q2O
- a cold trap at 200K 
where water freezes out
- a cryoadsorber bed 
(molecular sieve at 77K)
where the impurities and 
all remaining non-oxidised 
Q2 is retained
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Extraction/removal of tritium from breeding blanket 
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Significant conceptual, modelling, 
experimental and design activities are needed for DEMO !!!
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Conclusions

• Concepts, technical solutions and detailed design for ITER Fuel Cycle systems are available

• Separation performances already proven for certain Fuel Cycle systems 
– Challenging due to the high decontamination factors required
– Broad range of input gas compositions and flow rates

• Control system is rather complex due to:
– Safety instrumented functions
– Rapid fluctuations in composition and flow rates

• Instrumentation
– Accurate and fast-response analytics is still a goal
– Methods for accurate and stable flow-rate measurements of complex gas mixtures need 

further development

• The inner Fuel Cycle technology of ITER constitutes a good basis for DEMO
– However, processes for extraction and recovery of bred tritium (and tritium permeated into 

cooling systems) will have to be developed
– Quantification of tritium trapped in materials will become available during ITER operation


