

# The Fuel Cycle of Fusion Power Plants and

# **Experimental Fusion Reactors**

I.R. Cristescu, M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I. Cristescu, C. Day, D. Demange, A. Mack

Forschungszentrum Karlsruhe, Germany

- Fuel Cycle
  - Fuelling
  - Pumping
  - Tritium processing
- Safe handling of tritium
- Minimization of tritium inventories and of tritium effluents and releases
  - Water detritiation
- Recovery of tritium from breeding blanket

HVT-TLK

• Conclusions

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

### **Active Gas Handling System at JET**



**TRITIUM RECYCLING** 

**HVT-TLK** 



**FZK - EURATOM ASSOCIATION** 

## **Block Diagram of the DT Fuel Cycle for ITER**

in der Helmholtz-Gemeinschaft

**FZK - EURATOM ASSOCIATION** 

### **Developing the technology for fuel cycle of a fusion reactor**



**HVT-TLK** 

| Facility | Location                            | Max.<br>Inventory (g)   | Throughput   |                | Status         |                  | Function |  |
|----------|-------------------------------------|-------------------------|--------------|----------------|----------------|------------------|----------|--|
| TSTA     | Los Alamos, USA                     | 100                     | > 1kg        | Decommissioned |                | Fuel Cycle tests |          |  |
| TFTR     | Princeton, USA                      | 5                       | ~100g        | Dec            | Decommissioned |                  | Tokamak  |  |
| JET      | Culham, UK                          | 20                      | ~100g        | Operational    |                | Tokamak          |          |  |
| TPL      | Tokai, Japan                        | 60                      | -            | Operational    |                | Fuel Cycle tets  |          |  |
| TLK      | Karlsruhe, Germany                  | 40                      | 80g          | Operational    |                | Fuel Cycle tests |          |  |
|          | <ul> <li>♦ Comparison be</li> </ul> | etween ITER ar          | nd DEMO      |                |                |                  |          |  |
|          |                                     |                         | ITER (0.5GW) |                | DEMO(3GW)      |                  |          |  |
|          | Tritium storage                     | e (kg/site)             | ~ 3          |                | < 14*4         |                  |          |  |
|          | Tritium handlin                     | g <sup>*1</sup> (kg/d)  | ~ 2          |                | < 2            |                  |          |  |
|          | Total processir                     | ng <sup>*2</sup> (kg/d) | ~ 5.8        |                | < 23           |                  |          |  |

|                                       | ITER (0.5GW) | DEMO(3GW)          |  |
|---------------------------------------|--------------|--------------------|--|
| Tritium storage (kg/site)             | ~ 3          | < 14 <sup>*4</sup> |  |
| Tritium handling <sup>*1</sup> (kg/d) | ~ 2          | < 2                |  |
| Total processing*2(kg/d)              | ~ 5.8        | < 23               |  |
| Consumption/Production*3              | ~ 0.017 /    | ~ 0.45 / ~ 0.5     |  |
| (kg/d)                                |              | TBR=1.1            |  |

\*1: ITER: 1.2kg in VV + 800 g in T-Plant

\*2: ITER:0.27g/s(100Pa.m<sup>3</sup>/s for T) x 450s/shot x 2shots/h x 24h/d, DEMO: 0.27g/s x 3600s x 24h \*3: ITER: 0.0008g/s(at 0.5GW) x 450s x 2shots x 24h、 DEMO: 0.0008 x 6 x 3600 x 24 & TBR=1.1 \*4: Tritium fuel for about one month operation (consumption)

Nishi, Hayahi & all, ISFNT -7, May 22-27 Tokyo, Japan

First IAEA Technical Meeting on "First Generation of Fusion Power Plants - Design and Technology"

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

# **ITER Fuelling**

- Fuelling rate: 120 Pam<sup>3</sup>s<sup>-1</sup> of D<sub>2</sub>, DT, T<sub>2</sub>
- Short burn pulse of 450 s (repetition time 1800 s)

**HVT-TLK** 

- Long burn pulse of 3000 s (repetition time 12,000 s)
- 1. Gas fuelling system
- 2. Pellet injector system
  - High density in the hot central plasma gives higher rate of fusion reaction and reduce the interaction with the surrounding materials
  - Solution : to fire high speed pellets of solid frozen hydrogen or deuterium

Extrusion cryostat – solid hydrogenic rod is pushed out from screw extruder continuously Chopping unit cuts a piece and directs the pellet into centrifuge Pellet is accelerated to the barrel periphery and ejected to the flight tube





FZK - EURATOM ASSOCIATION

### **Neutral Beam system**

 In combination with other heating systems (ion cyclotron, electron cyclotron, lower hybrid) the Neutral Beam system supports the plasma heating

• The Neutral Beam Injectors system for ITER consists of three heating and current drive (H&CD) NB injectors and a diagnostic neutral beam (DNB) injector. The H&CD NB injectors are operated with deuterium. The injector incorporates a large cryopump in order to pump the gas that is fed into both the ion source and neutralizer .

• To minimize the hydrogenic inventories in the cryopumps of the NB injectors, a staggered regeneration pattern is envisaged to be used during plasma dwell time.





FZK - EURATOM ASSOCIATION

# Vacuum pumping system for ITER

• High pumping speed and throughput at low pressure → pump location should be close to the Torus

**HVT-TLK** 

- High magnetic fields and highly mobile dust particles 
   → pumps without moving parts
- Cryopumps backed by roughing pumps
- Currently 8 cryopumps are envisaged to be used in ITER





FZK - EURATOM ASSOCIATION

# **Cryopumps operation**

- pumping mode
  - cryopanels (activated charcoal coated panels) are cooled down to 5K, the cryosorbent is loaded with gas molecules
- regeneration mode (partial regeneration)
  - cryopanels are heated up to ~90 K, hydrogenic gas molecules are desorbed from the panels, pressure inside the pump increase, pump housing is evacuated by torus roughing pumps
- high temperature regeneration (total regeneration)
  - cryopanels are heated up at 300K, impurities (Ar, N<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>) are desorbed from the panels; water vapours and polytritiated carbons are desorbed at higher temperatures (>450K)



During plasma operation only pumping mode and partial regeneration mode takes place
To minimise the hydrogenic inventories, a staggered pattern for cryopumps regeneration is envisaged to be used (4 pumps pumping and 4 pumps under regeneration)
High temperature regeneration is envisaged to be performed every night

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

# **Test facility for ITER Model vacuum pump (TIMO)**



**HVT-TLK** 

The cryopump is a 1:2 scale model (pumping speed of 50 m<sup>3</sup>/s for DT) of the ITER 1998

Pump performances have been tested:

- Pumping speed
- Ultimate pressure
- Regeneration mode (warm-up time (150s),

evacuation time(300s), cooling time(150s) have been experimentally confirmed)



First IAEA Technical Meeting on "First Generation of Fusion Power Plants - Design and Technology "

# **PERMCAT (Permeator/Catalyst) Principle for Final Clean-up**

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

#### **Chemistry of the PERMCAT:**

 $\begin{array}{rcl} \mathsf{H}_2 + \mathsf{C}\mathsf{Q}_4 & \leftrightarrow & \mathsf{C}\mathsf{H}_4 + \mathsf{Q}_2 \\ \\ \mathsf{H}_2 + \mathsf{Q}_2\mathsf{O} & \leftrightarrow & \mathsf{H}_2\mathsf{O} + \mathsf{Q}_2 \end{array}$ 

**HVT-TLK** 





H<sub>2</sub> Integrated tests with a TEP like system have been carried out at TLK, also under conditions considerably beyond the design limits (tritium at higher concentrations and flow rates);

**FZK - EURATOM ASSOCIATION** 

The tritium concentration at the outlet of the third step (PERMCAT) could be kept below the design target, i.e. 1 Cim<sup>-3</sup> proving the decontamination of tritiated gases at levels required by ITER.



First IAEA Technical Meeting on "First Generation of Fusion Power Plants - Design and Technology "



First IAEA Technical Meeting on "First Generation of Fusion Power Plants - Design and Technology "

I.R. Cristescu Slide 12

in der Helmholtz-Gemeinschaft

**HVT-TLK** 

**FZK - EURATOM ASSOCIATION** 

#### **Concentration profiles in the ISS CD columns**



First IAEA Technical Meeting on "First Generation of Fusion Power Plants - Design and Technology "

I.R. Cristescu Slide 13

in der Helmholtz-Gemeinschaft

FZK - EURATOM ASSOCIATION

### **Fast delivery getter beds for ITER**

- T<sub>2</sub> and DT are stored in metal hydride getter beds, ZrCo hydride current reference material
  - 2 ZrCo +  $3T_2 \rightarrow 2$  ZrCoT<sub>3</sub> + Heat

**HVT-TLK** 

(low absorbtion pressure at room temperature)

- 2  $ZrCoT_3$  + Heat  $\rightarrow$  2 ZrCo + 3 $T_2$ 

(dissociation pressure >1 bar at 300-400°C)



- Full size (100g T<sub>2</sub>) fast-delivery getter bed has been designed, manufactured and currently tested at FzK
  - Disproportionation:  $2 \operatorname{ZrCoQ}_3 \rightarrow \operatorname{ZrCo}_2 + \operatorname{ZrQ}_2 + 2\operatorname{Q}_2$
  - Reproportionation possible under certain conditions



in der Helmholtz-Gemeinschaft

**HVT-TLK** 

**FZK - EURATOM ASSOCIATION** 

### **Diagram of Storage and Delivery System for ITER**



Wien, 07 July 2005

First IAEA Technical Meeting on "First Generation of Fusion Power Plants - Design and Technology "

I.R. Cristescu Slide 15



FZK - EURATOM ASSOCIATION

### **Tritium Inventories**

- Dynamic modeling allows trade-off studies between Fuel cycle subsystems for tritium inventories minimization
- It constitutes an important tool for tritium accountancy



First IAEA Technical Meeting on "First Generation of Fusion Power Plants - Design and Technology "



FZK - EURATOM ASSOCIATION

#### **Effluents and Releases**

- Multiple confinement barriers implements Defense in Depth principle
- Implementation of ALARA in the ITER design was intensively checked
  - Detailed studies of all effluents and releases from ITER as specified in GSSR
    - Site specific layout considered
    - Local meteorological conditions taken into account
      - Consequences analyzed for normal and accidental releases
      - Low limits on tritium in liquid effluents
- Project guidelines for ITER tritium releases during normal operation
  - 1 ga<sup>-1</sup> as HT
  - 0.1 ga<sup>-1</sup> as HTO
- Estimated ITER tritium releases
  - 0.18 ga<sup>-1</sup> as HT through protium discharge of the Isotope Separation System (ISS)
  - 0.05 ga<sup>-1</sup> as HTO
    - 0.0004 ga<sup>-1</sup> will be waterborne, 85% out of that is due to blow down of the cooling tower
- Tritiated water will be produced in all ITER atmosphere detritiation systems (ADS)
  - ITER will operate a Water Detritiation System (WDS) with a capacity of < 20 kgh<sup>-1</sup> to process the water from the regeneration of ADS molecular sieves



FZK - EURATOM ASSOCIATION

### **Tritium Confinment phylosophy**

• Multiple barrier concept for the confinement of tritium

**HVT-TLK** 

- Detritiation of all primary exhaust gases (except from Water Detritiation System) prior to discharge into the environment
- Atmosphere detritiation systems for secondary and tertiary containments
- Removal of tritium permeated through hot structural materials
- Recovery of tritium via the Tokamak Exhaust Detritiation System
- Specifications for primary and secondary containments
  - Definition of leak tightness
  - Outer jacket for tritium bearing components heated to temperatures above 150°C



First IAEA Technical Meeting on "First Generation of Fusion Power Plants - Design and Technology "

I.R. Cristescu Slide 18

#### **Tritium Primary System Safety for ITER**

- Management of functional safety (along with the international standard IEC 61508)
  - P& ID`s are available for each Fuel Cycle subsystem
  - Risk evaluations by Hazard and Operability (HAZOP) studies
  - Analyze loop by loop of each safety instrumented function by a team of experts, including at least one senior, competent person not involved in the project design team
  - Assignment of a specific Safety Integrity Level (SIL) is to each SIF
    - Software solutions are accepted for low risks such as SIL 1 or in some cases SIL 2
    - Hardware solutions are required for SIL 3
    - None of the tritium primary system loops should involve the highest risk level (SIL 4)
    - Feedback to the design if necessary

**HVT-TLK** 



in der Helmholtz-Gemeinschaft

**FZK - EURATOM ASSOCIATION** 

### **Expected Tritium Available**

![](_page_20_Figure_4.jpeg)

~ 2.5 kg/year for 20 CANDU units (Ontario OPG)

**HVT-TLK** 

400t of heavy water in a CANDU unit (moderator+cooling) ; Generation rate 5 Ci/kgy; Recovery efficiency 90%

Korea is currently comissioning a Tritium Extraction facility (4 CANDU units) Water Detritiation program undergoing in Romania (1 CANDU unit operational and 1 under construction) China – 2 CANDU units

![](_page_21_Picture_0.jpeg)

FZK - EURATOM ASSOCIATION

### **Blanket Tritium Cycle for HCPB from DEMO**

Coolant Purification System (CPS)

- process the tritium permeated from the blanket into the primary helium coolant

**HVT-TLK** 

- a fraction of only 0.01-1% of the helium coolant stream is fed in CPS

Tritium Extraction System (TES)

-extraction of tritium from the blanket purge gas
-a Cold trap combined with Thermal Swing Adsorption using a cryogenic molecular sieve bed
-the advantage is that tritiated hydrogen is not converted into tritiated water

![](_page_21_Figure_9.jpeg)

in der Helmholtz-Gemeinschaft

**HVT-TLK** 

FZK - EURATOM ASSOCIATION

### **Extraction/removal of tritium from breeding blanket**

|                                                                                                                                                      | TES        |           | CPS           |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------------|------------|
|                                                                                                                                                      | ITER       | DEMO      | ITER          | DEMO       |
| <ul> <li>Tritium generation rate during pulses<br/>[g tritium/d]</li> <li>Tritium permeation rate from purge gas<br/>stream [g tritium/d]</li> </ul> | < 0.1<br>- | 385<br>-  | -<br>0.000012 | -<br>12.6  |
| Purge gas flow rate [Nm <sup>3</sup> /h]<br>CPS feed flow rate                                                                                       | 12.1<br>-  | 8000<br>- | -<br>0.107    | -<br>48400 |

Significant conceptual, modelling, experimental and design activities are needed for DEMO !!!

![](_page_23_Picture_0.jpeg)

#### Conclusions

- Concepts, technical solutions and detailed design for ITER Fuel Cycle systems are available
- Separation performances already proven for certain Fuel Cycle systems
  - Challenging due to the high decontamination factors required
  - Broad range of input gas compositions and flow rates
- Control system is rather complex due to:
  - Safety instrumented functions
  - Rapid fluctuations in composition and flow rates
- Instrumentation
  - Accurate and fast-response analytics is still a goal
  - Methods for accurate and stable flow-rate measurements of complex gas mixtures need further development
- The inner Fuel Cycle technology of ITER constitutes a good basis for DEMO
  - However, processes for extraction and recovery of bred tritium (and tritium permeated into cooling systems) will have to be developed
  - Quantification of tritium trapped in materials will become available during ITER operation