IAEA-TECDOC-640

Ranking of safety issues for WWER-440 model 230 nuclear power plants

Report of the IAEA Extrabudgetary Programme on the safety of WWER-440 model 230 nuclear power plants

INTERNATIONAL ATOMIC ENERGY AGENCY

RANKING OF SAFETY ISSUES FOR WWER-440 MODEL 230 NUCLEAR POWER PLANTS IAEA, VIENNA, 1992 IAEA-TECDOC-640 ISSN 1011-4289

> Printed by the IAEA in Austria February 1992

PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK

RANKING OF SAFETY ISSUES FOR WWER-440 MODEL 230 NUCLEAR POWER PLANTS

(IAEA-TECDOC-640)

ADDENDUM

COMMENTS OF THE INTERNATIONAL SAFETY ADVISORY GROUP (INSAG) ON THE FOUR CATEGORIES USED TO RANK SAFETY ISSUES

INSAG considers that the results presented in this report constitute a useful basis to assist operating organizations and regulatory bodies in the three countries involved, Bulgaria, Czechoslovakia and the Russian Federation, in assessing the present safety level of their plants and defining a safety policy. The report identifies around 100 generic safety issues. They are ranked according to their safety significance in four categories of increasing severity. In each country, the operating organization will have to analyze each issue and determine whether it is applicable to its plants, taking into account the actions already launched, this review being under the control of the national regulatory body.

It is clear that the weaknesses or deficiencies identified in Categories III and IV, which are of high safety concern, require some immediate attention in order to improve safety. The risk in this process will depend on the expected time of plant operation before the deficiency is corrected, and on the effectiveness of the interim measures which could be taken immediately.

INSAG considers that the division between Categories III and IV is somewhat artificial, and that the present definition of the criteria may be misinterpreted. Consequently INSAG suggests that, in this TECDOC, as well as in the final summary report of the Programme - First Phase, the definitions be slightly modified, and proposes:

Categories III and IV: Issues are of high safety concern.

- Immediate attention is required, and appropriate action must be initiated.
- Whenever possible, interim measures should be considered and implemented without delay.
- For the most safety significant issues, provisional compensatory measures have to be established now until the problem is resolved satisfactorily within a reasonable period of time.

24 January 1992

FOREWORD

In response to requests from Member States operating Soviet designed WWER-440/230 nuclear power plants (NPPs) for assistance through the IAEA's nuclear safety services, a major international Project was established to evaluate these first generation reactors as a complement to relevant ongoing national, bilateral and multilateral activities. The Project is extrabudgetary and depends on voluntary contributions from Member States.

The objective is to assist countries operating WWER-440/230 NPPs in performing comprehensive safety reviews aimed at identifying design and operational weaknesses. The review should form the technical basis for the safety decisions which must ultimately be taken to improve safety.

The scope of the project includes a review of the conceptual design of WWER-440/230 NPPs, safety review missions to each one of the operating reactors to review design and operational aspects and studies to resolve issues of generic safety concern.

In order to assist the Governments of Bulgaria, Czechoslovakia and the Russian Federation to set priorities for the corrective measures required at their plants, two project review meetings have been convened by the IAEA in Vienna respectively in August 19-23, and October 18 - November 1, 1991. About 1300 specific safety items identified during the safety review missions and in the conceptual design review have been grouped in broader categories representing some 100 issues of safety concern and further ranked according to their safety significance.

The meeting report (WWER RD-037) prepared by a group of international experts and the IAEA staff evaluates the safety significance of the issues and provides the technical basis for short and long term programmes required to improve the safety of WWER-440/230 NPPs.

The Project Steering Committee has also reviewed the report during its December 9-13, 1991 meeting.

EDITORIAL NOTE

In preparing this material for the press, staff of the International Atomic Energy Agency have mounted and paginated the original manuscripts and given some attention to presentation.

The views expressed do not necessarily reflect those of the governments of the Member States or organizations under whose auspices the manuscripts were produced.

The use in this book of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of specific companies or of their products or brand names does not imply any endorsement or recommendation on the part of the IAEA.

CONTENTS

1.	INTRODUCTION	7
2.	OVERVIEW OF SAFETY ISSUES	11
	2.1. Controlling the power	12
	2.1.1. Controlling the power in normal conditions	12
	2.1.2. Controlling the power in transient and accident conditions	13
	2.2. Cooling the fuel	14
	2.2.1. Cooling the fuel in plant operating and transient conditions	14
	2.2.2. Cooling the fuel under loss of coolant conditions	17
	2.2.3. Cooling the fuel under shutdown or refuelling conditions	21
	2.3. Preserving the primary circuit integrity	21
	2.3.1. Maintaining component integrity	21
	2.3.2. Primary circuit overpressure protection	23
	2.3.3. Primary circuit cold overpressure protection	23
	2.4. Confining the radioactive material in case of LOCA	24
	2.4.1. Primary circuit break less than or equal to 32 mm equivalent diameter	24
	2.4.2. Primary circuit break larger than 32 mm	25
	2.5. Areas affecting performance of all safety functions	25
	2.5.1. Instrumentation and control	25
	2.5.2. Electric power supply	29
	2.5.3. Fire protection	32
	2.5.4. Accident analysis	33
	2.6. Operation and management of the plant	34
	2.6.1. Management	35
	2.6.2. Operating procedures	35
	2.6.3. Plant operations	36
	2.6.4. Plant maintenance	36
	2.6.5. Training	37
	2.7. Emergency planning	37
	2.8. Regulatory interfaces	38
3.	DESIGN ISSUES	39
4.	OPERATIONAL ISSUES	179
REI	FERENCES	265
LIS	T OF PARTICIPANTS	267

1. INTRODUCTION

In the framework of the IAEA Project on the Safety of WWER-440/230 Nuclear Power Plants, a conceptual design review was conducted in February 1991 by the IAEA for this type of plant. Safety review missions have also been carried out to Bohunice units 1-2 in Czechoslovakia (April 91), to Kozloduy units 1-4 in Bulgaria (June 91), to Novovoronezh units 3-4 (Aug 91) and Kola units 1-2 (Sept 91) in the USSR. This missions addressed areas related both to design and operational safety.

In order to help the Governments of Czechoslovakia, Bulgaria and the USSR to set priorities for the corrective measures required at their plants two project review meetings have been convened by the IAEA in Vienna respectively from August 19-23 and 18 October to November 1, 1991. About 1300 specific safety items identified during the safety review missions and in the conceptual design review have been grouped in broader categories representing some 100 issues of safety concern and further analyzed.

This report was prepared by a group of international experts and the IAEA staff and reviewed by the Project Steering Committee, December 9-13, 1991 in Vienna.

An overview of the safety issues identified is presented indicating their effect on the performance of the basic safety functions.

In addition, individual issues are defined and given a short description of the underlying safety concern, the ranking category (I-IV) and the justification for the ranking. Specific items related to the issue are identified based on their sequential reference in the IAEA data base. Reference to these items is made to facilitate the identification of the issue in the various project reports (see Refs.). It does not represent, necessarily the endorsement of the authors of this report to the specific recommendations. Therefore, conceptual recommendations related to design issues are given as a technical basis for the safety modifications required.

Issues related to seismic safety are not discussed in this report. They are being addressed, however, in related activities of the WWER safety project.

The areas of waste treatment, waste disposal, chemistry and radiation protection were not investigated in detail during the safety review missions.

A comprehensive review of the regulatory bodies in the countries of the plants reviewed was also not carried out.

Issues are treated as generic to all plants and according to their safety significance. It may happen, that at a particular plant the issue has been completely or partially solved or it is of less safety significance due to plant specific conditions. National authorities and plant operators should therefore evaluate the relevance of each issue in order to establish specific work programmes for improving their plant's safety.

It is an essential indication of a good safety culture that each WWER plant develops its own action plan to address the concerns identified in this report. That action plan should then be reviewed by the national regulatory organizations.

The action plans should further evaluate the importance of the safety issues reported here, and they should contain a schedule for technical analysis and implementation of necessary improvements.

It must be recognized that extensive modifications may be required to address some of the nuclear safety concerns identified. Moreover, many of the design issues cannot be resolved in the short-term and may indeed take years to be resolved. On the other hand, operational safety issues can be addressed to a large extent, in the shortterm.

Some corrective actions will entail costs and construction time that could only be justifiable if a long term operation of these plants is forecast.

In the interim, there is a clear need for all user countries to establish special operating regimes and compensatory measures to materially increase safety.

A comprehensive backfitting evaluation, including thermohydraulic calculations, stress analysis and reliability analysis, where appropriate, should be performed for proposed changes before their implementation. This evaluation should also consider the possible drawbacks of the changes, in order to ensure that the measures to be taken, actually reduce the risk as intended.

RANKING OF SAFETY ISSUES

Central to the IAEA Project was the evaluation of the safety significance of the deficiencies identified during the conceptual design review and safety review missions. An important goal was the ranking of individual safety issues according to their impact on NPP safety.

The technical knowledge and experience of the international experts who participated in the Project along with generally accepted current safety principles and objectives such as IAEA NUSS Codes and Guides and INSAG 3 formed the basis for the identification of specific deficiencies (i.e. safety items). Next, individual safety items related to the same major safety concern have been grouped in broader categories characterizing safety issues.

To facilitate the interrogation and analysis the safety items have been stored in a computerized data base. The data base contains some 1300 records. Each record includes a reference to a safety mission or meeting were it was raised, a classification according to INSAG Basic Safety Principles, the related issues and ranking. Due consideration was also given to two aspects specific to WWER-440/230 NPPs. First, these plants were designed according to earlier safety standards which were mainly related to industrial codes, standards and rules. Second, these reactors have some positive features compared to other pressurized water reactors.

Issues both related to design and operation are ranked according to their safety significance in four categories of increasing severity.

Category	ľ:	Issues in Category I reflect a departure from
		recognized international practices. It may be
		appropriate to address them as part of actions
		to resolve higher priority issues.

- Category II: Issues in Category II are of safety concern. Defense in depth is degraded. Action is required to resolve the issue.
- Category III: Issues in Category III are of high safety concern. Defense in depth is insufficient. Immediate corrective action is necessary. Interim measures might also be necessary.
- Category IV: Issues in Category IV are of the highest safety concern. Defence in depth is unacceptable. Immediate action is required to overcome the issue. Compensatory measures have to be established until the safety problems are resolved.

The assignment of a severity category to an issue starts with an evaluation of the potential degradation of defense in depth. Issues affecting accident prevention are given more importance because they affect the first lines of defense. If an unequivocal categorization is not possible, the issue is then analyzed based on its influence on the performance of the safety functions. In this case, the frequency at which the safety function can be demanded is also considered. Four classes of potential plant states are defined, in the order of decreasing likelihood:

- normal operational events
- incidents and accidents within the original Design Basis
- accidents beyond the original Design Basis
- severe accidents involving a major core damage

It should be noted here that the original Design Basis with respect to Loss of Coolant Accidents is a leak equivalent to 32 mm diameter pipe break.

Finally the issue is evaluated based on its potential to cause accidents with unacceptable consequences.

The approach used for ranking of issues related to plant operation is in principle the same. Issues affecting management and organization essential procedures, and training are among those ranked in higher categories.

The methodology described aimed at providing guidance for the experts to rank safety issues in a systematic and consistent way. It has to be recognized, however, that a degree of subjectivity will always be present in the experts' judgement. The IAEA Project also draws from this fact as experts from different countries have participated in this Project reflecting, to a considerable extent, the existing international experience, and practices.

A summary of the safety issues and their respective categories is shown in the table below for each one of the areas of design and operation.

Area		Cate	<u>jories</u>	
	1	11	[]]	١٧
<u>Design</u>				
Core		4		
Systems		5	7	3
Components		2	5	5
1&C		4	7	1
Electrical		1	2	2
Ac. Analysis		4	5	
Fire Protection			3	
		(20)	(29)	(11)
<u>Operation</u>				
Management	2	3	6	2
Op. Procedures		2	1	1
Plt. Operations	1	2	3	
Maintenance	1	2	-	1
Training	1	1	3	
E. Planning		2	3	
	(5)	(12)	(16)	(4)
TOTAL	5	32	45	15

WWER 440/230 NPPs RANKING OF SAFETY ISSUES

2. OVERVIEW OF SAFETY ISSUES

The design of WWER 440 model 230 NPPs was developed in the early sixties in compliance with the USSR industrial codes, standards and rules effective at that time. The safety concept of the design assumes a high reliability of essential primary circuit components and of auxiliary systems during plant lifetime and conservative design margins. Therefore no special measures are considered in the plant design to protect against a large failure of the primary cooling circuit. Plant safety also relies to a large extent on organizational measures aimed at the prevention of accidents.

The WWER-440/230 project reviewed mainly the extent to which the basic safety concept was realized and which shortcomings in design and operation could endanger plant safety.

The assessment approach was based on the "defense in depth" concept which provides an overall strategy for safety measures and features of NPPs. Safety issues related to accident prevention have been given more importance than those related to accident mitigation. This approach helps on focusing on the design and operational issues related to accident prevention.

An overview of the safety issues identified is presented in terms of basic safety functions and successive barriers designed to prevent the release of radioactive material to the environment.

The basic safety functions are: controlling the power, cooling the fuel and confining the radioactive material.

The three successive barriers which should always be protected are: the fuel and its cladding, the primary coolant boundary and the confinement structures and equipment.

Protection of the first barrier will be included in the first two basic safety functions. The second barrier will be examined separately and the third barrier will be examined together with the third basic safety function. Consequently, the results of the safety assessment of the WWER-440/230s will be presented according to the following main headings:

- controlling the power in normal as well as in transient or accident conditions,
- cooling the fuel in all conditions, namely during normal operation at power, during shutdown or refuelling, and following a Loss of Coolant Accident (LOCA),
- preserving the primary circuit integrity, and
- confining the radioactive material in case of LOCA,

In addition to that, five areas of design will be presented separately, because they interfere with nearly every system or equipment in a plant and thus influence the performance of the main safety functions. These areas are the following:

- instrumentation and control (including man-machine interface),
- electric power supply,
- fire protection,
- protection against earthquakes and other external hazards,
- accident analysis,

The Safety Review Missions reviewed in detail those operating attributes and practices that impacted directly on the safe operation of the plants taking into account the known design deficiencies. It was concluded that the major concerns could be grouped in the following five operational areas:

- management,
- operating procedures,
- plant operations,
- maintenance,
- training,

Finally the two following areas are discussed.

- emergency planning and,
- regulatory interfaces.

Sub-sections include short description of systems operations and discuss required system modifications or improvements related to both plant design and operation. References are also given to the related safety issues presented in the following sections of this report.

2.1. Controlling the Power

2.1.1. Controlling the Power in Normal Conditions

Although it is shown to a large extent that the present core design of the WWER-440/230 is conservative, a full knowledge of the design margins is not available at the plants. A systematic evaluation of core design margins, on the basis of actual core loading is needed. Such an evaluation would be the basis to establish the limits and conditions for operation in order to ensure that the plant is kept within its design limits. Examples of such limits are: maximum thermal power, maximum burn-up, shutdown margin, maximum peaking factors, sub-criticality at shutdown and in the fuel storage pool, permitted operating range of the control rods and primary circuit integrity limitations for power changes.

Moreover, core characteristics need to be verified and compared to calculational results with modern codes, after each reloading, to ensure that the plant is still within its design basis.

Keeping the core within its design margins during plant operation requires a reliable in-core power and flux monitoring system. The present in-core power monitoring system has a reduced capability. The original in-core flux monitoring system had a poor reliability and has been deactivated.

Safety issues related to this subsection are:

Core 1	In Core Monitoring (II)
Core 2	Core Design Margin Evaluation (II)
Core 3	Fuel Examination (II)
Core 4	Reloading Procedures and Test Programme (II)
I&C 2	Reliability of I&C Equipment (III)
I&C 3	Control and Protection Systems Interaction (II)
I&C 5	I&C Support to Operation and Control Room Design
Accident Analysis 4	Accident During Shutdown or Refuelling (II)
Management 13	Computer Utilization (I)
Operating Procedures 3	Limits and Conditions (III)
Operating Procedures 4	Procedures. Operation (II).

2.1.2. Controlling the Power in Transient and Accident Conditions

Controlling the reactor power in transient or accident conditions requires a comprehensive accident analysis to make sure that the plant is able to cope with power excursion transients such as:

spurious withdrawal of a control rod at full power, inadvertent boric acid dilution of the primary coolant, inadvertent reopening of an isolated primary circuit loop, (the possibility for unborated water plug moving into the core) and steam line breaks or secondary side transients causing fast cooling at the core inlet.

The initial cause of the above transients can be an equipment failure or an operator's error. This should be defined after a preliminary assessment of the procedures and review of the automatic devices related to these transients.

Interlocking may also be required to prevent power excursions which, according to the analysis, might damage the core.

Systems 10	Main Steamline Isolation (IV)
Systems 12	Secondary Circuit Pressure Relief (II)
Components 12	Secondary Circuit In-Service Inspection (II)
I&C 6	Interlocking (II)
Accident Analysis 2	Emergency Protection Signals (III)
Accident Analysis 5	Qualification of Safety Analysis (II)
Accident Analysis 6	Scope of Accident and Transient Analysis (III)
Management 9	Experience Feedback (III)
Operating Procedures 2	Emergency Operating Procedures (IV)
Operating Procedures 4	Procedures. Operation (II)
Training 2	Training of Plant Operators (III).

2.2. Cooling the Fuel

2.2.1. Cooling the Fuel in Plant Operating and Transient Conditions

Two main features of the WWER-440/230 NPPs have to be recalled:

- a. In all conditions, with the exception of loss of coolant accidents, the steam generators are the only way to cool the reactor core.
- b. In case of total loss of heat sink, the core can be cooled without any damage during a minimum period of six hours, due to the large water inventory of the steam generators. This has been demonstrated during the fire events at Greifswald in 1975 and at Armenia in 1982.

Normally, after the reactor is shutdown, the decay heat is removed first by the main turbine condensers and at least one out of two emergency feedwater pumps (65 t/h at 65 b) As the decay heat decreases, the steam is led to the technological condenser and the condensate is returned to the feedwater system.

When the liquid phase starts, decay heat is removed via the technological condenser and one (out of two) decay heat removal pump (500 t/h at 6.5 b). The technological condenser is cooled by the Service Water System.

Emergency feedwater and decay heat removal pumps are electrically backed up by the diesels. These pumps are cooled by the service water system and installed in the same area of the turbine hall, close to the main feedwater pumps.

At all levels there are interconnections between the two units. (The basic design of the WWER-440/230s is two twinned units of 440 MW each). For instance, the emergency feedwater pumps of one unit can inject water into the steam generators of the other unit. The decay heat removal pumps can take suction from the technological condenser of a unit and inject water into the steam generators of the other unit.

The two 150 m^3 deaerators feeding the emergency feedwater pumps can be refilled by water taken from the main condensers by the main condensate pumps or from the make up system or from the technological condenser.

Due to all these interconnections, no single active failure can totally impair the reactor heat removal function. But potential for common-cause failures is non negligible because of the layout. Diversity is then the most obvious means to reach an acceptable level of safety.

Taking full benefit from the positive safety features of the WWER-440/230s in the core cooling function should be one of the main objectives in order to reach an acceptable level of safety. This can be accomplished by making sure that the steam generator water inventory is preserved and being able to face the main common cause failures which could prevent decay heat removal via the steam generators.

Control of the Steam Generator Water Inventory

Depletion of steam generator water is a major safety concern. A study to determine the spectrum of events that can cause significant loss of the steam generators secondary side water inventory. Preventive measures, like an early reactor trip, should then be implemented. Among these measures, the most obvious one is reactor scram on low level in the steam generator.

Safety issues related to this subsection are:

Systems 3	Decay Heat Removal. Ensuring Adequate SG
	Inventory (IV)
Accident Analysis 2	Emergency Protection Signals (III)
Management 9	Experience Feedback (III)
Operating Procedures 2	Emergency Operating Procedures (IV)
Operating Procedures 4	Procedures. Operation (II)
Training 2	Training of Plant Operators (III)

Failure of Decay Heat Removal Function in the Machine Hall

A common-cause, like a big fire in the machine hall, could destroy or prevent from functioning all the equipment which are located close together in the machine hall (common to both units).

Considering the operating experience of the WWERs, the probability of such an event is non-negligible.

An alternate means for supplying feedwater located outside the machine hall is required, for direct feeding into the steam generators.

In the design of this new feedwater system, the following should be taken into account: A pipe connection should allow for injection of water from an external source (fire brigade trucks for instance) before the tanks of the system are

depleted; The pump discharge line should be connected as close as possible to the steam generator and, if possible, at a different location from the main and emergency feedwater pump line; It should be demonstrated that the system and its building are seismically qualified and designed. In addition, this system could also be able to cool the diesels and their vital auxiliaries (see next section);

Systems 3	Decay Heat Removal. Ensuring adequate SG Inventory (IV)
Systems 4	Decay Heat Removal. Heat removal path (II)
I&C 11	Control Room. Habitability/Remote Shutdown Parel (III)
Accident Analysis 6	Scope of Accident And Transient Analysis (III)
Accident Analysis 9	Evaluation of Modifications (III)
Fire Protection 1	Fire Protection Analysis (III)
Fire Protection 2	Fire Protection Equipment (III)
Fire Protection 3	Fire Protection. Inspection (III)
Operating Procedures 2	Emergency Operating Procedures (IV)

Failure of Decay Heat Removal Function at the Ultimate Heat Sink

The service water pumps common to both units are installed close together in the same building. In case of a common cause rendering all the pumps inoperative at the same time, the decay heat removal systems would be unavailable. The diesels, which are cooled by service water, would also be unavailable.

In this case, the only source of electric power left would be the external auxiliary source. However, there is a non negligible probability of loosing the external sources when the plant is shutdown, depending on the relative power of the plant with respect to the local network.

A common cause, for instance an earthquake, could also affect the source of water where the service water take suction and the external electric source.

The new feedwater system described above would back up the existing systems of decay heat removal in all these cases.

But the integrity and availability of the existing service water system components should be better ensured by added inspection and physical barriers to protect the system from most of the common cause failures.

Safety issues related to this subsection are:

Systems 5	Decay Heat Removal. Service Water System (III)
Plant Operation 2	Procedures. Surveillance (III)
Maintenance 3	Equipment Material Conditions (IV).

Failure of Decay Heat Removal Function Due to the Loss of the Electric Cables

Due to the layout of the electric power and control cables of a WWER-440/230, a common cause, like a fire in a cable gallery, could result in a total unavailability of the electric sources or of the service water system which is common to both units. This type of event happened twice: in Greifswald (1975) and in Armenia (1982).

After the big Armenian fire, a solution to cope with such an event was designed and implemented in Armenia. The same type of solution was also implemented in Kola and Bohunice.

It consists of a network of power cables with a distinct and independent layout from all other cables. One pump of each system important to safety can be connected in about one hour to this network by means of a connecting board and a set of already prepared cables available in the same room. The network of independent cables connects the local boards to a building separate from all other buildings, which in turn can be connected to any external or internal available electric source.

Of course, such a modification is complementary to all other preventive measures which should be taken against fire (see chapter on fire protection).

Safety issues related to this subsection are:

Electrical 1	Electrical	Redundancy,	Separation	and
	Independence	(IV)	_	
Fire Protection 1	Fire Protectio	n Analysis (III)		
Fire Protection 3	Fire protection	n. Inspection (III)		
Operating Procedures 2	Emergency O	perating Procedure	es (IV)	
Plant Operations 2	Procedures. Su	urveillance (III)		
Training 2	Training of Pl	ant Operators (III).	

Failure of Decay Heat Removal Function Due to the Loss of the Control Room

The main control room being close to the machine hall, there is a potential for adverse environmental conditions due to steam, a turbine missile or a fire. Although feeding the steam generators might be possible from the other unit, a minimum of instrumentation and control would be necessary to do so.

Modifications to the control room should be made to increase its habitability in accident conditions and to protect it from external hazards.

In addition, a remote shutdown panel should be installed sufficiently far away from the control room so as not to be affected by the same extreme environmental conditions at the same time. This panel would allow the operator to keep the plant in safe shutdown conditions which means essentially to assure the decay heat removal from the core.

Safety issues related to this subsection are:

Systems 14	Ventilation/Cooling Capability (III)
I&C 5	I&C Support to Operation and Control Room
	Design (III)
I&C 11	Control Room Habitability/Remote Shutdown
	Panel (III)
Fire Protection 1	Fire Protection Analysis (III)
Fire Protection 2	Fire Protection Equipment (III)
Operating Procedures 2	Emergency Operating Procedures (IV)
Training 2	Training of Plant Operators (III).

2.2.2. Cooling the Fuel Under Loss of Coolant Conditions

WWER-440/230s are designed to cope with primary circuit breaks up to 32 mm equivalent diameter (Design Basis Accident). Therefore, two types of events have to be considered according to the size of the break. In addition to that, the boundaries of the primary circuit have to be well-defined.

Primary Circuit Break Less than or Equal to 32 mm Equivalent Diameter

When a leak appears in the primary circuit, which cannot be compensated by the make up system (3 or 4 volumetric pumps of 6 m^3/h each) the pressurizer level and then

the primary pressure will decrease. The reactor will be shut down and the safety injection system will be started automatically on a low pressurizer level combined with a low primary pressure.

There are six safety injection pumps (high pressure) in two groups of three, each group being connected to a distinct 6 KV busbar. When the system is called upon, two pumps of each group are started, but only one pump is enough to cope with the Design Basis Accident (DBA). In case of simultaneous loss of offsite power, one pump in each group is backed up by a diesel.

After a certain time, water in the safety injection storage tank is mainly recirculated water which has spilled from the break into the hermetic compartment and has been collected in the compartment sump which in turn communicates with the tank.

This water has to be cooled down by the containment spray system heat exchangers. The containment spray system is started automatically on a high pressure in the hermetic compartment.

There are three containment spray pumps, but two are necessary to cope with the DBA. Each one of these two pumps is supplied by a distinct diesel.

Studies are needed to assess the capabilities and the limitations of the safety injection and containment systems. The studies should include:

- * an accident analysis to check the adequacy of these two systems to cope with a DBA, not only in the short term, but also in the long term core cooling recirculation phase. The efficiency of the two current designs options (cold or hot leg injection), according to the location of the break, should be evaluated.
- * an analysis to assess the probability of a common cause failure of the core cooling function simultaneously with a DBA/LOCA.
- * a qualitative fault tree analysis taking into account all vital auxiliaries. The objective of the study would be to identify all single failures which would result in loss or severe degradation of the core cooling function.

Depending on the results of the above studies, the necessary modifications should be made.

In addition to these studies, it should be examined whether the primary loop main isolation valves can be used to isolate a break in the primary circuit main pipes. Following the study, detailed emergency procedures should then be written.

Systems 8	ECCS - Redundancy and Physical
•	Separation of Redundant Parts (IV)
I&C 4	I&C Redundancy, Separation and Independence (IV)
I&C 5	I&C Support to Operation and Control Room
	Design (III)

I&C 7	I&C and Electrical Equipment Qualification (III)
I&C 12	Instrumentation Setpoint Margins (II)
Electrical 2	Reliability of Electrical Equipment (III)
Electrical 3	Diesel Generator Loading (IV)
Accident Analysis 1	Confinement Analysis (III)
Accident Analysis 2	Emergency Protection Signals (III)
Accident Analysis 6	Scope of Accident and Transient Analysis (III)
Accident Analysis 7	Loss of Coolant Accidents (III)
Accident Analysis 8	Radiological Consequences (II)
Accident Analysis 9	Evaluation of Modifications (III)
Management 10	Quality Assurance (III)
Operating Procedures 2	Emergency Operating Procedures (IV)
Operating Procedures 3	Limits and Conditions (III)
Plant Operations 2	Procedures. Surveillance (III)
Plant Operations 3	Work Control (III)
Maintenance 2	Procedures. Maintenance (II)
Maintenance 3	Equipment Material Conditions (IV)
Training 2	Training of Plant Operators (III).

Primary Circuit Break Larger than 32 mm

Accident analyses should be extended to evaluate the limit size of a primary circuit break that the current safety injection and containment spray systems could face without adjunction of a low head high flow safety injection system (available at Kozloduy units 3 and 4) or of accumulators.

The minimum amount of equipment necessary to face the accident should be determined in these studies.

It would then be possible to determine the modifications which would be required on the existing systems (in addition to those defined above) to extend their capability beyond the DBA up to a well-defined size of break. To face primary pipe breaks beyond this value and up to the largest size (500 mm double-ended break) would require major improvements to be defined by further accident analyses.

ECCS - Full LOCA Spectrum Capability and
Long Term Cooling (III)
Accident Monitoring Instrumentation (II)
I&C Support to Operation and Control Room
Design (III)
I&C and Electrical Equipment Qualification (III)
Instrumentation Setpoint Margins (II)
Confinement Analysis (III)
Emergency Protection Signals (III)
Scope of Accident and Transient Analysis (III)
Loss of Coolant Accidents (III)

Accident Analysis 8	Radiological Consequences (II)
Accident Analysis 9	Evaluation of Modifications (III)
Operating Procedures 2	Emergency Operating Procedures (IV)
Training 2	Training of Plant Operators (III)
Emergency planning 5	Post Accident Sampling (II).

Interfacing Systems LOCA and Confinement Bypass

It is of high significance to safety to define the boundaries of the primary circuit on which it has to be assumed that a leakage or a break may happen.

According to the single failure criterion, the primary circuit extends to the second isolation valve on all pipes connected to the main loops of the primary circuit.

It should be checked that, with this definition, no part of the primary circuit stays outside of the hermetic compartment. If this is not the case, it means that a DBA/LOCA could happen outside the hermetic compartment and then the plant could not cope with such an accident. Therefore, installation of new isolation devices may be required.

Safety issues related to this subsection are:

Systems 1	Confinement - Leaktightness (III)
Systems 13	Reliable Isolation (II)
Accident Analysis 1	Confinement Analysis (III)
Accident Analysis 6	Scope of Accident and Transient Analysis (III)
Accident Analysis 8	Radiological Consequences (II)
Accident Analysis 9	Evaluation of Modifications (III)
Operating Procedures 2	Emergency Operating Procedures (IV)
Plant Operations 2	Procedures. Surveillance (III)
Plant Operations 3	Work Control (III).

Common Cause Failures due to Pipe Whip

Primary pipes and pipes connected to the primary circuit up to the first isolation valve are high energy pipes. One of these pipes may have a complete rupture within the hermetic compartment and then damage other pipes due to pipe whip phenomenon. Among the other pipes, are safety injection pipes or containment spray pipes.

Thus, the initial break would increase the severity of the consequences of the LOCA by impairing partially or totally the safety injection system or the containment spray system.

To prevent such a common cause series of failures, a pipe whip analysis in the hermetic compartment should be performed and preventive measures taken as required by the study.

Safety issues related to this subsection are:

Systems 8	ECCS - Redundancy and Physical Separation	of
	Redundant Parts (IV)	
Systems 15	Dynamic Loads Due to Piping Failures (II)	
Components 10	Primary Circuit Stress Analysis (III)	

2.2.3. Cooling the Fuel Under Shutdown or Refuelling Conditions

During reactor refuelling or in the spent fuel pool, no single failure or single operator's error should result in an accident like a reactivity transient due to spurious boron dilution or cold water injection or an overheating accident due to drainage of the spent fuel pool.

In case a single failure or operator's error can result in such an accident, an accident analysis would be necessary to evaluate the consequences and take the appropriate measures either to prevent or to limit the consequences of the accident.

Safety issues related to this subsection are:

Systems 4	Decay Heat Removal. Heat Removal Path (II)
Systems 5	Decay Heat Removal. Service Water System (III)
I&C 5	I&C Support to Operation and Control Room
	Design (III)
Accident Analysis 4	Accident During Shutdown or Refueling (II)
Management 5	Organization (III)
Operating Procedures 3	Limits and Conditions (III)
Operating Procedures 4	Procedures. Operation (II)
Plant Operations 3	Work Control (III)
Maintenance 1	Maintenance Programmme (II).

2.3. Preserving the Primary Circuit Integrity

This is one of the main safety objectives in the area of prevention. Therefore, most of the issues related to this topic were ranked high. Some of these relate to component integrity, others to systems, but they should be addressed in parallel with the same high level of urgency.

2.3.1. Maintaining Component Integrity

Reactor Pressure Vessel

The irradiation by high energy neutrons has caused reactor vessel wall embrittlement especially in the circular weld at the elevation of the reactor core. This causes an increase of the ductile to brittle transition temperature from less than O°C in a new vessel to more than 150°C in some plants. The primary circuit must not be pressurized at temperatures below the transition temperature to prevent brittle fracture. A potential method for reducing the transition temperature is vessel annealing. But the effectiveness of this process has not been yet sufficiently validated and more information is needed about the embrittlement phenomenon and the way its progress can be predicted. It has been proven, though, that the rate of embrittlement can be significantly slowed down by reducing the fast neutron flux, positioning, for instance, dummy elements into the outermost core positions.

In-service inspection should be improved using the most adequate detection methods with updated acceptance criteria.

Re-evaluation of stress analyses using more refined methods than the initial one is also needed to account for DBA and beyond DBA accidents.

Another issue related to the reactor vessel is that the vessel rests on an annular tank, filled with water. It should be demonstrated that this tank will keep its integrity during the plant lifetime or in case of earthquake.

Safety issues related to this subsection are:

Components 1	Embrittlement. Baseline Information and Analysis (IV)
Components 2	Embrittlement. Validation of Annealing (IV)
Components 3	Embrittlement. Flux Reduction (IV)
Components 5	Vessel ISI. Inspection Techniques and
	Acceptance Criteria (III)
Components 6	Vessel ISI. Corrosion Monitoring (II)
Components 7	Vessel Stress Analysis (III)
Components 11	Vessel Support Integrity (III)
Operating Procedures 3	Limits and Conditions (III).

Primary Circuit

A major safety concern is the fact that WWER-440/230s do not account for large diameter (more than 32 mm equivalent diameter) break LOCA. Therefore, it is of high importance to safety to demonstrate that it is possible to detect those defects in the primary circuit which can evolve into a break.

This requires an analysis of the applicability of the "Leak Before Break" (LBB) concept and the implementation of the corresponding modifications. In addition, the LBB concept relies upon extended stress analysis calculations and the implementation of improved in-service inspection techniques.

Leak Before Break Applicability (IV)
Primary Circuit In-Service Inspection (III)
Primary Circuit Stress Analysis (III)
Quality Assurance (III)
Limits and Conditions (III)
Procedures. Surveillance (III)
Chemistry (I)

2.3.2. Primary Circuit Overpressure Protection

Protection of primary circuit against overpressure is insured by the pressurizer safety valves. These valves are generally pilot operated valves. But they are not qualified for water or water/steam mixtures. This means that the primary circuit is not well protected during periods when the pressurizer is full of water and the primary circuit is still closed.

The sizing of these valves should also be evaluated considering various transients and feed and bleed capability. Moreover, some of these valves do not fulfill seismic requirements and the layout is such that potential common cause failures of the impulse lines cannot be disregarded.

To reduce the frequency of opening of the pressurizer safety valves, protection signals should be implemented as found necessary.

Safety issues related to this subsection are:

Systems 9	ECCS - Primary Break Isolation Options (II)
Systems 11	Primary Circuit Pressure Relief (III)
Accident Analysis 2	Emergency Protection Signals (III)
Operating Procedures 2	Emergency Operating Procedures (IV)
Plant Operations 1	Surveillance Programme (II)
Plant Operations 2	Procedures. Surveillance (III)
Training 2	Training of Plant Operators (III).

2.3.3. Primary Circuit Cold Overpressure Protection

Since pressure limits are temperature dependent, primary circuit cold overpressure may happen in case of a sharp increase of pressure at a given temperature or a sharp decrease in temperature at a given pressure.

The first case is covered above. The second case may have different causes and may also result in recriticality. An incident of this type (spurious opening of the bypass to the turbine) occurred in Bohunice unit 2 in 1984. It was analyzed in the Report of the October 1990 ASSET Mission to Bohunice.

A general review of the potential for overcooling transients should be performed. This investigation should not be restricted to a main steam line break. It should be completed by accident analysis to evaluate, for each transient, the significance of the thermal shock on the reactor pressure vessel and to test various design solutions. When this task will have been accomplished, it will be possible to define the necessary modifications to perform, or procedures to establish, with their relative priorities, in order to reach an adequate protection against a primary circuit cold pressurization.

Systems 9	ECCS - Primary Break Isolation Options (II)
Systems 10	Main Steamline Isolation (IV)
Components 4	Embrittlement. Prevention of Low Temperature
	Pressurization (IV)

Components 12	Secondary Circuit In-Service Inspection (II)
Accident Analysis 6	Scope of Accident and Transient Analysis (III)
Operating Procedures 3	Limits and Conditions (III)
Operating Procedures 4	Procedures. Operation (II)
Plant Operations 2	Procedures. Surveillance (III).

2.4. Confining the Radioactive Material in Case of LOCA

As in the previous chapter concerning the cooling of the core in case of LOCA, two types of events have to be considered, according to the size of the break.

2.4.1. Primary Circuit Break Less than or Equal to 32 mm Equivalent Diameter

Although the containment flaps and the containment spray system have been designed to protect the integrity of the hermetic compartment, their actual performance has never been fully checked and taken into account in an accident analysis, particularly in view of the high leak rate of the hermetic compartment.

Even if the first priority is to make sure that the core will be efficiently cooled down, which would limit the risk of radioactive release, it is also necessary to evaluate the overall efficiency of the confinement in an accident analysis considering the following parameters:

- * the actual leak rate of the hermeticcompartment;
- the performance of the flaps with various realistic assumptions (normal behavior, non opening, one flap stuck open, etc.);
- * the actual characteristics of the containment spray system as measured by tests (performed or to be performed) such as: time necessary for the spray to start following a DBA/LOCA, efficiency of the sprinklers according to the flow provided by the pumps, temperature of the water coming from the reactor and the containment sump via the safety injection tank, etc.;
- * the single failure criterion which, in an acceptable design, should not reduce the performance of the systems below the minimum required;
- * realistic assumptions concerning the primary coolant contamination.

These accident analyses might conclude that modifications are necessary concerning the systems or to improve the leaktightness of the confinement. As long as these analyses, as well as the complementary tests as needed, are not performed, no major modifications should be undertaken.

Systems 1	Confinement - Leaktightness (III)
Systems 5	Decay Heat Removal. Service Water System (III)
Systems 8	ECCS - Redundancy and Physical
·	Separation of Redundant Parts (IV)

Systems 15	Dynamic Loads Due to Piping Failures (II)
Accident Analysis 1	Confinement Analysis (III)
Accident Analysis 8	Radiological Consequences (II)
Operating Procedures 2	Emergency Operating Procedures (IV)
Maintenance 3	Equipment Material Conditions (IV)
Training 2	Training of Plant Operators (III)

2.4.2. Primary Circuit Break Larger than 32 mm

According to preliminary analyses performed by the U.S. Department of Energy (DOE/NE-0086), structural failure of the confinement may not occur even with a large break LOCA unless an hydrogen explosion occurs. The main problem is then to prevent hydrogen accumulation within the confinement.

The high leak rate of the confinement would probably not be enough to prevent hydrogen accumulation in the upper parts of the confinement like the pressurizer compartment. Solutions to these problems have still to be found. Among them, forced filtered venting is to be investigated as it would solve the problem of hydrogen accumulation and reduce considerably the impact of the confinement high leak rate. Use of hydrogen igniters should also be considered.

Safety issues related to this subsection are:

Confinement - Severe Accident Conditions (III)
Decay Heat Removal. Service Water System (III)
ECCS - Redundancy and Physical Separation of
Redundant Parts (IV)
Dynamic Loads due to Piping Failures (II)
Confinement Analysis (III)
Qualification of safety analysis (II)
Scope of accident and transient analysis (III)
Radiological consequences (II)
Emergency Operating Procedures (IV)
Training of plant operators (III)
Emergency Response Programme (III)
Emergency Response Procedures (III)
Emergency Response Facilities (III)
Emergency Response. Training (II)
Post Accident Sampling (II).

2.5. Areas Affecting Performance of all Safety Functions

2.5.1. Instrumentation and Control

Instrumentation and Control are directly associated with the performance of safety functions and its reliability should be consistent with the related mechanical or electrical systems reliability.

Moreover, I&C is generally more sensitive to ageing, interconnection problems and all types of environmental conditions: temperature, humidity, radiations, fire, external pressure, pipe whip, missiles, etc... I&C is also at the interface between operator and the plant, and, as such, has a predominant significance to safety. For the same reason, I&C is tightly connected to the operating procedures and both should be assessed at the same time.

I&C vital auxiliary systems need to be as reliable as the I&C equipment they serve. This means that safety assessment studies to be performed on I&C should also include the I&C vital auxiliaries.

I&C in Safety Functions

Complementary to the previous review of the main safety functions, an assessment of the corresponding I&C systems and equipment and the associated operating procedures (including tests and maintenance) should be performed.

It is required first to establish a list of the I&C systems and equipment on which the safety functions depend upon. This list should included information related to:

- vital auxiliary systems on which I&C depends: electric power supply, ventilation, etc.,
- tests usually performed, in what plant conditions and with what frequency,
- age of the equipment,
- observed reliability (good, medium or bad), and
- potential extreme environmental and seismic conditions in which the equipment will have to perform their function.

Based on the above collected information and the schematics of each I&C system, a comprehensive investigation should be performed to verify:

- whether the single failure criterion can be successfully applied to each safety function considering the numerous interconnections between redundant channels or with non-safety-related equipment,
- the need for automatic interlocks deemed necessary to prevent operator errors,
- whether tests covering all components of the I&C systems are possible and actually in use during plant operation with an acceptable frequency considering the observed reliability of the system.
- whether components supposed to operate in harsh environmental conditions are qualified to do so. If not, a programme of replacement by qualified components has to be set up.
- whether any potential common-cause event, due to internal hazards, can cause simultaneous failure of redundant I&C equipment thus failing a safety function.

define what should be done at the level of I&C to improve the performance of each safety function (e.g. accident monitoring instrumentation ...).

Finally, a detailed programme for upgrading systems and equipment is required where the investigations have identified shortcomings.

Safety issues related to this subsection are:

Systems 14	Ventilation/Cooling Capability (III)
I&C 2	Reliability of I&C Equipment (III)
I&C 3	Control and Protection Systems Interaction (II)
I&C 4	I&C Redundancy, Separation and Independence (N)
I&C 6	Interlocking (II)
I&C 7	I&C and Electrical Equipment Qualification (III)
I&C 8	I&C and Electrical Equipment Classification
	(III)
I&C 10	Testability of I&C Equipment (III)
Operating Procedures 1	Procedures. Programme (II)
Operating Procedures 2	Emergency Operating Procedures (IV)
Operating Procedures 4	Procedures. Operation (II)
Plant Operations 1	Surveillance Programme (II)
Plant Operations 2	Procedures. Surveillance (III).

I&C in the Control Room

In the control room, it was observed several times during Safety Review Missions that excessive demands are placed on operators, especially in the case of transient conditions, due to an insufficient degree of information, centralization and automation. Therefore, a control room design review, based on the accomplishment of main safety functions, need to be performed to determine what modifications and (or) what additional devices (e.g. computerized safety parameter display system) would help the operator significantly in case of emergency.

The potential drawbacks of such modifications have to be carefully evaluated before any implementation, especially in this area of man-machine interface.

Safety issues related to this subsection are:

I&C 5	I&C Support to Operation and Control Room I	Design	(III)
I&C 11	Control Room Habitability/Remote Shutdown I	Panel	(III)
Management 6	Modification Control (III).		. ,

Comments on Specific Safety Review Recommendations on I&C

Some of the specific recommendations made on I&C are discussed below.

Implementation of Additional Scram Signals.

Highest consideration should be given to the following:

- * scram on low steam generator level, which is a most important one because it will contribute to maintaining steam generator water inventory (see section 2.1.1. above),
- * scram on high pressurizer level, as a means to reduce the frequency of pressurizer safety valves opening (see section 3.2.).

Safety issues related to this subsection are:

Accident Analysis 2	Emergency Protection Signals (III)
Management 6	Modification Control (III)
Operating Procedures 3	Limits and Conditions (III).

Accident Monitoring Instrumentation and Sampling for Severe Accident Management

Accident monitoring instrumentation as well as the capability of taking samples to assess post accident core and radiological conditions needs to be defined as a result of the accident analysis performed.

Safety issues related to this subsection are:

I&C 1	Accident Monitoring Instrumentation (II)
Emergency Planning 1	Emergency Response Programme (III)
Emergency Planning 2	Emergency Response Procedures (III)
Emergency Planning 5	Post Accident Sampling (II).

Instrumentation Setpoint Margins

The safety related instrumentation channel uncertainties (accuracy, drift, calibration) needs to be determined and combined to fix the margins to be used to establish the plant setpoints from the values used in safety analyses.

Safety issue related to this subsection is:

I&C 12 Instrumentation Setpoint Margins (II)

I&C Signal Priority

Operation of the emergency systems should not be inhibited by equipment protection signals or manual actions, at least during a minimum amount of time after the initial I&C signal. This should be checked during the studies of section 5.1. But the most urgent cases are already known and concern the diesels, the safety injection pumps and the confinement spray pumps.

Safety issue related to this subsection is:

I&C 9 I&C Signal Priority (III)

Remote Shutdown Panel

There are insufficient provisions to maintain control room habitability (see chapter 2.1.5.). In case of a main control room inhabitability or unavailability, a remote shutdown panel should exist to allow the operator put and keep the plant in safe shutdown conditions. This panel should be installed in a location where it would not be affected by the conditions in the main control room.

Safety issues related to this subsection are:

I&C 11	Control Room Habitability/Remote Shutdown Panel
	(III)
Operating Procedures 2	Emergency Operating Procedures (IV).

2.5.2. Electric Power Supply

Electric power supply (EPS) is needed for every active electro-mechanical equipment. Thus, EPS systems take part in every safety function and should have the same level of reliability as the mechanical equipment they feed.

Moreover, an EPS failure can be a common cause of failure for one or several main safety functions.

The most significant weak points in the EPS systems of the WWER-440/230's are inadequate redundancy and insufficient functional and layout independence between redundant equipment.

EPS will be examined, looking first at electrical systems supplying AC power (6 kV and 400 V) to safety related equipment. These systems consist of the diesels and the associated AC power distribution system.

Then the batteries and related 220 V DC power distribution systems feeding safety related equipment will be considered.

The cases of Reversible Motor Generators reliability and of the cable segregation will be presented separately.

AC Power Supply and the Safety Functions

Safety related functions are performed by electro-mechanical equipment which should be redundant, in order to fulfil the single failure criterion, and adequately segregated to prevent common cause failures. The corresponding AC power supply systems should then comply with the same design criteria so as not to impair the operability of the safety functions.

In a WWER-440/230, 6 kV and 400 V AC safety-related distribution systems are organized in 2 trains with distribution boards installed in separate rooms.

There are, however, interconnections between the distribution boards of the two trains at all levels. Therefore, comprehensive investigation should be performed to determine whether it is possible to implement a strict train segregation concept and to eliminate as many interconnecting cables as possible. At the same time, the means to improve separation in the layout between the two trains should be investigated and strict procedures should be implemented to keep doors and ducts between rooms of the two trains closed. Potential consequences on the required cooling and ventilation systems capacity need to be considered.

In case of loss of off-site power, the main source of AC power supply is the diesel. Three diesel generators are installed in each unit, two of them are directly connected to the two redundant 6 kV busbars, the third one is on standby and can be connected to any of the two busbars.

There are two programmes of diesel loading corresponding respectively to the loss of external power and the loss of primary coolant accident with loss of external power.

Each diesel can take a total load of 1600 KW, which is sufficient for one diesel to take the full load corresponding to the second situation within the limits of a DBA accident (32 mm leak). However, the 3 containment spray pumps are connected two to one of the 6 KV busbars and one to the other redundant 6 KV busbars. In case of a DBA/LOCA 2 out of 3 containment spray pumps are required. Therefore if the diesel which feeds the busbars where the 2 containment spray pumps are connected should fail the third (swing) diesel has to be started. The load sequencing logic of the diesels is complex and may be a source of common cause failures. For instance, the failure of a time relay could cause failure of both trains of diesel generators simultaneously. To avoid such potential common modes and reach a strict independence between the two trains the containment spray may be organized in two trains (4 pumps instead of 3). Moreover, to solve the problem of beyond DBA/LOCA, when 2 safety injection pumps are necessary would require adding a fourth diesel or replacing the diesels by more powerful ones would be required.

Of course, the diesel vital auxiliaries (e.g. I&C, oil supply, cooling water, batteries....) would have to be organized in two trains as well. This might be difficult in the area of diesel cooling water which is provided by the service water system. To prevent a total loss of cooling water combined with a loss of electric power, cooling of the diesels by a separate source should be considered. This source could be the alternate water source defined in chapter 2.1.2.

Systems 14	Ventilation/Cooling Capability (III)
I&C 5	I&C Support to Operation and Control Room Design (III)
I&C 7	I&C and Electrical Equipment Qualification (III)
I&C 8	I&C and Electrical Equipment Classification (III)
Electrical 1	Electrical Redundancy, Separation and Independence (IV)
Electrical 2	Reliability of Electrical Equipment (III)
Electrical 3	Diesel Generator Loading (IV)
Electrical 5	Connection to Offsite Power Supplies (II)
Plant Operations 2	Procedures. Surveillance (III).

DC Power Supply and the Safety Function

220 V DC supply is necessary to provide control and actuation force to all equipment and, in particular, to the 6 kV equipment, including the two diesel busbars. Therefore, 220 V DC supply systems are vital for the accomplishment of all safety functions.

In WWER-440/230 NPPs there is only one 220 V battery per unit to provide energy to vital loads. A third one is common to both units. The design covers the loss of one battery by several sectionalized DC busbars and manually switchable interconnections between the three DC busbars. Such a procedure is time consuming, complicated and a potential source of common cause failures and operator errors. This design does not fulfill the single failure criterion.

In addition, there is no means of monitoring the battery circuits and galvanic interruptions within the battery circuitry will not be recognized, as long as DC power is delivered via the reversible motor generator sets. Immediate loss of vital DC power after a loss of AC supply would be the consequence. Batteries being the ultimate energy source, a modification of the current design is most important and would have a significant impact on safety. Batteries of each unit should be organized in two independent trains. An extension of the discharge time (currently 30 minutes) should be taken into consideration. Battery circuit monitors should be installed.

As a consequence of the battery design, there is only one single board within each unit supplying vital power to safety loads and providing actuation force and control voltage to the 6 kV busbars.

Therefore, one single failure (e.g. short circuit, fire,) at the level of this single DC distribution board could render all safety systems of one unit inoperable. Moreover, no information is available in the control room about the status of the switches at the level of the DC distribution boards.

To solve these problems the DC distribution system of each unit should be organized in two independent trains, at the same time as the batteries and the chargers.

Safety issues related to this subsection are:

I&C 5	I&C support to Operation and Control Room Design
	(III)
Electrical 4	Battery Discharge Time (III)
Plant Operations 2	Procedures. Surveillance (III)

Emergency AC/DC Power Supply by Reversible Motor Generators (RMG)

In normal operation, an RMG operates as a battery charger. In case of loss of power on the vital AC busbars, power flow direction reverses and the vital busbars are now supplied from the RMG operating in the inverter mode and this discharges the battery. There is one RMG in each unit plus two or three RMGs common to both units and connected to the third battery. In most of the plants, RMGs have shown a poor reliability and have required frequent repairs. They should be replaced by separate static battery chargers and inverters. This will increase functional redundancy, simplify the functional structure of the equipment and result in a much better reliability.

Safety issue related to this subsection is:

Electrical 2 Reliability of Electrical Equipment (III)

Cable Segregation

There is no strict separation between the cable routes of redundant trains or between the cable routes of the two twinned units. There are several areas where redundant cable paths cross each other (junction areas). In these junction areas, redundant cables from the same unit or even from different units may be arranged in common trays on a certain distance. Similar junctions exist within the I&C systems or between I&C and power cables.

Although a strict separation between redundant cables would be impossible within the existing buildings, local improvements are possible: all junction areas should be identified and improvements of local separation and fire protection in these areas should be defined and implemented.

Due to the limitation of such improvements, an independent approach, like an independent cable network could be considered.

Safety issues related to this subsection are:

Electrical 1	Electrical Redundancy, Separation and
	Independence (IV)
Fire Protection 1	Fire Protection Analysis (III)
Fire Protection 2	Fire Protection Equipment (III)
Fire Protection 3	Fire Protection. Inspection (III)

2.5.3. Fire Protection

Poor design (concerning fire) of the station buildings and of the layout of systems, with the addition of poor housekeeping habits, creates a significant risk of fire with a potential for common mode failure of whole safety functions in the WWER-440/230 NPPs.

In the area of fire prevention, flammable material used for the roofs, floor covers, wall painting and cable coating should be replaced by non-flammable material. As an interim measure, sections of roofs or floors or walls covered with flammable material should be divided by means of non-flammable strips.

More generally, an inventory of all flammable material of the plant should be performed and adequate measures (detection, automatic extinction, etc.) taken to limit the risk of fire. With respect to fire detection only areas such as transformers, cable corridors and diesels are covered. Other places with high fire risks or with high safety consequences in case of fire, such as the turbine oil tanks, the safety injection pump room, the reactor hall, the service water pump building or even the main control room are generally not equipped with fire detection systems.

In all the areas where a fire would have severe consequences for safety due to common mode failure of one or several safety-related functions, automatic fire detection and extinguishing systems are required. Redundant equipment should also be located in different fire areas.

In addition, the appropriate location or necessary installation of all kinds of barriers should be determined considering:

sealings with a non-flammable material of all penetrations through walls,

fire barriers to divide areas of high fire risk or high fire consequences for safety and

fire doors capable of withstanding a fire for a sufficient time and preventing the passage of smoke.

An adequate surveillance and maintenance of existing fire equipment is a prerequisite to make sure that this equipment is in good operating condition and correctly used at all times. Fire protection awareness has to be developed by training, and should be considered part of safety culture.

As fire protection is closely linked to specific plant layout and site conditions, the above recommendations are only a basis for a more detailed fire risk evaluation which has to be conducted in each plant with the objective of defining precise plant specific recommendations in order to reduce significantly the fire risk impact on safety of the WWER-440/230 NPPs.

Safety issues related to this subsection are:

Systems 8	ECCS - Redundancy and Physical Separation of
	Redundant Parts (IV)
I&C 4	I&C Redundancy, Separation and Independence (IV)
I&C 11	Control Room Habitability/Remote Shutdown Panel (III)
Electrical 1	Electrical Redundancy, Separation and Independence (IV)
Fire Protection 1	Fire Protection Analysis (III)
Fire Protection 2	Fire Protection Equipment (III)
Fire Protection 3	Fire Protection. Inspection (III)
Management 4	Housekeeping (II).

2.5.4. Accident Analysis

The most important accident analyses are defined above in the review of the main safety functions. But a systematic approach to accident analysis is necessary to ensure that all relevant accidents or transients have been evaluated and that the analyses consider appropriate boundary conditions, application of the single failure criterion, assumptions concerning operator action and common mode failures. Accidents not considered so far, including accidents beyond the DBA should be included in the analyses.

A comprehensive list of accidents to be analyzed needs to be established.

All analyses should be carried out to final stable conditions. For accidents involving release of radioactivity to the environment, a complete calculation of source terms and radiological consequences to the public should also be performed.

Some realistic best estimate (rather than conservative analyses) should also be realized to form a basis for development of operating procedures and operator training.

The computer codes used in the analyses should have been validated by measurements or checking with another modern computer code already validated.

The results of all accident analyses should be incorporated in a safety analysis report.

Safety issues related to this subsection are:

Severe Accident Analysis (II)
Accident During Shutdown or Refuelling (II)
Qualification of Safety Analysis (II)
Scope of Accident and Transient Analysis (III)
Radiological Consequences (II)
Emergency Operating Procedures (IV)
Training Programme (III)
Emergency Response Programme (III)
Emergency Response Procedures (III)
Emergency Response Facilities (III)
Emergency Response Training (II).

2.6. Operation and Management of the Plant

The design deficiencies of the WWER-440/230 plants have already been discussed. The Eastern European operators of the four plants visited have been isolated from the rest of the nuclear safety community until recently. As a result, there are significant differences between the operating practices of WWER users and international practices.

The missions concluded that immediate attention is needed by the plants to improve their approach to operations, to improve the standards of maintenance and to instill a higher safety awareness in their staff. In a number of instances, key elements needed to establish a firm safety culture were missing. While many of the design issues will take many months or years to fully solve and implement, most of the operations issues can be addressed immediately at the plant level.

2.6.1. Management

The safe and efficient operation of a nuclear power plant requires that the organizational structure and responsibilities be clearly defined; that management set the example for and expect high performance standards; that objectives and goals be established, monitored, and corrective actions taken; and that management be closely involved in the day to day operation of the plant. The plant management must demonstrate leadership and be committed to the establishment of a safety culture in which nuclear safety issues receive the attention warranted by their significance.

The Safety Review Missions found that plant organizational structures were bureaucratic and cumbersome, and that restructuring was required. Many of the essential elements necessary to establish a safety culture were absent. In particular, management generally set low standards, accepted poor performance and failed to enforce published standards and rules. In most of the organizations, the responsibilities for plant performance were fragmented and not clear, the lines of communication were long and the organizations were not functionally structured. None of the plants reviewed had established quality assurance programmes.

Management issues covered in this section are:

Management 1	Management Involvement (IV)
Management 2	Management Development (III)
Management 3	Safety Culture (IV)
Management 4	Housekeeping (II)
Management 5	Organization (III)
Management 6	Modification Control (III)
Management 7	Document Management (I)
Management 8	Configuration Management (III)
Management 9	Experience Feedback (III)
Management 10	Quality Assurance (III)
Management 11	Radiation Protection Practices (II)
Management 12	Industrial Safety Practices (II)
Management 13	Computer Utilization (I).

2.6.2. Operating Procedures

Comprehensive operating procedures should be provided for the operators. Operating procedures must be clear, concise, verified for their accuracy and validity, and contain sufficient detail to enable trained operators to perform their activities accurately, thus avoiding human error. The use of and compliance with procedures needs to be enforced.

At all the plants visited, procedures were found to be inadequate. For many operating activities, and in particular for emergency or abnormal operations, there were either no procedures available or they were of such poor quality that they could not be relied upon for their accuracy. The use of procedures when available was not enforced.

The need to develop or to improve the plant technical specifications was identified at most plants. In many cases, plant limits and conditions had not been identified for some important conditions; and acceptance criteria had not been specified for all periodic tests.
Issues relating to operating procedures covered in this section are:

Accident Analysis 6	Scope of Accident and Transient Analysis (III)
Operating Procedures 1	Procedures Programme (II)
Operating Procedures 2	Emergency Operating Procedures (IV)
Operating Procedures 3	Limits and Conditions (III)
Operating Procedures 4	Operating Procedures (II).

2.6.3. Plant Operations

Plant operational activities have a direct impact on the behavior and performance of the reactor and its associated systems. The operating policies, procedures, and practices need to be well defined and strictly adhered to.

The Safety Review Missions concluded that although the plants reviewed had high capacity factors, there was insufficient control of operational details by the control room staff; and there was a need to develop a safety culture in the operation of the units. In most cases the control rooms were inadequately staffed with qualified reactor operators to safely operate and manage the plant in transient and accident conditions. In view of the inadequate instrumentation and human factor considerations in the control rooms, the control room and shift staffing problems deserve high priority attention.A number of plant practices were inadequate and did not promote safe operations, such as: many surveillance procedures for safety systems had not been developed; surveillance testing data was not routinely recorded and evaluated; and testacceptance criteria was either not specified or was inadequate. Many needed improvements were also identified in the areas of system isolation tagging, equipment labelling and the overall work control process.

Plant operations issues covered in this section are:

Plant Operations 1	Surveillance Programme (II)
Plant Operations 2	Surveillance Procedures (III)
Plant Operations 3	Work Control (III)
Plant Operations 4	Organization of Shifts (III)
Plant Operations 5	Labels and Operator Aids (II)
Plant Operations 6	Chemistry (I).

2.6.4. Plant Maintenance

Proper maintenance of plant equipment is essential for the safe, reliable and efficient performance of a nuclear power plant. It was found during the reviews that the maintenance organizations were overly complex resulting in the absence of clear lines of responsibility and authority. The material conditions of equipment and systems at all of the plants reviewed were in need of significant improvement. In some cases, the poor material conditions of the equipment could have resulted in essential safety systems failing to operate as designed. Maintenance standards were poorly defined, a factor which contributed to the poor material conditions. In particular, the maintenance standards and the material condition of balance of plant (BOP) equipment were in need of significant improvement. This was of great concern in that some systems important to safety, such as the Service Water System, have been treated as BOP systems and maintained with almost no quality control. Due to the old design of the plants, procurement of spare parts was problematic and existing spare parts were inadequately stored.

Plant maintenance issues covered in this section are:

Maintenance 1	Maintenance Programme (II)
Maintenance 2	Procedures. Maintenance (II)
Maintenance 3	Equipment Material Conditions (IV)
Maintenance 4	Warehouse (I).

2.6.5. Training

Adequate training of plant personnel is essential for safe nuclear power plant operation. All plant personnel should receive appropriate training and only suitably qualified personnel should be allowed to operate and maintain the plant. Qualifications should be maintained and upgraded by continuing training programmes. At all of the plants reviewed, the training programmes were not systematically structured and training standards were poorly defined. Simulator facilities were not available to all plants and when they were they were found to be inadequate. Refresher or continuing training programmes needed to be strengthened.

Adequate full scope simulator facilities need to be developed. The current approach to training operators does not provide assurance that they can adequately respond to and manage the wide range of possible accidents. In most cases, insufficient training, in lieu of having a simulator, has been provided to the operators to develop and maintain their control room skills for managing accidents.

Training issues covered in this section are:

Training Programme (III)
Training of Plant Operators (III)
Training Facilities (II)
Training MaterialS (II)
Training Records (I).

2.7. Emergency Planning

In order to effectively cope with a nuclear related accident and to mitigate its impact on both plant personnel and the general public, both the nuclear power plant and the local government authorities need to have on-site and off-site emergency response plans in place. In order to be prepared for such emergency situations there should be adequate resources and facilities and, in addition, personnel should receive adequate training. The emergency plans should be tested by drills, exercises, and public information activities.

Although on-site and off-site emergency plans were available at all plants, the level of detail and quality varied widely. Concern was expressed that the emergency facilities and equipment available to cope with an accident were inadequate. The emergency plans in most cases were based on the most severe accident scenarios, which places considerable constraints on both the on-site and off-site plans. Emergency plans needed to address less severe accident situations, which would require a more limited scope response. Criteria to classify levels of alerts or emergencies needed to be developed so that a graded approach could be taken to radiation and plant accidents. Plant accidents not associated with the reactor also needed to be considered.

Finally, it was found at most plants that the conduct of drills and exercises was inadequate to ensure that both on- and off-site personnel could properly respond to and manage an emergency situation.

Emergency planning issues covered in this section are:

Emergency Planning 1
Emergency Response Programme (III)
Emergency Planning 2
Emergency Response Procedures (III)
Emergency Planning 3
Emergency Response Facilities (III)
Emergency Planning 4
Emergency Response. Training (III)
Emergency Planning 5
Post Accident Sampling (II).

2.8. Regulatory Interfaces

The Safety Review Missions did not perform detailed reviews of the regulatory bodies in the countries of the plants reviewed. However, it became apparent when reviewing the regulatory interfaces that the regulatory process needed to be strengthened. To improve nuclear plant safety in the long term, the regulatory bodies must be able to establish adequate safety requirements and enforce them. It was found that the regulatory bodies had poor inspection standards and were ineffective in identifying safety concerns. The regulatory bodies need to have sufficient independence and authority to act in the best interests of nuclear safety.

3. DESIGN ISSUES

ISSUE TITLE: In-Core Monitoring

RANK OF ISSUE: II

ISSUE CLARIFICATION:

At present the power distribution is monitored only by a reduced number of thermocouples at core outlet. The original in-core flux monitoring system Volna (wire activation) has demonstrated poor reliability and has been deactivated at the plants. The main objective of that system during and after commissioning was to validate the core codes.

RELATED ITEMS:

24, 25, 26, 27, 121, 307, 308, 594, 588, 587, 665, 728, 1022, 1040, 1041

JUSTIFICATION OF RANKING:

Safety of WWER-440/230 is based among other features on the high core margins. The verification and confirmation of power distribution is essential to maintain these margins. During the last decade a lot of modifications in the core have been done (e.g. new fuel assemblies, dummy assemblies at the core periphery) changing the core margins in an unknown manner. The core codes currently used need new validation. Controlling power depends on the core margins available.

CONCEPTUAL RECOMMENDATIONS:

Improve thermocouple availability. Install a system composed of in-core flux detectors and associated hard and software capable of providing to operator prompt information on core-wide neutron flux and/or power distribution. Cross calibration of signals from thermocouples, in-core flux detectors and ex-core flux detectors should be established.

CAT	. I SSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	IN-CORE MONITORING	24	IN Duk jak ax de:	CORE FLUX MEASUREMENT e to fuel jackets measuremen ckets have been modified, su ial flux measurement is nece sign. This requirement is mo	D+0 hts were hts measure htssary. htspre impo	CORE e based on a surements a Such system ortant if ne	2.1 thermocou re not ac n existed ew fuel c	DESREV uple indica ccurate anyn d in the or design is u	1.5.4 tion. Since more and iginal sed.
ĨI	IN-CORE MONITORING	25	FA The Syl	LLED THERMOCOUPLES e reactor can be operated wi metry conditions are respect cond system for neutron flux	D+O th up t ed. Th	CORE to 25% faile is limit see	2.1 ed thermo ems high	DESREV bocouples, i in the abs	1.5.5.2 f certain ence of a
11	IN-CORE MONITORING	26	PO Ve	WER MAPPING rify how the operators manag	D+O je the o	CORE display of	2.1 power map	DESREV sping and w	1.5.6.1 hat are the
11	IN-CORE MONITORING	27	SEI	LF POWER DETECTORS - KOLA Kola, it will be interestin asurements and compare them	D Ig to an with th	CORE halyse the s	2.1 Self Powe	DESREV er Detector	1.5.6.2
11	IN-CORE MONITORING	121	3-1 Tal in: ad	b) POWER DISTRIBUTION king into account operation strumentation with capabilit visable.	D+O require ty for 3	CORE ements, the 3-D power d	2.1 use of r istributi	DESREV nore extens ion monitor	4.4.4.A ive in core ing would be
11	IN-CORE MONITORING	307	FA	ILED THERMOCOUPLES LIMIT e limit of maximum number of s in V-2)	D faile	CORE d thermocou	2.1 ples show	BOHUNICE Ild be lowe	7.6.(1) red to 25%
11	IN-CORE MONITORING	308	3-1 An) POWER DISTRIBUTION Improved system for on-line	D calcu	CORE lation of c	2.1 ore power	BOHUNICE r distribut	7.6.(2) 10n should
11	IN-CORE MONITORING	587	3-1 A	D POWER DISTRIBUTION in core flux measurement sys	D tem sh	CORE ould be dev	2.1 eloped an	KOZLODUY nd installe	7.4.(1) d.
11	IN-CORE MONITORING	588	ON An si	LINE FLUX MONITORING on-line system, combining t mulation should be developed	D hermoc 1 and 1	CORE ouples and nstalled.	2.1 in core o	KOZLODUY detectors a	7.4.(2) nd computer
11	IN-CORE MONITORING	594	I N An	CORE FLUX MEASUREMENTS	D /stem_s	CORE	2.1 Handukusi	KOZLODUY h should be	7.8.(2)
II	IN-CORE MONITORING	665	IN Re co	CORE FLUX MAPPING place neutron flux measuring ntinuous indication.	D system	CORE m (Volna) b	2.1 y a more	KOZLODUY reliable s	10.3.(2) ystem with
11	IN-CORE MONITORING	728	IN An di	-CORE SYSTEM in-core system that allows	D axial	CORE power profi	2.1 le monit	NGVOVORONE oring and r	7.8.(1) adval
11	IN-CORE MONITORING	1022	AX AX	IAL POWER SHAPE FACTOR ial power shape information	D from f	CORE 1xed 1n-cor	2.1 e detect	KOLA or should b	7.1.(4) e used to
11	IN-CORE MONITORING	1040	Ju IN Cr	-CORE CROSS CALIBRATION oss calibration of signals f	g trans D from th erforme	CORE ermocouples	2.1 , fixed	KOLA in-core det	7.8.(2) ectors and
11	IN-CORE MONITORING	1041	IN Da	-CORE DATA UTILIZATION ta from in-core detectors sh	D nould b	CORE e utilized	2.1 for more	KOLA detailed p	7.8.(3) weaking

factor surveillance under Xe transient conditions.

ISSUE TITLE: Core Design Margin Evaluation

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Fuel management and design criteria for fuel burnup were changed in comparison with original design. Different definitions of DNB and different DNB correlations are in use. The spectrum of core design bases transients is not completed to allow a comprehensive knowledge on the core design margin.

RELATED ITEMS:

3, 4, 8, 10, 580, 581, 582, 717, 719, 721, 722, 1026, 1032, 1039

JUSTIFICATION OF RANKING:

Although it is believed that the present core design is conservative, the full knowledge of design margins is necessary, according to international practices. The limits and conditions established for normal operations base mainly on the evaluation of the core design margin. This information should be available at the plant.

CONCEPTUAL RECOMMENDATIONS:

Systematic evaluation of core design margins should be performed using advanced calculational tools on the basis of actual core loadings and burnup targets. This includes a set of core design basis transients that cover all events with the potential of violating design limits.

This issue becomes more important if maximum burnup limits are increased, requiring a detailed analysis of its implication.

CAT	ISSUE	ITEM n. TITTLE/Description ASPECT AREA CLASS REFERENCE
11	CORE DESIGN MARGIN EVALUATION	3 PEAKING FACTORS D CORE 1.8 DESREV 1.1.5.2.A Fuel management was modified for some reactors to include shield assemblies.
11	CORE DESIGN MARGIN EVALUATION	that design limits are respected. 4 HIGHER BURNUP D+O CORE 1.8 DESREV 1.1.5.4. The design criterion for fuel burnup is no more valid. Nowadays higher values are attained, up to 43 MWd/kg in average. This is realised only in Kola plant,
11	CORE DESIGN MARGIN EVALUATION	and a special licensing procedure has been undergone. A new fuel management policy will be necessary. 8 CORE DESIGN MARGIN D CORE 1.4 DESREV 1.1.7.1. Systematic evaluation of core design margins needs more investigation. This may lead to broadening of DBA spectrum on the basis of operational experience
11	CORE DESIGN MARGIN EVALUATION	Also international developments should be taken into account. 10 CRITICAL HEAT FLUX RATIO D CORE 2.2 DESREV 1.1.8.6
11	CORE DESIGN MARGIN EVALUATION	Ina Critical Heat Flux Ratio of 1.0 needs more discussion. 580 CORE DESIGN BASIS D CORE 1.4 KOZLODUY 7.1.(1) The core design basis and general design criteria should be obtained from Soviet decigners.
11	CORE DESIGN MARGIN EVALUATION	Soviet designers. 581 CORE TRANSIENTS D CORE 1.4 KOZLODUY 7.1.(2) A set of design basis transients should be identified with assistance of Soviet designere
11	CORE DESIGN MARGIN EVALUATION	582 DESIGN LIMITS VERIFICATION D CORE 1.4 KOZLODUY 7.1.(3) Perform sufficient analysis of design basis events to ensure that design limits are satisfied
11	CORE DESIGN MARGIN EVALUATION	717 FUEL ROD DESIGN MODELS D CORE 1.8 NOVOVORONE 7.2.(1) Report on models should be available including: densification, clad stress and strain, thermal expansion, fission gas release, crud deposition, clad oxidation, zirconium hydride formation, fuel rod growth, clad flattering,
11	CORE DESIGN MARGIN EVALUATION	power history, transients, power limits under such events. 719 XENON DISTRIBUTION D CORE 1.11 NOVOVORONE 7.4.(1) Assess the impact of the worst xenon distribution on control rod withdrawal and on boron dilution events
11	CORE DESIGN MARGIN EVALUATION	721 HOT ROD CALCULATIONS D CORE 1.11 NOVOVORONE 7.4.(2) Weigh the rod powers obtained in PERMAK calculations with the power generated in the related axial region.
11	CORE DESIGN MARGIN EVALUATION	722 Xe AND Sm CALCULATIONS D CORE 1.11 NOVOVORONE 7.6.(1) The sharp variations in Xenon and Samarium concentrations during the early
11	CORE DESIGN MARGIN EVALUATION	days of the fuel cycle should be considered in the calculations. 1026 PELLET CLAD INTERACTION D CORE 1.8 KOLA 7.2.(1) Pellet / clad interaction under transient conditions should be better
11	CORE DESIGN MARGIN EVALUATION	1032 UNCERTAINTIES IN DNBR D CORE 1.8 KOLA 7.5.(1) Uncertainties in DNBR due to flow distribution uncertainties, based on parameters such as number of plugged tubes, should be considered.
11	CORE DESIGN MARGIN EVALUATION	1039 MEASUREMENT UNCERTAINTIES D CORE 1.8 KOLA 7.8.(1) Thermocouple measurement uncertainty of 1% should be evaluated on a statistical basis.

ISSUE TITLE: Fuel Examination

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Although fuel performance has been good, the few fuel failure cases have not been fully investigated due to lack of appropriate facilities or arrangements with suppliers. Only sipping tests are carried out during refuelling, but rejection criteria is not according to international practices.

RELATED ITEMS:

12, 13, 279, 304, 585, 724

JUSTIFICATION OF RANKING:

Feedback of operating experience requires a complete investigation of failed fuels in order to identify the root causes and to take appropriate corrective action.

CONCEPTUAL RECOMMENDATIONS:

Reduce rejection criteria for sipping tests in accordance with international practices. Perform a thorough examination of failed fuels, on site or through arrangement with outside laboratories, in order to identify root causes of failures and take appropriate action by modifying the design, the manufacturing process improving quality assurance or the operating conditions.

CAT.	ISSUE	ITEM n. TITTLE/Description ASPECT AREA CLASS REFER	ENCE
11	FUEL EXAMINATION	12 BURNUP MEASUREMENTS D CORE 1.8 DESREV There is a lack of documentation on burnup measurements carried ou	1.2.8.3. t on W/ER
11	FUEL EXAMINATION	fuels (in order to validate the codes, specially at higher burnup 13 FUEL FAILURE STATISTICS D+O CORE 1.8 DESREV It is suggested to analyze the statistics on fuel failure and on p). 1.3.6.1. rimary water
11	FUEL EXAMINATION	activity at each plant visited. 279 FUEL FAILURES O CORE 1.8 BOHUNICE Improve fuel design to be debris resistant and make audits in fuel	5.5.(1) design and
11	FUEL EXAMINATION	fabrication. 304 POST FAILURE FUEL EXAMINATION D CORE 1.8 BOHUNICE Consideration should be given to perform post failure fuel examina	7.2.(1) tion in
11	FUEL EXAMINATION	hot-cells in order to identify causes. 585 FUEL EXAMINATION D CORE 1.8 KOZLODUY All irradiated fuel should undergo wet sipping at the time of relo	7.2.(1) ad.
11	FUEL EXAMINATION	724 SIPPING TEST D CORE 1.8 NOVOVORONE Reduce the Iodine activity test rejection limits according to inte practices.	7.7.(2) rnational

ISSUE TITLE: Reloading Procedures and Test Programme

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Existing reload procedures are not sufficiently formalized. No systematic approach exists to perform a comparison of experimental and calculational results of core characteristics after core reload.

RELATED ITEMS:

11, 19, 20, 32, 33, 300, 306, 723, 725, 726, 727, 1019, 1027, 1028, 1031, 1033, 1035, 1038

JUSTIFICATION OF RANKING:

Prediction and verification of core design characteristics is important to ensure appropriate fuel performance, and to ensure that the plant is within its design basis.

CONCEPTUAL RECOMMENDATIONS:

Establish a more systematic approach to reloading calculation, reloading procedures and test programme to verify core characteristics and ensure high fuel performance.

CAT.		ISSUE		ITEM	n. TITTLE/Description	ASPECT	AREA	CLASS	REFER	NCE
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 11	RELOAD CALCULATIONS AND TE Calculations and measureme investigated. In this way, load are verified	STS D+O ents to be p the predi-	CORE performed fi ctions and	1.8 or each r the carao	DESREV new load sho cteristics o	1.2.6.1. build be of the new
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 19	ROD DROP MEASUREMENTS Rod drop measurements shou	D Ild be anal	CORE yzed in det	2.2 ail durin	DESREV ng the plan	1.4.5.3. t specific
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	: 20	MEASUREMENTS AT RE-STARTUP We suggest to perform more reactivity coefficients ar	D+O measuremend axial ne	CORE nts at the utron flux	1.8 begining distribut	DESREV of every cy tion This i	1.4.5.3.A /cle, e.g. /ill be
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	32	STARTUP CORE EXPERIMENTS Experimental results obtain	D+O Ined during	CORE startup an	1.8 d their o	DESREV compartson	1.7.6.2. #1 th
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	= 33	theoretical predictions sh AVOIDING LOADING ERRORS The procedures used to avo	Devid be ve D+O Did loading	rified. CORE errors dur	1.8 ing refu	DESREV eling should	1.7.6.3 d be
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	300	FUEL PERFORATION BY PASS Analyse deviations between	D n calculate	CORE d and measu	2.1 red power	BOHUNICE distribut	7.1.(1) ion for
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	306	cores with perforated and ROD WORTH MEASUREMENTS Compare reactivity measure	old assemb D ements base	lies to est CORE d in point	imate flo 22 kinetics	bw by-pass. BOHUNICE from at lea	7.4.(1) ast two
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 723	RELOADING CORE CRITICALITY A third in-core detector s	D shoutd be 1	CORE nstalled du	2.2 ring refi	NOVOVORONE welling to I	7.7.(1) Detter
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 725	FRESH FUEL EXAMINATION Fresh fuel assemblies show	D Jld be insp	CORE ected to be	1.8 sure the	NOVOVORONE at no remain	7.7 (3) ning debris
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 726	An acceptance criterion sh	D nould exist	CORE for the me	2 2 asurement	NOVOVORONE ts thorough	7.7.(4) review of
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 727	ROD WORTH MEASUREMENTS	D D Control r	CORE con a roup.	2.2	NOVOVORONE	7.7.(5)
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 1019	RELOAD REQUIREMENTS UPDATE The designer of the reload for updating technical red	E D d, rather t quirement d	CORE han the tec ocument.	1.19 hnitian :	KOLA should be r	7.1.(1) esponsible
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 1027	FUEL CROSS SHUFFLING Fuel assemblies should be	D shuffled a	CORE cross secto	1.8 rs to rea	KOLA duce probab	7.3.(1) ility of
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 1028	CALCULATION PROCEDURES Planned reload calculation	D n procedure	CORE s should be	1.19 complet	KOLA ed and impl	7.3.(2) emented.
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 1031	ROD WORTH INTERCOMPARISON Comparison of rod worths b	D based on re	CORE activity me e mode	1.8 ter and i	KOLA boron end-p	7.4.(1) Dint method
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 1033	FRESH FUEL RANDOMIZATION Fresh fuel should be rando	D D D D D D D	CORE oading plac	1.8 ement. B	KOLA urned fuel	7.7.(1) should be
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 1035	NUMBERING OF FUEL ASSEMBLI NUMBERING OF FUEL ASSEMBLI Numbers on assemblies shou	ian were th IES D uld consist	CORE CORE of the num	18 ber of t	KOLA he cycle on	7.7.(3) which they
11	RELOADING	PROCEDURES AND	TEST PROGRAMM	E 1038	were ted and a serial numb FUEL TRANSPORTATION Accelerometers should be p criterion should be define	per. D placed in f ed.	CORE resh fuel c	1.8 ontainer	KOLA s and an ac	7.7.(6) ceptance

ISSUE TITLE: Confinement - Leaktightness

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Under original DBA conditions the confinement would exhibit a high volumetric leak rate due to limited leak tightness characteristics.

RELATED ITEMS:

65, 68, 335, 336, 337, 338, 658, 762, 798, 1076, 1114

JUSTIFICATION OF RANKING:

Current analysis has shown that a very high leakrate for the confinement exists such that given a design basis accident, moderate releases of radioactivity to the atmosphere would occur resulting in greatly increased public concern. Given the potentially severe consequences of a DBA and the minimal control of leakrate, this issue of significant concern.

CONCEPTUAL RECOMMENDATIONS:

Overall effectiveness of confinement should be significantly improved. However, because confinement was not designed to completely control leak rate, it may not be practical to reduce the rate such that radioactivity is entirely contained.

CAT.	ISSUE	ITEM	n. TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
III CON	FINEMENT - LEAKTIGHTNESS	65	HERMETIC COMPARTMENT FLAPS The weight operated valves overpressure are not redun valves of the ventilation	D (flaps) pi dant. The s system.	SYSTEMS rotecting same is al	3.7 the herma so true	DESREV etic comparts for other is	2.9.1.2 ment against olation
III CON	FINEMENT LEAKTIGHTNESS	68	HERMETIC COMPARTMENT LEAK It is recommended to imple hermetic compartment and t whole and for closing elem	D+O ment measu o establist ents and p	SYSTEMS res to mir h test pro enetration	3.7 nimize the ocedures on ns.	DESREV e leak rate for the comp	2.9.9 of the artment as a
III CON	FINEMENT - LEAKTIGHTNESS	335	CONFINEMENT TEST When confinment leak is re pressure for some time to	D duced, inci assure stal	COMPONENT rease test	'S 3.7 : pressur:).	BOHUNICE e. Maintain	9.7.(1) test
III CON	FINEMENT - LEAKTIGHTNESS	336	CONFINEMENT DOOR CONTROL Establish administrative t to be open at same time. I	D o avoid boi nstall alar	COMPONENT th interna	S 3.7 It and ex	BOHUNICE ternal confi condition.	9.7.(2) nment doors
III CON	FINEMENT - LEAKTIGHTNESS	337	CONFINEMENT TIGHTNESS Improve confirment tightne mechanical penetrations, d tests.	D ss by modi oor seals,	COMPONENT fications cover pla	S 3.7 In elections ite check:	BOHUNICE rical penetr s. Perform l	9.7.(3) ations, ocal leak
III CON	FINEMENT - LEAKTIGHTNESS	338	CONFINEMENT AIR CONDITIONE Install 2 fast closing val conditioned penetrations.	D D ves, one 1	COMPONENT nside othe	s 3.7 er outsid	BOHUNICE le confinment	9.7.(4) in the air
III CON	FINEMENT - LEAKTIGHTNESS	658	CONFINMENT TICHTNESS Efforts to identify major efficient sealing arrangem	D confinment ments for p	COMPONEN leak path enetration	rs 3.7 ns should ns should	KOZLODUY be intensif be investig	9.9.(1) red and more ated.
III CON	FINEMENT - LEAKTIGHTNESS	762	PENETRATIONS The hermetic compartment p	D enetration	SYSTEMS must be a	3.7 enhanced	NOVOVORONE by a double	8.9.(1) isolation.
III CON	FINEMENT - LEAKTIGHTNESS	798	HERMETIC ZONE INTEGRITY Limit switches should be p control room annunciator.	D rovided on	I&C all acces	2.3 ss doors	NOVOVORONE and wired to	10.7.(1) the main
III CON	FINEMENT - LEAKTIGHTNESS	1076	VENTILATION ISOLATION Double isolation of ventil should be installed.	D ation pene	SYSTEMS trations	3.7 to steam	KOLA generator co	8.8.(1) mpartment
III CON	FINEMENT - LEAKTIGHTNESS	1114	CONFINMENT LEAKTIGHTWESS Decisions and actions to i without delay. Tightness r be measured.	D mprove con equirement	COMPONEN finment lo s should l	IS 3.7 ektightne pe determ	KOLA ss should be iined. Leak r	9.8.(1) e taken rate should

ISSUE TITLE: Confinement - Severe Accident Conditions

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The ability of the confinement to handle the conditions resulting from a severe core accident is in serious question. Significant H2 would be generated under a severe core accident and would be released to the relatively small confinement volume. While the confinement has a very high leak rate, it is judged to be insufficient to prevent the accumulation of explosive concentrations of H2 in the building. A major H2 explosion could cause the failure of the confinement structure, increasing accident severity and the release of radioactivity to the environment. Even if the confinement structure would maintain its integrity, the high confinement leak rate would result in significant radioactive release to the environment under severe accident conditions.

RELATED ITEMS:

626, 630, 764, 765, 1077

JUSTIFICATION OF RANKING:

A severe core accident generating significant radioactivity and H2 is of concern because of the shortcomings in prevention exhibited by the WWER 440/230. Significant radioactivity release due to high inherent leak rate and failure of confinement due to H2 explosion are expected given such an accident. Purpose of containment, to prevent large releases following severe accidents is not met. Achievement of upgrades to meet this purpose for a reasonable spectrum of events would greatly reduce risk.

CONCEPTUAL RECOMMENDATIONS:

Solutions for hydrogen control should be investigated, such as H_2 ignitors, as well as the potential of filtered venting to reduce the radioactive leaks.

Implement practical means of controlling radioactive releases following severe accidents such as forced filtered venting and use of H_2 ignitors. Following actions should be addressed:

- * Determine ability of structure to withstand large blowdown forces.
- * Evaluate and upgrade as necessary and practical relief valves.
- * Determine potential for ignitors to significantly reduce H_2 explosion problem.
- * Reduce leak rate to practical levels which can be maintained following blow down.
- * Based on results of above analyses, determine practicality of installing severe accident filter with forced ventilation of the containment to maintain slight vacuum after initial blowdown.
- * Determine overall practicality, cost effectiveness for specific plant, implement as warranted.

CAT	•	ISSU	Ε			ITEM I	n. 1	ITTLE/Descript	ion	ASPECT	AREA	CLASS	REFER	ENCE
111	CONFINEMEN	IT - 1	SEVERE	ACCIDENT	CONDITIONS	626	F1LTE We su	RED VENTING OF	CONFINMEN s for addit	í D tion of	SYSTEMS a filtered	3.7 venting	KOZLOOUY system in	8.5.(5) the
							confi	inment to cope	with all pr	rimary t	oreak spect	rum.		
111	CONFINEMEN	т- :	SEVERE	ACCIDENT	CONDITIONS	630	HYDRO Astu recor	DGENE CONTROL May of potentia mbiners should !	t H product be added it	D tion sho f requir	SYSTEMS build be per red.	3.7 formed. (KOZŁODUY Recirculato	8.5.(9) rs or
111	CONFINEMEN	T - 9	SEVERE	ACCIDENT	CONDITIONS	764	REINI Insta radio	FORCING CONFINE all a device on pactive release	MENT the discha s from into	D arge fro the at	SYSTEMS om the herm tmosphere.	4.2 etic com	NOVOVORONE partment to	8.9.(3) decrease
111	CONFINEMEN	T - S	SEVERE	ACCIDENT	CONDITIONS	765	HYDR(Quant recor	OGEN CONTROL tify the hydrog mbiners.	en produced	D J in pos	SYSTEMS	4.2 al situa	NOVOVORONE tions and a	8.9.(4) dd hydrogen
111	CONFINEMEN	T - S	SEVERE	ACCIDENT	CONDITIONS	1077	STEAM Filte from	4 GENERATOR COM ered venting sy steam generato	PARTMENT stem should r compartme	D blbeimp entind	SYSTEMS plemented to case of acc	3.7 o limit i idents b	KOLA radioactive eyond desig	8.8.(2) releases n basis.

ISSUE TITLE: Decay heat removal. Ensuring adequate SG inventory

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

Some transients might cause significant loss of coolant from the SG's before the reactor is shutdown. Supply of new feedwater to the SG is endangered because the current systems for doing this are all located in the turbine building, and could be lost due to a common cause such as major fire. Potential single failures in the feedwater and auxiliary feedwater system have been identified which could completely prevent supply of water to the SG's.

RELATED ITEMS:

46-48, 53, 72, 314, 315, 613-615, 751-753, 755, 861, 862, 1062, 1065, 1066

JUSTIFICATION OF RANKING:

Decay heat removal is essential to prevent severe core damage. Currently the only proven method for decay heat removal is to use SG's, and adequate SG inventory is needed for this. The likelihood of losing SG inventory is high without corrective measures, as shown by the operating experience. The consequences of lost inventory could be very severe to the plant and to the general public living in its neighborhood.

CONCEPTUAL RECOMMENDATIONS:

- 1. Ensure early reactor trip in all transients that cause loss of coolant from the SG's.
- 2. Provide additional reliable means for supplying feedwater to the steam generators. Those means should not rely on any equipment located in turbine building. They should also have their own dedicated power supply, component cooling, and feedwater source.

CAT.	ISSUE	ITEM	n	. TITTLE/Description	ASPECT	AREA	CLASS	REFERENCE	
IV	DECAY HEAT REMOVAL - SG	INVENTORY 46	. A	UXILIARY FEEDWATER CAPACITY	Ð	SYSTEMS 4	4.6	DESREV 2.4.1.2	
			D	ue to the total water capaci apability for not less than ay the different sources of	ty availa 20 hours water are	able (1500m2 . It should e used by th	3), the be chec	system has supply ked in each plant the lary feedwater pumps	
				-,		,		· · · · · · · · · · · · · · · ·	
IV	DECAY HEAT REMOVAL - SG	INVENTORY 47	ั A D เ ส	UX FEED BACKFITTING ue to potential damage by fi n Greifwald (1975) and Armen odifications implemented in ther plants.	D+O : re to au ba (1982) Armenia a	SYSTEMS x-feed syste), it is imp and Kola hav	1.6 em, like cortant ve been	DESREV 2.4.6.A the ones that ocurre to check 1f also been done 1n	d
IV	DECAY HEAT REMOVAL - SG	INVENTORY 48	A A S	UX FEED LAYOUT AND OPERATION review of the layout and op ystem should be performed in ode failure	D+O erating p oreder	SYSTEMS procedures o to evaluate	1.6 of the a its sen	DESREV 2.4.7. uxiliary feedwater sitivity to common	
IV	DECAY HEAT REMOVAL - SG	INVENTORY 53	i W S L	ATER SOURCES FOR HEAT REMOVA hould the various sources of ost, some emergency action w perating procedures should b	L D+O S water fr would be we available	SYSTEMS A or alternation required to ble to inition	4.6 ive deca provide iate eme	DESREV 2.6.5.B ny heat removal be further water supply argency make-up. Such	•
			P	ake-up would not be of norma erformance should be assesse	d.	y and the es	ffect of	this water in system	
17	DECAY HEAT REMOVAL SG	INVENTORY 72	2 S S r r	TEAM GENERATOR LOW LEVEL TRI team generators are used in emoval, being the exclusive ecommended to reconsider imp	PD: normal of link to lementat	SYSTEMS peration as the ultimate ion of react	2.3 well as e heat s tor trip	DESREV 2.12.4 for residual heat ink. Therefore it is generated by low	
14	DECAY HEAT REMOVAL - SG	INVENTORY 314	l s s	evel in the steam generator. CRAM ON LOW SG LEVEL	D :	SYSTEMS	2.3	80HUN1CE 8.2.(4)	
١V	DECAY HEAT REMOVAL - SG	INVENTORY 315	is c	UPER EMERGENCY FEEDWATER	D :	SYSTEMS : er emergency	3.6 y feedwa	BOHUNICE 8.3.(1) Iter system (external	
IV	DECAY HEAT REMOVAL SG	INVENTORY 613	5 E D	MERGENCY FEEDWATER CONNECTIO	e (ne). N D : rgency f	SYSTEMS	3.6 nk and p	KOZLODUY 8.3.(2) xumps should be	
IV	DECAY HEAT REMOVAL - SG	INVENTORY 614	9 1 1	NTERCONNECTION BETWEEN TRAIN nterconnection between train	SD IS 15 rec	s 3/4. SYSTEMS : ommended as	3.6 a preli	KOZLODUY 8.3.(3) minary backfitting,	
۲V	DECAY HEAT REMOVAL - SG	INVENTORY 615	5 5 14	efore an overall backfitting UPER EMERGENCY FEEDWATER le strongly support the inclu	D D Istonof	water system SYSTEMS : a separate (n is per 3.6 emergenc	formed. KOZLODUY 8.3.(4) y feedwater system.	
IV	DECAY HEAT REMOVAL - SG	INVENTORY 751	I A I C	FWS RELIABILITY solation valves located on t leaerator and the AFWS pump d meration.	D he singl lischarge	SYSTEMS : e and common should be r	3.6 n pipeli maintair	NOVOVORONE 8.7.(1) ne betwen the med open during normal	
14	DECAY HEAT REMOVAL - SG	INVENTORY 752	2 A 1	FWS BACKFITTING	D Liary fe	SYSTEMS	1.6 tem now	NOVOVORONE 8.7.(2)	
1V	DECAY HEAT REMOVAL - SG	INVENTORY 753	5 A T C	FWS PUMP AUTOMATIC he AFWS pump automatic devic control room.	Ð e should	SYSTEMS 2 be converte	2.3 ed into	NOVOVORONE 8.7.(3) alarms in the main	
17	DECAY HEAT REMOVAL - SG	INVENTORY 755	5 A 0 1	FWS LAYOUT ue to common mode potenciali eedwater system outside the	D ties imp turbine	SYSTEMS lement a new hall.	1.6 W steam	NOVOVORONE 8.8.(1) generator auxiliary	
IV	DECAY HEAT REMOVAL SG	INVENTORY 861	I A S	UX FEED COMMON HEADER BREAK egregation of the common hea walification of the isolation	D Ider shou In device	ACCIDENT	3.6 dered. 1 assesse	NOVOVORONE 12.4.(3) in the meantime, the	
ĩ۷	DECAY HEAT REMOVAL - SG	INVENTORY 862	2 5	TEAM LINE BREAK Tegregation of the common hea solation devices of the emer	D Ider shou	ACCIDENT	3.6 dered. G	NOVOVORONE 12.4.(4) Dualification of the	
IV	DECAY HEAT REMOVAL - SG	INVENTORY 1062	2 4	IFWS SINGLE FAILURE CRITERIA Nodify the design of Auxiliar	D D Feedwa	SYSTEMS : ter System	3.6 to cope	KOLA 8.5.(1) With single failure	
1V	DECAY HEAT REMOVAL - SG	INVENTORY 1065	5 A R	UX FEED STARTUP SIGNAL Leview the choice of signals	D to start	I&C ::	36 ary feed	KOLA 8.5.(4) Water system. At	
14	DECAY HEAT REMOVAL - SG	INVENTORY 1066	F 5 A A E	mesent Loss of External Powe UX FEED COMMON CAUSE FAILURE Linew, independent, geographi we installed.	er plus L D cally se	ow SG level SYSTEMS : parated aux	3.6 iliary f	KOLA 8.6.(1) eedwater system shoul	d

ISSUE TITLE: Decay heat removal. Heat removal path

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Cooling down of the plant and ensuring long-term heat removal in shutdown condition requires a reliable heat removal path from the SG's to the ultimate heat sink. In the hot shutdown conditions and in the first phase of cooling towards cold shutdown, the correct function of the steam system valves is needed. During the second cooling phase and the cold shutdown, the heat removal path consists of technical condenser, low pressure pumps, piping and valves which form a closed loop. All equipment needed for normal heat removal are located close to each other in the turbine building and the redundant equipment could be lost due to a common external cause. The heat removal path could also be lost due to a single failure.

RELATED ITEMS:

50, 51, 757, 758

JUSTIFICATION OF RANKING:

Without heat removal path the plant safety can be provided only for a limited time. The time depends on the state of the steam system valves and the amount of feedwater available.

CONCEPTUAL RECOMMENDATIONS:

- 1. Install additional equipment as needed to make the heat removal path single failure proof.
- 2. Separate redundant equipment by physical barriers or increased distance between them.
- 3. Protect the steam system valves from external hazards.

CAT	•	1	ISSUE				ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERENCE
11	DECAY H	EAT	REMOVAL -	KEAT	REMOVAL	PATH	50	TECI Stei coni loci pro	NOLOGICAL CONDENSER am generator are used to ditions, using technica ated in the same cell in vided. Operational expe	0 o remove de l condenser n turbine b rience reco	SYSTEMS cay heat o . Both teo wilding. I ords that	1.6 down to c chnical c No segreg failure o	DESREV 2.6.1 old shutdown ondenser pummps are ation or protection is f both pumps has
11	DECAY H	EAT	REMOVAL -	HEAT	REMOVAL	PATH	51	occi DEC Nori The seg	urred. AY HEAT REMOVAL mai shutdown procedures reafter, it is dependen regation betwee the two	D has 2 dive t upon the trains of	SYSTEMS rse means technical technical	1.6 of heat condense condense	DESREV 2.6.5 removal initially. r. The lack of r equipment requires
11	DECAY H	EAT	REMOVAL -	HEAT	REMOVAL	PATH	757	car REA Los	eful consideration of t CTOR SHUTDOWN COOLING s of the reactor shutdo ds to be addressed by i	he conseque D wn cooling nstallating	ences and SYSTEMS system in a new system	the frequ 1.6 duced by stem outs	ency of system failure. NOVOVORONE 8.8.(3) a common mode failure ide the turbine hall.
11	DECAY HI	EAT	REMOVAL -	HEAT	REMOVAL	PATH	758	COM Ins val com	MON CAUSE FAILURE tall the steam relief v ves and their auxiliari non cause failure induc	D alves, the es outside ed by fire	SYSTEMS safety va the turbi or pipe w	1.6 lves, and ne hall, hip.	NOVOVORONE 8.8.(4) the steam isolation or protect them against

ISSUE TITLE: Decay Heat Removal. Service Water System

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The service water system is essential as an ultimate heat sink. It provides cooling for vital safety systems such as diesel generators and removes the decay heat under LOCA conditions. Even a short loss of the service water system would result in abnormal plant conditions where the sequence of events would be unpredictable and which would be difficult to control by the operator. The complexity of the consequences would be increased by the fact that the system serves two plant units.

The vital equipment of the system are located close to each other and could all be lost due to a common external cause. Also a number of potential single failures has been identified that would result in loss of the system. A major leak in the service water system might cause flooding of other safety relevant systems.

A specific concern with the service water system is lack of intermediate cooling system between the service water system and the systems or components to be cooled. An internal leak in the heat exchanger would cause either entry of untreated water into the systems with special water chemistry requirements or a leak of radioactive coolant to the environment.

Inadequate possibilities exist for monitoring the state of the service water system piping and other components.

RELATED ITEMS:

62, 69-71, 622-624, 745, 746, 761, 766, 1072, 1073, 1075

JUSTIFICATION OF RANKING:

The decay heat removal can be provided only for a very short time without service water system. There are severe shortcomings that influence the reliability of the system.

CONCEPTUAL RECOMMENDATIONS:

- 1. Install additional equipment as needed to make the service water system single failure proof.
- 2. Separate redundant equipment by physical barriers or by increased distance between them.
- 3. Implement inspections as needed to monitor the physical condition of the service water system piping, especially in locations where the likelihood of a large leak is highest.
- 4. Address the concerns related to the lack of intermediate cooling circuit.
- 5. Provide separate single failure proof cooling for the diesel generators.

CAT			ISSUE				ITEM	n TI	TLE/Descri	ption	ASPECT	AREA	CLASS	REFER	ENCE
111	DECAY	HEAT	REMOVAL	-SERVICE	WATER	SYSTEM	62	SPRAY	SYSTEM HEAT	EXCHANGERS	D	SYSTEMS	3.6	DESREV	2.8.5
								As the	spray syst	em heat excha	ingers a	re cooled	by servi	ce water, t	here is only
								one ba	rrier left	between prima	iry cool	ant and th	e outside	e in case o	f primary
								pipe bi	reak.						
111	DECAY	HEAT	REMOVAL	-SERVICE	WATER	SYSTEM	69	LUSS O	F SERVICE W	AIER	U maluda	SYSTEMS	10 	DESREV	2.10 5
								for co	multiple of	tal Loss of s	1010011 1010011	Nater com	sancioue stolio w	e to lack o d to soucco	r diversity
								consecu	uences which	h should be i	nvestio	nated	5 (0 (68)	a to severe	
ш	DECAY	HEAT	REMOVAL	-SERVICE	WATER	SYSTEM	70	BLACKO	UT DUE TO S	ERVICE WATER	D	SYSTEMS	1.6	DESREV	2.10.6
								Of par	ticular con	cern is the s	ituatio	n identifi	ed in Gro	eifswald wh	ere a
								statio	n blackout (was caused by	loss c	f service	water.		
ш	DECAY	HEAT	REMOVAL	-SERVICE	WATER	SYSTEM	71	SEGREG	ATION OF SEI	RVICE WATER	D	SYSTEMS	1.6	DESREV	2.10.5.2
								All pu	mps of the :	service water	are lo	cated in t	he same (cell. Commo	n mode
								failur	es have to l	be investigat	ed.				
111	DECAY	HEAT	REMOVAL	-SERVICE	WATER	SYSTEM	622	ESSENT	IAL SERVICE	WATER	D	SYSTEMS	3.6	KOZLODUY	8.5.(1)
								Provid	e two separa tal service	ate pumping n Hater	iouses,	one for no	rmat ope	ration and	other for
111	DECAY	HEAT	REMOVAL	-SERVICE		SYSTEM	623	SEPARA	TE COOLING	FUNCTIONS	D	SYSTEMS	3.6	K071 0011Y	8.5.(2)
	02000	ueru	ACTO THE	dentitie	WATCH	313121		Separa	te the cool	ing functions	for sa	fetv and n	on-safety	v svstems.	0.9.(2)
ш	DECAY	HEAT	REMOVAL	-SERVICE	WATER	SYSTEM	624	ESSENT	IAL COMPONE	NT COOLING	D	SYSTEMS	3.6	KOZLODUY	8.5.(3)
								Instal	l a separat	e cooling sys	tem for	safety re	lated co	mponents	
ш	DECAY	HEAT	REMOVAL	SERVICE	WATER	SYSTEM	745	SPRAY	SYSTEM HEAT	EXCHANGERS	D	SYSTEMS	3.6	NOVOVORONE	8.5.(2)
								Heat e	xchanger sh	ould be equip	xped ⊮⊺t	h a radioa	ctivity	measurement	on the
								servic	e water sys	tem side.					
	DECAN			0501/105		OVOTEN	714			CNOULUCEDO	~	CYCLENC	7 /	NOUOVOOONE	0 5 47
	DELAT	REAL	KEMUVAL	SERVICE	WAIEK	STSIEM	74D	Decian	statem HEAT	EXCHANGERS	U	SISIEMS	J.D f the co	NUVUVUKUNE	0.2.(3)
								avoid	foul ind of	the heat exch	anger t	ubes creat	e an inte	ermediate c	ooling
								system	filled wit	h demineraliz	ed wate	er.	C 017 1110		ootting
111	DECAY	HEAT	REMOVAL	SERVICE	WATER	SYSTEM	761	SERVIC	E WATER SEG	REGATION	D	SYSTEMS	1.6	NOVOVORONE	8.8.(7)
								Servic	e water pum	p station sho	wid be	divided in	to two 1	ndependent	trains with
								physic	al barrier.						
111	DECAY	HEAT	REMOVAL	-SERVICE	WATER	SYSTEM	766	INTERM	EDIATE COOL	ING SYSTEM	D	SYSTEMS	3.6	NOVOVORONE	8.10.(1)
				05010.05		OVOTEN	1073	Create	a closed 1	ntermediate d	cooling	system for	the sat	ety compone	nt cooling
111	DELAT	HEAT	REMOVAL	SERVICE	WATER	STSIEM	1072	Bhyere	e WAIEK SEP al conarati	AKALIUN On of the eme	V	SELATE NO	1.0 tor evet	KULA om should h	0.0.(7)
								implem	ented.		a gener	CONTRE NO	ter ayat		~
ш	DECAY	HEAT	REMOVAL	-SERVICE	WATER	SYSTEM	1073	SERVIC	E WATER SIN	GLE FAILURE	D	SYSTEMS	1.6	KOLA	8.7.(1)
								Modifi	fy service	water system	to cope	e with sing	le failu	re criteria	•
111	DECAY	HEAT	REMOVAL	SERVICE	WATER	SYSTEM	1075	SERVIC	E WATER HEA	T EXCHANGER	D	SYSTEMS	1.7	KOLA	8.7.(3)
								Analys	e the conse	quence of rug	oture 1r	n service w	ater hea	t exchanger	and define
								measur	es to be ta	ken to avoid	release	25.			

ISSUE TITLE: Decay Heat Removal. Component Reliability

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The failure probability of active components needed for decay heat removal purposes shall be small to ensure adequate reliability. The existing systematic recording and evaluation of failure data has shown that the reliability of the original WWER-440 components is not adequate. For this reason it has been necessary to replace key components such as auxiliary feedwater pumps with a new type.

RELATED ITEMS:

659, 660

JUSTIFICATION OF RANKING:

Adequate safety function reliability can not be achieved without components that meet minimum reliability targets.

CONCEPTUAL RECOMMENDATIONS:

Assess the component failure records and change the components as found necessary. At the same time, acquire spare components of the current type to ensure fast repairs.

- 111 DECAY HEAT REMOVAL-COMPONENT RELIABILITY 659 REMNANT LIFE ESTIMATION D COMPONENTS 1.4 KOZLODUY 9.10.(1) The programme to estimate remnant life should be carried out to its second phase.
- 111 DECAY HEAT REMOVAL-COMPONENT RELIABILITY 660 SECONDARY COMPONENTS LIFE D COMPONENTS 1.4 KOZLODUY 9.10.(2) Projec to evaluate structure condition of secondary side equipment should be completed in its second phase.

ISSUE TITLE: ECCS - Full LOCA spectrum capability and long term cooling.

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The ECCS systems are not able to provide an adequate safety function for short and long term cooling for the full spectrum of LOCA's.

RELATED ITEMS:

384, 628, 689, 856

JUSTIFICATION OF RANKING:

There are no accumulators or low pressure injection system, to adequately to deal with medium and large primary circuit breaks. The impact of medium and large break LOCA would be extremely serious when combined with the confinement integrity and leak rate concerns.

In the absence of low pressure injection system, the functional capability of the ECCS for long-term cooling and recirculation is also significantly diminished.

CONCEPTUAL RECOMMENDATIONS:

Feasibility of installing Low Pressure Injection (LPI) and/or accumulators should be determined.

CAT.	ISSUE	ITEM n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	INCE
III ECCS - I	ULL LOCA SPECTRUM CAPABILITY	384 ST/	ARTUP OF SPRAY PUNPS	D	ACCIDENT	3.6	BOHUNICE	11.9.(2)
		to	achieve lower confinment p	ier con eak pre	nection of ssure and r	the spray educe act	y pumps to t tivity relea	ne Diesel Ase.
III ECCS - I	ULL LOCA SPECTRUM CAPABILITY	628 SPI	RAY CAPABILITY	Ð	SYSTEMS	3.7	KOZLODUY	8.5.(7)
		Rev	view spray system design ca alysis for all LOCA spectru	pabilit [.] m.	y and perfo	rmance at	fter new acc	cident
III ECCS - I	ULL LOCA SPECTRUM CAPABILITY	689 HYI	DRO ACCUMULATORS	D	ACCIDENT	3.6	KOZLODUY	11.2.(1)
		Hig	gh pressure hydro accumulat	ors sho	uld be inst	alled.		
III ECCS - I	ULL LOCA SPECTRUM CAPABILITY	856 AC	CUMULATORS FOR LARGER LOCA	D	ACCIDENT	1.11	NOVOVORONE	12.3.(11)
		The box	e concerns (high energy tan ttom core flooding) should !	ks in ti be addr	he reactor essed befor	building, e making	, coincident a decision	t top and on the

design of the accumulators.

ISSUE TITLE: ECCS - Redundancy and Physical Separation of Redundant Parts

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

The current ECCS is lacking adequate redundancy and might be lost as a consequence of a single failure. Common mode/common cause failure of ECCS function is a general concern because of lack of equipment separation.

Several other shortcomings have been identified that influence reliability of existing high pressure injection system and spray system: equipment qualification for accident environment functional capability for long term cooling and recirculation spray effectiveness, EC tank integrity, potential for foreign material blockage of pumps needed for ECCS recirculation, and function bypass through break in hot legs. Furthermore, borated water heatup during early LOCA scenarios, sump pump capacity problems with extensive spills and resulting flooding of vital parts of the injection and spray system could cause total loss of their safety function. The flooding could also originate from tank or pipe rupture as well as from fire fighting.

Material and quality issues as well as long runs of small piping also raise concerns about the likelihood of LOCA.

RELATED ITEMS:

54, 55, 58-61, 63, 64, 75-77, 379, 401, 507, 619, 627, 739, 743, 744, 747, 759, 1053, 1054, 1056, 1057, 1068, 1070, 1168, 1178

JUSTIFICATION OF RANKING:

Concerns about redundancy and separation of ECCS components are significant and can result in system failure under accident conditions.

CONCEPTUAL RECOMMENDATIONS:

A failure modes and effects analysis (or similar analysis) should be conducted to identify the major areas where improvements should be made.

A physical separation concept should be developed, segregation of the high pressure injection and spray systems should be considered. Long term cooling strategy should be analyzed and developed.

CAT	1 SSUE	ITE	M n	TITTLE/Description	ASPECT	AREA	CLASS	REFERENCE
٢V	ECCS - REDUNDANCY AND) SEPARATION 5	4 S S P	AFETY INJECTION POINTS ome stations have modified th oints are no longer used and	D ne emerg injecti	SYSTEMS ency inject on is in 2	36 Non poir hot legs	DESREV 2.7.51. hts The 12 cold leg s Injection on hot leg
IV	ECCS REDUNDANCY AND	D SEPARATION 5	т 5 н 1 р f	ust be demonstrated to be eff OT LEG INJECTION REDUNDANCY in plants were safety injection outs must be assessed. Of con rom one train is lost to the ther train.	fective, D D 18 10 ncern 18 break,	SYSTEMS 2 hot legs a break in coupled wit	3.6 , the re a leg s h a sing	DESREV 2.7.5.1.A eduction of injection so that all injection gle failure in the
IV	ECCS REDUNDANCY AND	D SEPARATION 5	i8 P T P t c	UNPS SEGREGATION he lack of segregation betwee umps requires some considerat he potential for hazards such oncern are the location of th ire suppression system	D en the s tion. It n as fir ne borat	SYSTEMS pray, safet is recomme es, flood, ed water st	1.6 by inject ended the pipe whi corage ta	DESREV 2.7.5.4 tion and borated water at site visits assess up, etc Of particular ank and the absence of
١V	ECCS - REDUNDANCY AND	D SEPARATION 5	19 P T	UMPS QUALIFICATION he environmental qualification	D on of sp	SYSTEMS ray and saf	3.3 ety inje	DESREV 2.7.5.5 ection pumps has to be
IV	ECCS - REDUNDANCY AND	D SEPARATION 6	50 R 1 c	EPLACEMENT OF INJECTION PUMPS njection pumps type E.P50 a hecked on the sites.	5 D are bein	SYSTEMS g replaced	3.6 by ⊺s-N-	DESREV 2.7.5.6 -65-130. This should be
IV	ECCS - REDUNDANCY AND	D SEPARATION 6	51 R Q r	ECIRCULATION FOLLOWING A LOC/ ualification of high pressure ecirculation following a LOC/	N D e safety A should	SYSTEMS injection be checked	3.6 pumps fo t.	DESREV 2.7.5.7 or long term
۲V	ECCS - REDUNDANCY AN	D SEPARATION 6	53 S A U	PRAY PUMP COMMON MODE FAILUR s the spray pumps and the sa nder the borated water stora ther potencial common mode fi	E D fety inj ge tank, ailures	SYSTEMS ection pump the risk o should be i	1.6 os are al of flood: investiga	DESREV 2.8.6 It in the same room, ing all the pumps and ated.
IV	ECCS - REDUNDANCY ANI	D SEPARATION 6	54 F T	ILTERING DEVICES he capacity of filtering dev	D ices to	SYSTEMS prevent dan	3.6 mage to s	DESREV 2.8.9 spray and injection
IV	ECCS - REDUNDANCY ANI	D SEPARATION 7	F 75 L 0 r t	CONTRACTOR OF REDUNDANT SYSTEMS ue to the poor degree of syst ecommended to systematically edundant systems. It is also o cope with such accidents.	D tem redu evatuat recomme	SYSTEMS indancy, div e the conse inded to def	1.6 versity a equences fine the	DESREV III.2.2.4 and segregation, it is of total loss of existing possibilities
١V	ECCS - REDUNDANCY AN	D SEPARATION 7	76 L 1	ONG TERM COOLING t is recommended to investig	D ate the	SYSTEMS functional	3.6 capabil	DESREV 111.2.2.5 ity of the emergency
IV	ECCS REDUNDANCY AN	D SEPARATION 7	77 s s r	VSTEM/COMPONENT QUALIFICATIO (ystem and component qualific (ormal and adverse plant cond	N D ation, 1 itions s	SYSTENS ncluding er hould be ir	3.3 hvironmen hvestigan	DESREV III.2.2.6 ntal conditions during ted
IV	ECCS - REDUNDANCY AN	D SEPARATION 37	79 9 1 H	AFETY INJECTION HEADER nstall valves in each inject eader to limit break size in	D Ion line case of	ACCIDENT on a parti	1.6 Ion in ti	BOHUNICE 11.6.(4) he safety injection
۲V	ECCS - REDUNDANCY AN	D SEPARATION 40	D1 F F	LOODING OF SI PUMP ROOM otential flooding of Safety ire emergency point of view	0 Injectio a adequa	FIRE In pump room Ite sump pump	1.6 n should no should	BOHUNICE 12.4.(5) be investigated. From d be installed.
١V	ECCS - REDUNDANCY AN	D SEPARATION 50	07 1 F	ESTING OF SPRAY SYSTEM lodification should be introd	0 uced to	OPS ensure that	3.4 t spray :	KOZLODUY 3.7.(8) system componets can be
17	ECCS - REDUNDANCY AN	D SEPARATION 61	19 E F	MERGENCY COOLING WATER TANK Perform a analyses of emergen	D CY COOLI	SYSTEMS	3.6 ank in th	KOZLODUY 8.4.(2) he early stages of a
IV	ECCS - REDUNDANCY AN	D SEPARATION 62	27 (1	NON. REINFORCE THE TANK OF AD CONFINMENT SPRAY We support the proposal to se	D D gregate	SYSTEMS different f	3.7 trains o	ary. KOZLODUY 8.5.(6) f confinment spray

CAT	. ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
			svs	tem and separate the system	from	others.			
IV	ECCS - REDUNDANCY AND	SEPARATION 739	HOT The	LEG INJECTION REDUNDANCY numbers of injection lines	D into	SYSTEMS the hot pri	3.6 mary leg:	NOVOVORONE s should be	8.3.(1) increase to
			mee	et the single failure criter	ion.				
1V	ECCS - REDUNDANCY AND	SEPARATION 743	BOR	ION TANK & PUMPS AFTER LOCA	D	SYSTEMS	3.6	NOVOVORONE	8.4.(3)
			The	water temperature in the b	oron ta	an kandat	safety in	nyection pur	nps should
īv	FCCS - REDUNDANCY AND		00 500	compatible with their desig	ר בוחחי ה	SYSTEMS	37		8 5 (1)
			Imp	prove its design in order to reliability.	meet	single fail	ure crite	eria and to	increase
I۷	ECCS - REDUNDANCY AND	SEPARATION 747	TES	TING OF SPRAY SYSTEM	Ð	SYSTEMS	3.4	NOVOVORONE	8.5.(4)
			Stu	xdy if the cooling line on t	he bor	ated water	tank can	be permaner	ntly
			mai	intained open and serve as a	zero	flow line f	or the sp	oray pumps.	
IV	ECCS - REDUNDANCY AND	SEPARATION 759	COH	MON CAUSE FAILURE	D	SYSTEMS	1.6	NOVOVORONE	8.8.(5)
			Con Los	mon cause failure risk in t is of the two trains of the	spray :	on room req system and	uires pro safety in	njection to	avoid the stem.
I۷	ECCS - REDUNDANCY AND	SEPARATION 1053	NEW	SAFETY INJECTION PUMPS	D	SYSTEMS	3.6	KOLA	8.3.(1)
			New	safety injection pumps wit	h 63m3,	/hour flow	rate and	design temp	perature 100
ĩ۷	ECCS - REDUNDANCY AND	SEPARATION 1054	ECC	SINGLE FAILURE CRITERIA	D	SYSTEMS	1.6	KOLA	8.3.(2)
			Saf	ety injection system should	be mo	dified to m	eet sing	le failure d	criteria (
			at	least the active one).					
I۷	ECCS - REDUNDANCY AND	SEPARATION 1056	SAF	ETY INJECTION INTERLOCK	D	SYSTEMS	3.6	KOLA	8.3.(4)
			Pro put	wide interlock to avoid mor in the "off" position.	e than	two safety	injectio	on pump swit	tches being
IV	ECCS - REDUNDANCY AND	SEPARATION 1057	SPR	AY SINGLE FAILURE CRITERIA	D	SYSTEMS	3.6	KOLA	8.3.(5)
			The	spray system should be mod	lified	with respec	t to sing	gla failure	criteria.
I۷	ECCS - REDUNDANCY AND	SEPARATION 1068	BOR	ON ROOM PHYSICAL SEPARATION	D	SYSTEMS	3.6	KOLA	8.6.(3)
			Phy	vsical separation should be	implem	ented in th	e boron i	room.	
IV	ECCS - REDUNDANCY AND	SEPARATION 1070	ECC	S SUPPORT SYSTEMS	D	SYSTEMS	3.6	KOLA	8.6.(5)
			Red	undant ventilation system s	hould I	pe installe	d tocool	safety inje	ection and
			spr	ay pumps. Cooling of safety	injeci	tion pump o	il should	d be handled	by a
IV	ECCS - REDUNDANCY AND	SEPARATION 1168	SIN	GIF FAILURE CRITERIA	D	ACCIDENT	1.11		12.1.(4)
			Sin	gle failure criteria and co	nserva	tive assump	tions sho	ould be syst	ematically
IV.			app	RIECE FAILURE	n	ACCIDCHT	1 14		12 5 /7
	CCCS - ACCOMPANDI ANU	acronation 1170	The	single failure criterion s	hould I	De systemat	ically us	sed in the r	edesign of
			the	Emergency Core Cooling Sys	tem.	-,	,		

¢

ISSUE TITLE: ECCS - Primary Break Isolation Options

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Use of primary circuit isolation valves to isolate primary system leaks has been proposed as an emergency procedure option. Such isolation involves a significant risk of pressurized thermal shock, if the primary circuit temperature has decreased below the normal operating temperature before isolation. A wrong diagnosis of the break location, followed by closure of wrong valves may also cause a complicated accident sequence.

RELATED ITEMS:

39

JUSTIFICATION OF RANKING:

Use of primary isolation valves might be a viable method of controlling the effects of a LOCA given the current design deficiencies and failure mode potential. On the other hand, it involves significant risks if not done properly.

CONCEPTUAL RECOMMENDATIONS:

In case the primary circuit isolation valve operation is considered as a procedure option during a LOCA, supporting analysis should be conducted to evaluate primary system pressure transients and system pressure control.

- II ECCS PRIMARY BREAK ISOLATION OPTIONS
- 39 PRIMARY LOOP ISOLATION STUDY D SYSTEMS 1.11 DESREV 2.1.7. The effect of closing the isolation valves after an spectrum of leaks (including design basis leak) should be investigated. This should include operating procedures and operator response.

ISSUE TITLE: Main Steamline Isolation

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

A main steamline break would result in rapid overcooling of the primary and loss of secondary water which could cause a severe thermal shock to the primary system and in particular the reactor pressure vessel. Due to the RPV embrittlement problems, the vessel temperature could drop below the NDT limit.

RELATED ITEMS:

49, 311-313, 361, 381, 609-611, 697, 737, 1049, 1191

JUSTIFICATION OF RANKING:

The RPV embrittlement problems that have been identified make this a potentially severe accident that could result in brittle fracture of the RPV.

CONCEPTUAL RECOMMENDATIONS:

Install fast closing automatic isolation valves to limit the thermal shock to the Reactor Pressure Vessel to an acceptable level, following a main steam line break. The number, location and performance of the valves must be evaluated taking into account, as a minimum:

- the results of the accident analyses,
- the single failure criterion,
- the possibility of installing flow restrictors at the steam generator outlet nozzles,
- isolation valve placement may reduce available decay heat removal paths.

CAT	. ISSUE	ITEM	n.	1111LE/Description	ASPECT	AREA	CLASS	REFER	ENCE
IV	MAIN STEAM LINE ISOLATION	49	MAI The pos rea and teo	IN STEAM ISOLATION VALVES Soviet decision to backfi Sitioning may leave the SG moval (i.e. MSIVs could eli d the normal path of decay i chnological condenser.	D t MSIVs safety v minate 1 heat ren	SYSTEMS with consi valves as the usage moval throu	3.6 derable the only of the r gh main	DESREV care, becau means of d egulating r condenser o	2.5.2 se the lecay heat ellef valve r
1V	MAIN STEAM LINE ISOLATION	311	AU1 Con 1SC	TO STEAN ISOLATION VALVES mplete installation of autor plation valves (presently m	D matic sy anually	SYSTEMS ystem for a actuated).	3.6 ctuation	BOHUNICE of fast ac	8.2.(1) ting steam
IV	MAIN STEAM LINE ISOLATION	312	DOL Dou tai	JBLE STEAM ISOLATION Jole the fast acting steam Ke into account single fails	D isolatio ure.	SYSTEMS on valve on	36 the mai	BOHUNICE n steam col	8.2 (2) lector to
IV	MAIN STEAM LINE ISOLATION	313	STE Avo the	EAM GENERATOR ISOLATION bid installing fast acting av are not necessary and ma	D isolatio v cause	SYSTEMS on valves o other inc	36 neachs idents	BOHUNICE team genera	8 2 (3) tor because
I۷	MAIN STEAM LINE ISOLATION	361	STE The cor	AM LINE ISOLATION e existing instrumentation mplemented with a logic cir-	D for loca cuit for	I&C alization o r automatic	3.6 of steam leak is	BOHUNICE line break olation	10 5.(3) should be
IV	MAIN STEAM LINE ISOLATION	381	STE Ins the	AM HEADER ISOLATION stall another fast closing two maintenance valves.	D isolatio	ACCIDENT on valve in	3.6 the man	BOHUNICE n steam hea	11.7.(1) der, between
IV	MAIN STEAM LINE ISOLATION	609	SG ₩e ou1	FLOW RESTRICT support the proposal to in tlet nozzles	D stall f	SYSTEMS low restric	3.6 tors at	KOZLODUY the 5 steam	8.2.(2) generator
tV	MAIN STEAN LINE ISOLATION	610	FA: We Val	ST ACTING ISOLATION VALVES strongly support the propo lves.	D sal to	SYSTEMS include fas	36 tacting	KOZLODUY main steam	8.2.(3) isolation
IV	MAIN STEAM LINE ISOLATION	611	PO: We act	SITION OF STEAM DUMP VALVES strongly support the propo ting main steam isolation v	D sal to n alves.	SYSTEMS nove steam	3.6 dump val	KOZLODUY ve behind t	8.2.(4) he fast
I۷	MAIN STEAM LINE ISOLATION	697	ST(Po:	EAM GENERATOR ISOLATION ssibilities to isolate main ch steam line should be ana	D steam (ACCIDENT with valves	3.6 In stea	KOZLODUY m collector	11.3 (1) or one in
IV	MAIN STEAM LINE ISOLATION	737	WA Spi shi wa	TER HAMMER uriuos closure of a fast ac utdown situation should not ter hammer.	D ting ma cause o	SYSTEMS in steam is damage on t	1.9 olation the corre	NOVOVORONE valve in th sponding li	8.2.(1) ne cold ne due to
١V	MAIN STEAM LINE ISOLATION	1049	MA: Rei	IN STEAM LINE ISOLATION place the six steam isolati	D on valv	SYSTEMS	3.6 Ast acti	KOLA ng isolatio	8.2.(1) n valves.
١V	MAIN STEAM LINE ISOLATION	1191	STI	EAM LINE ISOLATION st acting steam isolation v cording to schedule.	D alves sl	ACCIDENT hould be in	3.6 istalled	KOLA in each ste	12.7.(1) am line

ISSUE TITLE: Primary Circuit Pressure Relief

RANK OF ISSUE: III

ISSUE CLARIFICATION:

In the original WWER 440/230 design, safety relief valves are provided on the pressurizer. These valves are not qualified to relieve water and their operational reliability is not proven to be adequate under various operating conditions.

RELATED ITEMS:

41, 42, 310, 604, 605, 606, 607, 734-736, 794, 1043

JUSTIFICATION OF RANKING:

Reactor coolant system integrity strongly depends on the reliable operation of primary relief valves. Unreliability of the relief valves and associated components under various operating conditions could result in damage to the primary circuit or the RPV and this presents a severe safety hazard.

CONCEPTUAL RECOMMENDATIONS:

Determine and verify the functional requirements and the reliability targets for the pressurizer relief valves, considering both opening and closing of the valves. Install new valves meeting all requirements.

CAT.	ISSUE	ITEM n. TITTLE/Description	ASPECT AREA CLASS	REFERENCE
III PRIMARY	CIRCUIT PRESSURE RELIEF	41 LACK OF BLOCK VALVES The frequency of LOCA will b pressurizer relief lines.	D SYSTEMS 1.10 affected by the absence o	DESREV 2.2.5.1. of block valves in the
III PRIMAR)	CIRCUIT PRESSURE RELIEF	42 PRESSURIZER RELIEF VALVES The proposed replacement of operated relief valves) has further study issuggested t are met with adequate reliab	D SYSTEMS 1.10 ressurizer spring relief v dvantages with respect to confirm that the overall lity.	DESREV 2.2.5.3 ralves by PORVs (pilot bleed and feed, but functional requirements
III PRIMARY	CIRCUIT PRESSURE RELIEF	310 NEW PRESSURIZER SAFETY VALVE Complete replacement of pres	D SYSTEMS 1.10 Urizer safety valves by ne	BOHUNICE 8.1.(2) wanti-seismic model.
III PRIMARY	CIRCUIT PRESSURE RELIEF	604 PRESSURIZER RELIF TANK It is strongly recommended t higher capacity.	D SYSTEMS 1.10 change the pressurizer re	KOZLODUY 8.1.(9) Blief tank to one with
III PRIMAR	CIRCUIT PRESSURE RELIEF	605 PRESSURIZER RELIEF CONNECTIO Until pressurizer relief tan to the emergency water tank.	D SYSTEMS 1.10 is replaced, implement a	KOZLODUY 8.1.(10) relief tank connection
III PRIMARY	CIRCUIT PRESSURE RELIEF	606 FEED AND BLEED OPERATION Feed and bleed opeartion mod backfittings in emergency co	D SYSTEMS 4.4 should be analyzed in dat e cooling and confinment.	KOZLODUY 8.1.(11) ail, considering
III PRIMAR	CIRCUIT PRESSURE RELIEF	607 FEED AND BLEED RELIABILITY A reliability analysis of th	D SYSTEMS 4.4 new feed and bleed system	KOZLODUY 8.1.(12) n should be performed.
III PRIMAR	CIRCUIT PRESSURE RELIEF	734 PRESSURIZER VALVE ISOLATION Pressurizer valves should be protection against overpress	D SYSTEMS 1.10 isolated in such a way tha re be maintained.	NOVOVORONE 8.1.(5) It their function for
III PRIMAR'	CIRCUIT PRESSURE RELIEF	735 VALVE QUALIFICATION The pressurizer valves shoul	D SYSTEMS 1.10 be qualified for water di	NOVOVORONE 8.1.(6)
III PRIMAR'	CIRCUIT PRESSURE RELIEF	736 PRESSURIZER VALVE DISCHARGE The installation of two sepa implemented.	D SYSTEMS 1.10 ate discharge lines should	NOVOVORONE 8.1.(7) I be studied and
III PRIMAR'	CIRCUIT PRESSURE RELIEF	794 PRESSURIZER SAFETY VALVE Opening pressure, with and w determined and checked again modes	D I&C 1.21 thout power to the control t the required values for	NOVOVORONE 10.2.(3) circuit, should be all plant operating
III PRIMAR	CIRCUIT PRESSURE RELIEF	1043 PRESSURIZER SAFETY VALVES	D SYSTEMS 1.10	KOLA 8.1.(1)

Replace four pressurizer safety valves with 2 PORVs.

.

ISSUE TITLE: Secondary Circuit Pressure Relief

RANK: II

ISSUE CLARIFICATION:

In the original WWER 440/230 design 2 safety relief valves are provided for each steam generator on the secondary side. These valves are not qualified to relieve water and their operability is not proven to be reliable. Removal of secondary system pressure relief is also possible by isolation of the steam header with the MSIV.

RELATED ITEMS:

602, 603, 738, 1050, 1051

JUSTIFICATION OF RANKING:

Reactor coolant and secondary system integrity strongly depend on the reliable operation of secondary circuit safety valves. Isolation of downstream safety valves by shutting MSIV does not meet single failure criteria, and poses a safety hazard.

CONCEPTUAL RECOMMENDATIONS:

Determine and verify the functional requirements and the reliability targets for the SG safety valves, considering both opening and closing of the valves. Install new valves meeting all requirements. To meet single failure criteria, installation of a redundant safety discharge circuit located up stream of the MSIV should be addressed.
CAT. ISSUE

- 11 SECONDARY CIRCUIT PRESSURE RELIEF
- II SECONDARY CIRCUIT PRESSURE RELIEF
- 11 SECONDARY CIRCUIT PRESSURE RELIEF
- 11 SECONDARY CIRCUIT PRESSURE RELIEF
- 11 SECONDARY CIRCUIT PRESSURE RELIEF
- SYSTEMS 3.6 602 STEAM RELIEF VALVES D KOZLODUY 8.1.(7) Complete planned change of steam generator relief valves.
- 603 SEGREGATION OF REDUNDANT LINES D SYSTEMS 1.9 KOZLODUY 8.1.(8) Segregation of redundant pressurizer relief valve lines should be realized.
- 738 ATMOSPHERIC DISCHARGE CIRCUIT D SYSTEMS 3.6 NOVOVORONE 8.2.(2) Install a redundant atmospheric discharge circuit, located upstream of the main steamline isolation valve to satisfy the single failure criterion.
- 1050 STEAM RELIEF VALVES D SYSTEMS 3.6 KOLA 8.2.(2) Analyse the replacement of the two steam generator PORVs by two others having greater flow.
- 1051 QUALIFICATION OF SG PORVS D SYSTEMS 3.6 KOLA 8.2.(3) Steam generator PORVs should be qualified for water relief conditions.

ISSUE NUMBER: System 13

ISSUE TITLE: Reliable Isolation

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Single isolation values in pipes connected to primary side provide the primary circuit boundary. Failure of pipes or components connected to the primary circuit may lead to a loss of primary coolant inside the confinement or other NPP rooms. Single isolation values are used also to isolate some other piping interconnections and branches important to safety.

RELATED ITEMS:

57, 616, 620

JUSTIFICATION OF RANKING:

The single failure criterion and protection against common mode failure are not fulfilled by the current primary circuit piping isolation design.

CONCEPTUAL RECOMMENDATIONS:

Assess the reliability of isolation of the lines connected to the primary circuit and other systems important to safety. Achieve full compliance with single failure criterion adding the required isolation devices keeping in mind to preclude common mode failure implications.

CAT	. ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	RELIABLE ISOLATI	ON 57	CHE Par the tes	CK VALVE TIGHTNESS t of injection system pipe primary circuit boundary. t eaquipment around the che	D contair The abs eck valu	SYSTEMS Is primary w sence of of ve is a weak	1.10 Water. A a Leak (Kiness.	DESREV check valv tightness a	2.7.5.3 e provides utomatic
11	RELIABLE ISOLATI	ON 616	DOU Two fee	BLE ISOLATION isolation valves should be dwater system.	D e includ	SYSTEMS led in all i	3.1 intercom	KOZLODUY necting lin	8.3.(5) es in the
11	RELIABLE ISOLATI	ON 620	SIN A c pri sir	GLE FAILURE CRITERIA letailed analysis should be mary where additional check gle failure criteria.	D perform corisc	SYSTEMS and in order plation valu	3.1 to defi ves are r	KOZLODUY ine lines c needed to f	8.4.(3) onnected to ulfill

ISSUE NUMBER:Systems 14ISSUE TITLE:Ventilation/Cooling Capability

RANK OF ISSUE: III

ISSUE CLARIFICATION:

I&C, cable and electrical power supply equipment design temperature limits should not be exceeded. Safe operation can be ensured only if equipment temperatures can be kept within the permissible range. This applies to the full operational history and all conditions when functionality is required. Equipment temperature rise can be caused by elevated environmental temperatures as well as by waste heat generated by the equipment itself.

RELATED ITEMS:

281, 625, 763, 790, 817, 831

JUSTIFICATION OF RANKING:

Practical experience as well as PSA-studies conducted for nuclear power plants have shown the importance of ensuring normal environmental conditions for the control equipment.

CONCEPTUAL RECOMMENDATIONS:

Evaluate the cooling power needed to keep the temperatures of the equipment below the specified limits. Improve the ventilation systems to ensure required cooling. Provide adequate redundancy for coping with single failures in the ventilation systems.

CAT	. ISSUE	1 TEM	n. T	ITTLE/D	escription	A	SPECT	AREA	CLASS	REFER	ENCE
111	VENTILATION / COOLING CAPABILITY	281	COMPU An in	TER AIR depende	CONDITIONIA nt air cond	NG (itioning) syste	TS m should b	2.3 De install	BOHUNICE led for the	5.7.(2) process
111	VENTILATION / COOLING CAPABILITY	625	Compu AIR C Insta	ter roo ONDITIO ll a ne	m. NING W air conti	tioning () or fan	SYSTEMS coil unit	3.7 ts at batt	KOZLODUY tery, 1&C a	8.5.(4) nd emergency
111	VENTILATION / COOLING CAPABILITY	763	water BORON Insta	tank r ROOM DI Lling a	oom. It shou URING LOCA close vent	uld be c l ilation :	onnect D system	ed to DG p SYSTEMS insuring	ower. 3.7 the boror	NOVOVORONE n room cool	8.9.(2) ing during
111	VENTILATION / COOLING CAPABILITY	790	LOCA. SUZ E Reduc	NVIRONM e the n	ENT ormai tempe	i rature fi) n the	I&C area of th	3.3 ne new nuc	NOVOVORONE	10.1.(13) system.
111	VENTILATION / COOLING CAPABILITY	817	ELECT	RICAL D	ISTRIBUTION performance	BOARDS (D ventil	ELECTRICAL ation syst	.3.3 tem in the	NOVOVORONE switchgea	11.1.(5)
111	VENTILATION / COOLING CAPABILITY	831	CABLE	ll a ve	ntilation s	ystem to	D reduc	ELECTRICAL e the temp	. 3.3 œrature.	NOVOVORONE	11.5.(2)

.

ISSUE NUMBER: Systems 15

ISSUE TITLE: Dynamic Loads due to Piping Failures

RANK OF ISSUE: II

ISSUE CLARIFICATION:

A sudden rupture of a high energy pipe would cause dynamic loads on the equipment and structures located near the break. Besides the direct influence by blowdown flow, loads could be connected with whipping pipes if such whips are not excluded by proper design. Dynamic loads would also occur inside the failed system as a consequence of the decompression wave. The dynamic loads are a serious threat to the integrity of impacted structures and components.

RELATED ITEMS:

855, 1067

JUSTIFICATION OF RANKING:

Dynamic loads are not explicitly addressed in the design by installing restraints against pipe whips nor by separating the vital equipment from the high energy piping systems. No information has been provided on strength analysis of reactor vessel internals in case of a large break LOCA. On the other hand, the building layout would limit the consequence of a primary circuit pipe rupture.

CONCEPTUAL RECOMMENDATIONS:

Assess the need for pipe whip restraints around the high energy piping. Assess the need to remove vital equipment away from such pipes. Analyze the strength of reactor vessel internals in connection with breaks.

11	DYNAMIC LOADS DUE TO PIPING FAILURES	855 INTEGRITY AFTER LOCA D ACCIDEN The structural integrity of the reactor vess	T 1.11 NOVOVORONE 12.3.(10) el internals during the new design
п	DYNAMIC LOADS DUE TO PIPING FAILURES	basis LOCA should be assessed. 1067 SECONDARY PIPE WHIP PROTECTION D SYSTEMS Protection agains pipe whip should be instal	3.6 KOLA 8.6.(2) led on steam and feedwater lines

at 14.7 m level.

ITEM n. TITTLE/Description ASPECT AREA CLASS REFERENCE

.

CAT.

ISSUE

ISSUE TITLE: Embrittlement. Introduction

BACKGROUND INFORMATION:

The irradiation by high-energy neutrons has caused reactor vessel wall embrittlement that has progressed much faster than predicted during the vessel design. The fastest embrittlement takes place in the circular weld at the elevation of the reactor core.

The transition temperature where the weld metal fracture properties change from ductile to brittle is in a new vessel typically less than O°C, but now at some plants it may be higher than 150°C. The transition temperature can not be told accurately because it depends on many parameters:

- integrated exposure to high energy neutrons
- contents of impurities such as phosphorus and copper in the vessel metal
- the model used to correlate the shift of transition temperature with the neutron fluence.

The primary circuit must not be pressurized in temperatures below the transition temperature. Besides the cold shutdown conditions, one has to consider the risk of brittle fracture in connection with the pressurized thermal shocks. Such a brittle fracture may occur if all the following conditions are met:

- the vessel wall temperature decreases to a value which is close to the transition temperature,
- there is elevated pressure in the primary circuit, and
- there is an initial crack larger than a critical crack size in the vessel wall.

A potential method for decreasing the transition temperature close to its original value is vessel annealing.

ISSUE TITLE: Embrittlement. Baseline information and analysis.

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

The real rate of embrittlement and the current values of brittle to ductile transition temperatures of individual WWER pressure vessels are not accurately known. The uncertainty could be reduced by getting more information about the chemical composition of the vessel base metal and the welds. It would also be important to know accurately the integrated neutron flux and to have a proven model for predicting the progress of embrittlement. For pressurized thermal shock analysis, it would be necessary to have an estimate of the minimum crack size that could go unnoticed in inspections and should therefore be postulated as an initial crack. The analysis methods utilized do not always correspond to widely adopted ones.

RELATED ITEMS:

7, 15, 80, 81, 320, 635, 638, 643, 1079

JUSTIFICATION OF RANKING:

Due to some lack in knowledge about vessel material and methodology employed, the vessel assessment and risk estimation is insufficient.

CONCEPTUAL RECOMMENDATIONS:

- 1. Use all available means to find out chemical composition of the actual weld metal in the beltline region of each RPV.
- 2. Establish cooperation among all WWER users to find out the actual transition temperatures by testing samples taken from decommissioned RPV's (Armenia, Greifswald). Exchange information about all test results from irradiated samples. Develop an improved embrittlement correlation from the test results.
- 3. Exchange information on the calculated fast neutron flux values at the reactor vessel wall to have a better understanding about the accuracy of the calculations.
- 4. Apply the best available NDT technologies to detect the potential cracks from the vessel wall.

CAT	. ISSUE	1 TEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFE	RENCE
IV	EMBRITTLEMENT - BASELINE INFORMATION	7	UNI The	CERTAINTY IN NEUTRON FLL e uncertainty of the fas d the radiation induced	IENCE D at neutron embrittlem	CORE fluence and ent needs f	1.10 the rel	DESREV lationship l	1.1.8.4 between it
14	EMBRITTLEMENT - BASELINE INFORMATION	15	EFI The dis	FECT OF HIGHER BURNUP IN e effect the increased b scussed.	IRPVD Surnup on t	CORE he fast flu	1.10 ence in	DESREV the vessel	1.3.8.1 has not been
14	EMBRITTLEMENT - BASELINE INFORMATION	80	RE/ Gen The Inv Unv Cla	ACTOR VESSEL BASELINE DA nerally, reactor vessel ere is a need to treat t cluding plant specific o derestimated. As an exam adding on edges of vesse	TA D baseline d the whole b fata. Plant mple, infor el nozzles.	COMPONENTS ata could b ody of avai specific a mation shou	1.15 e charad lable da pproach ld be ob	DESREV cterized as ata collect should not otained for	3.1.2 imcomplete. ively, be two-layer
IV	EMBRITTLEMENT - BASELINE INFORMATION	81	PL/ Ba:	ANT SPECIFIC VESSEL DATA se line information, inc d commissioning test dat	L D Luding des	CONPONENTS	1.15 cations, at site	DESREV , manufactur es.	III.3.1.2. rer's data
١V	EMBRITTLEMENT - BASELINE INFORMATION	320	CR: Aft	ITICAL TEMPERATURE CURVE ter test samples campaig	S D gn, re-eval	COMPONENTS uate theore	1.10 tical ca	BOHUNICE	9.1.(3) and revise
IV	EMBRITTLEMENT - BASELINE INFORMATION	635	SAI Ato	WPLES OF RPV MATERIAL emps should be made to c	D Dobtain test	COMPONENTS cupons suf	1.10 ficient	KOZLODUY to provide	9.1.(4) direct
IV	EMBRITTLEMENT - BASELINE INFORMATION	638	RP Mai	V MANUFACTURING INSPECTI nufacturing inspection r its 1,2 and 4.	ON D records sho	COMPONENTS ould be obta	1.10 ined fro	KOZLODUY om manufacto	9.2.(1) urers for
1V	EMBRITTLEMENT - BASELINE INFORMATION	643	EMI A I ef:	BRITTLEMENT PROCESS better understanding of fects should be develope	D the embrit	COMPONENTS	1.10 cess and	KOZLODUY I how to mo	9.3.(2) derate its
١V	EMBRITTLEMENT - BASELINE INFORMATION	10 79	VE: Co	SSEL MATERIAL INFORMATIC llect vessel material in	ON D nformation	COMPONENTS available a	1.10 t the ma	KOLA anufacturer	9.1.(1)

ISSUE TITLE: Embrittlement. Validation of annealing.

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

Annealing has been applied to recover the material properties of the **RPV's**. The effectiveness of this process has not yet been sufficiently validated. It is also an open question how fast is the reembrittlement process in the annealed vessel. The potential risks related to annealing are not adequately investigated.

RELATED ITEMS:

83, 322, 324, 325, 642, 644, 1089, 1090

JUSTIFICATION OF RANKING:

Annealing of pressure vessels is being used as an argument to continue the operation of WWER 440/230's despite the safety concerns related to a potential pressurized thermal shock. Supporting evidence is essential for assessment of the actual RPV state after annealing.

CONCEPTUAL RECOMMENDATIONS:

- 1. Establish cooperation among all WWER uses, to find out the effectiveness of the annealing. The main topic should be testing of samples from pressure vessels which have undergone annealing. Especially large samples from different parts of decommissioned RPV's should be tested.
- 2. Perform a full scope RPV inspection before and after annealing to see whether annealing process has adverse side effects such as crack formation or growth of the existing small cracks, etc.
- 3. Develop and implement appropriate means for monitoring the progress of re-embrittlement after annealing.

CAT	- ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
IV	EMBRITTLEMENT - VALIDATION OF ANNEALING	83	VES The pro	SEL ANNEALING effectiveness of reactor operties and material re-em surgements and impact rests	D vessel a brittler	COMPONENTS annealing in ment should	1.10 restor be veri	DESREV ing initial fied by har	III.3.1.2. material dness
IV	EMBRITTLEMENT - VALIDATION OF ANNEALING	322	RP\ Per	ANNEALING INSPECTION	D tion of	COMPONENTS unit 2 core	1.10 region	BOHUNICE weld befor	9.2.(2) e and after
I¥	EMBRITTLEMENT - VALIDATION OF ANNEALING	324	anr SAN Tal	nealing. IPLING RPV MATERIALS Ke samples of both unit RPV	D s for cl	COMPONENTS hemical anal	1.10 ysis an	BOHUNICE d hardness	9.2.(4) tests. For
I٧	EMBRITTLEMENT - VALIDATION OF ANNEALING	325	un ANI Dis	t 2 take samples before an IEALING PROCEDURE scuss with vessel manufactu	d after D rer tes	annealing. COMPONENTS t results an	1.10 d theor	BOHUNICE etical calc	9.3.(1) ulations and
١V	EMBRITTLEMENT - VALIDATION OF ANNEALING	642	the UNE	e selected annealing proedu IT 2 ANNEALING	re. D		1.10	KOZLODUY	9.3.(1)
IV	EMBRITTLEMENT - VALIDATION OF ANNEALING	644	POS Whe	ANNEALING INSPECTION Enever repetion of an inspe	D Ction is	COMPONENTS s required,	1.10 a diffe	KOZLODUY rent inspec	9.3.(3) tor should
IV	EMBRITTLEMENT - VALIDATION OF ANNEALING	1089	be TES Cut	employed. STING SAMPLES OF RPV tout templates of base mat	D erial i	COMPONENTS n core zone	1.10 and wel	KOLA ds 4 of Kol	9.3.(1) a 1 and 2
IV	EMBRITTLEMENT - VALIDATION OF ANNEALING	1090	ank BEI Nor	d perform impact tests and FORE AND AFTER TESTING a destructive examination s	other 11 D hould b	nvestigation COMPONENTS e performed	is neede 1.10 before	d. KOLA and after a	9.3.(2) nnealing.

ISSUE TITLE: Embrittlement. Flux reduction.

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

The rate of embrittlement can be significantly slowed down by reducing the fast neutron flux. The experience at some WWER plants has proven that this is a viable approach. The measures taken at some plants include installing dummy elements into the outermost core positions and establishing a low leakage loading scheme where the new fuel is in the middle of the core and the fuel bundles with highest burn-up are on the edge.

RELATED ITEMS:

79, 1025

JUSTIFICATION OF RANKING:

In view of the inadequate knowledge on actual embrittlement of RPV's, every effort should be taken to limit the progress of the embrittlement process.

CONCEPTUAL RECOMMENDATIONS:

Use appropriate flux reduction measures to slow down the embrittlement of the reactor vessel wall.

CAT	• 1SSUE	ITEM n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	NCE
īV	EMBRITTLEMENT - FLUX REDUCTION	79 REC Cor wal	DUCTION OF FLUENCE TO VESSEL rective measures have been It in some plants.	D taken t	COMPONENTS to reduce hi	1.10 gh neutr	DESREV on flux at	111.3.1.1B the vessel
IV	EMBRITTLEMENT - FLUX REDUCTION	1025 LON Lon ass	LEAKAGE CORE Leakage loading patterns s semblies, for vessel fluence	D hould b reduct	CORE be evaluated tion.	1.10 , in cor	KOLA ijunction wi	7.1.(7) th dummy

ISSUE TITLE: Embrittlement. Prevention of low temperature pressurization.

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

It is important to eliminate transients where the temperature drops rapidly to the transition temperature and the primary circuit is subsequently repressurized. Such possibility exists especially in connection with loss-of-coolant accidents which are terminated by isolating the leak. In cold shutdown conditions it is necessary to prevent accidental system pressurization.

RELATED ITEMS:

43, 636, 749

JUSTIFICATION OF RANKING:

The embrittlement of WWER 440/230 pressure vessels has progressed to a point where primary circuit pressurization in temperatures below the normal operating range might cause a fast rupture of the RPV, thus resulting in a severe accident.

CONCEPTUAL RECOMMENDATIONS:

- 1. Automatic protection should be provided to prevent low temperature overpressurization from (LTOP) of the primary circuit. All conceivable sequences leading to primary circuit temperature drop, (such as an inadvertent opening of the by-pass to condenser) or to pressurization (such as an inadvertent start of a make-up pump) should be covered by this protection.
- 2. All feasible design modifications, such as limiting the magnitude of potential steam leaks and warming up of the emergency coolant, should be made to decrease the cooling rate during postulated accidents.
- 3. Design features and appropriate guidance to the operators should be provided to prevent primary circuit repressurization during accidents which may cause significant cooling of the primary circuit.

CAT	. ISSUE	ITEM n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERENCE	
IV	EMBRITTLEMENT - COLD PRESSURIZATION	43 COL Des the Aut the	D OVER PRESSURE PROTECTION pite manually available col re is no evidence of adequa omatic protection is typica WMER approach is required.	D+O Id over ate prov al in ot	SYSTEMS pressure visions fo ther plant	1.10 protection or all ope ts. Some fr	DESREV 2.2.5.2. n at cold shutdown, rating conditions. urther study to justif	Y
IV	EMBRITTLEMENT - COLD PRESSURIZATION	636 COL An is	D PRESSURIZATION interlock should be introdu available, an alarm system	D uced to should	COMPONENT prevent of be instal	rs 1.10 cold press lled.	KOZLODUY 9.1.(5) urization. Until this	
IV	EMBRITTLEMENT - COLD PRESSURIZATION	749 RPV Pro dev	PROTECTION tect RPV against cold shute ices.	D down ove	SYSTEMS	1.10 e with the	NOVOVORONE 8.6.(2) help of the safety	

ISSUE TITLE: Vessel ISI. Inspection Techniques and Acceptance Criteria

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The pre-service inspections of the pressure vessels were done using ultrasonic methods with rather limited capabilities. The current ISI methods are much more efficient in detecting cracks but the old acceptance criteria by the manufacturer are still being used. In addition, the present scope of ISI may not be adequate to detect all cracks which might be threatening the vessel integrity.

RELATED ITEMS:

84-87, 321, 323, 639, 1081-1088

JUSTIFICATION OF RANKING:

Vessel integrity being of utmost importance for defence in depth it is not only necessary to improve the ISI methods and scope but also to update the acceptance criteria in relation to present knowledge.

CONCEPTUAL RECOMMENDATIONS:

Assess the available ISI results and methods. Develop and employ ISI methodology which is compatible with the requirements for vessel integrity assessment.

Develop acceptance criteria for vessel in-service inspection adopted to state-of-the-art equipment and methods. Additional strength analysis with conservative defect size estimations should be performed for the defects found covering the whole operation life of the RPV.

CAT.	ISSUE	ITEM	n. TITTLE/Description ASPECT AREA CLASS REFE	RENCE
III VESSEL IS	I - INSPECTION TECHNIQUES	84	VESSEL IN SERVICE INSPECTION D COMPONENTS 3.4 DESREV In Service Inspection (ISI) has limitations due to impossibility the inner cylindric wall of the reactor vessel from the outer sus plants.	111.3.1.1C to inspect face, in some
III VESSEL IS	I - INSPECTION TECHNIQUES	85	NOW DESTRUCTIVE EXAMINATIONS D+0 COMPONENTS 3.4 DESREV Some of the Non Destructive Examination (NDE) equipment may have limitations.	III. 3.1.1 D significant
III VESSEL IS	I - INSPECTION TECHNIQUES	86	SCOPE OF IN SERVICE INSPECTION D+O COMPONENTS 3.4 DESREV The scope of In Service Inspection (ISI), the capability of Non D Examination (NDE) techniques, the obtained data and their evaluat assessed.	III. 3.1. 2. estructive ion should be
III VESSEL IS	I - INSPECTION TECHNIQUES	87	MODERN VESSEL EXAMINATION D+O COMPONENTS 3.4 DESREV Modern Non Destructive Examination (NDE) techniques capavle of de vessel degradation at an early stage should be used in all reacto Methods used to evaluate detected deffects should include new tec in other countries (e.g. crack arrest approach).	III.3.1.2. tecting r vessels. hniques used
III VESSEL IS	I - INSPECTION TECHNIQUES	321	RPV ISI ACCEPTANCE CRITERIA D COMPONENTS 1.10 BOHUNICE Develope a specific In Service Inspection acceptance criteria ada inspection equipment istead of using manufacturers' one.	9.2.(1) pted to the
III VESSEL IS	I - INSPECTION TECHNIQUES	323	CONTROL ROD PENETRATION ISI D COMPONENTS 1.10 BOHUNICE Inspect a part of control rod mechanism penetration by ultrasonic part of ISI.	9.2.(3) method as
III VESSEL IS	I - INSPECTION TECHNIQUES	639	ULTRASONIC MANIPULATOR D COMPONENTS 1.10 KOZLODUY	9.2.(2)
III VESSEL IS	I - INSPECTION TECHNIQUES	1081	STRENGTH ANALYSIS OF DEFFECTS D COMPONENTS 1.10 KOLA Additional strength analysis,with conservative deffect hights, sh	9.1.(3) ould be
III VESSEL IS	I - INSPECTION TECHNIQUES	1082	VESSEL INSPECTION D COMPONENTS 3.4 KOLA Ensure good sealing of joints and surfaces in the flange. Inspect the nozzles to check for leaks into the gap.	9.2.(1) hole area of
111 VESSEL 1S	- INSPECTION TECHNIQUES	1083	INSPECTION SYSTEM CALIBRATION D COMPONENTS 3.4 KOLA Sensitivity setting using reference blocks should be used to chec inspection system.	9.2.(2) k the whole
III VESSEL IS	- INSPECTION TECHNIQUES	1084	RECORDING LEVEL D COMPONENTS 3.4 KOLA	9.2.(3)
III VESSEL IS	- INSPECTION TECHNIQUES	1085	NEAR SURFACE AREA INSPECTION D COMPONENTS 3.4 KOLA	9.2.(4)
III VESSEL IS	- INSPECTION TECHNIQUES	1086	Inspect the near surface areas using longitudinal wave probes. SCANNING OF DEFFECTS D COMPONENTS 3.4 KOLA	9.2.(5)
•••	· · · · · · · · · · · · · · · · · · ·		Add and validate special inspection technique for scanning outer deffects of welds 3, 4 and 5 having no access from the outside.	surface
III VESSEL IS	I - INSPECTION TECHNIQUES	1087	DEFFECT DIMENSIONING D COMPONENTS 3.4 KOLA Continue developing different techniques and procedures for dimen surface and sub-surface deffect heights.	9.2.(6) sioning of
III VESSEL IS	I - INSPECTION TECHNIQUES	1088	ISI EQUIPMENT D COMPONENTS 3.4 KOLA Use of a cetral mast manipulator with a sophisticated data aquisi should be considered for future ISI inspections.	9.2.(7) tion system

ISSUE TITLE: Vessel ISI. Corrosion Monitoring

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Six of the 10 reactor pressure vessel are unclad and have suffered corrosion. Unclad vessels surface is being inspected visually every 4 years for corrosion by an inspector within a lead shielding container; chart showing the position of corrosion pits is produced. The results are necessarily subjective. The inspector is exposed to a high radiation field which may decrease his motivation for careful work.

RELATED ITEMS:

641

.

JUSTIFICATION OF RANKING:

Without precise evaluation and follow-up of corrosion pits on the vessel internal surface defence in depth provided by the vessel is degraded.

CONCEPTUAL RECOMMENDATIONS:

Less subjective ISI techniques should be developed and applied.

CAT.		ISSUE	ITEM n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERENCE	
11	VESSEL ISI	- CORROSION MONITORING	641 COR Mor	ROSION MEASUREMENTS e objective corrosion m	D measurement	COMPONENTS techniques	1.10 should	KOZLODUY 9.2.(4) be used, such as video	

cameras.

ISSUE TITLE: Vessel Stress Analysis

RANK OF ISSUE: III

ISSUE CLARIFICATION:

In the design calculation only traditional formulas and basic operational regimes were used. Re-evaluation of stress analyses is needed to account for normal transients and beyond DBA accidents derived transients (PTS) using more refined methods and approaches.

RELATED ITEMS:

82, 318, 632-634, 637, 640, 768, 770, 1080

JUSTIFICATION OF RANKING:

Sufficient defence in depth provided by the RPV must be demonstrated by modern stress analysis methods.

CONCEPTUAL RECOMMENDATIONS:

Stress calculations for normal and transient conditions with modern methods (finite elements) should be made in particular for the regions with complex geometries including a fatigue analysis.

CAT.	ISSUE	ITEM n. TITTLE/Description ASPECT AREA CLASS REFERENCE
III VESSI	EL STRESS ANALYSIS	82 VESSEL OPERATING HISTORY D COMPONENTS 1.15 DESREV II1.3.1.2. Vessel operating history data, including process conditions and
		pressure temperature transient data, should be reviewed.
III VESSE	L STRESS ANALYSIS	318 VESSEL STRESS ANALYSIS D COMPONENTS 1.10 BOHUNICE 9.1.(1)
		Prepare a document justifying extrapolation of stress analysis results from WER-440/213 to /230 and reevaluating effects of new accident analysis and seismic enalysis
III VESS	STRESS ANALYSIS	632 VESSEL STRESS ANALYSIS D COMPONENTS 1.10 KOZLODUY 9.1 (1)
		Some modern stress analysis should be performed on selected region.
III VESSE	L STRESS ANALYSIS	633 TRANSIENT CONDITIONS D COMPONENTS 1.10 KOZLODUY 9.1.(2)
		The transient conditions derived from accident analysis should be used in the vessel stress analyss.
III VESSE	L STRESS ANALYSIS	634 OPERATING CYCLES D COMPONENTS 1.10 KOZLODUY 9.1.(3)
		Operating cycles which are currently monitored should be compered with design cycle to estimate remaining lifetime.
III VESS	L STRESS ANALYSIS	637 RPV DESIGN CALCULATIONS D COMPONENTS 1.10 KOZLODUY 9.1.(6)
		Design calculations of vessel aseismic features should be obtained from the designers.
III VESS	EL STRESS ANALYSIS	640 FRACTURE MECHANICS D COMPONENTS 1.10 KOZLODUY 9.2.(3)
		Expertise in fracture mechanics calculations should be developed.
III VESSI	EL STRESS ANALYSIS	768 STRESS REDUCTION IN FLANGE D COMPONENTS 1.10 NOVOVORONE 9.1.(1)
		An improved concept of sealing should be developed to reduce the stresses in
		the grooves of the flange.
III VESS	EL STRESS ANALYSIS	770 MODERN STRESS CALCULATION D COMPONENTS 1.10 NOVOVORONE 9.2.(1)
		Stress calculations for normal and transient conditions with modern methods
		(finite elements) should be made in particular for the regions with complex
		geometries including a fatigue analysis.
III VESS	EL STRESS ANALYSIS	1080 VESSEL STRESS ANALYSIS D COMPONENTS 1.10 KOLA 9.1.(2)
		Stress calculations should be performed fro flange zone, head penetrations an nozzles with modern calculation methods.

ISSUE TITLE: Leak Before Break Applicability

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

The plant design does not account for large diameter break LOCA. The leak before break methodology, if it can be successfully applied, provides early warning before major break in primary piping could develop.

RELATED ITEMS:

89, 90, 328-330, 332, 652, 653, 730, 774, 775, 1045, 1046, 1100-1106, 1108

JUSTIFICATION OF RANKING:

Considering the limited scope of DBA and its consequences, a very low probability of primary piping break is required.

CONCEPTUAL RECOMMENDATIONS:

Complete a comprehensive leak before break applicability analysis and perform required hardware installation and/or modifications. See also Components 6 "Primary Circuit Stress Analysis" and "Components 5 Primary Circuit in-service inspection, which will give input on stress and specific inspection. Immediate consideration should be given to the development of complementary operating procedure to monitor continuously the hermetic compartment air radioactivity and frequently check the leakage of the primary circuit until LBB application has been demonstrated and detection has been installed.

CAT	. I SSUE	ITEM n. TITTLE/Description ASPECT AREA CLASS REFERENCE
IV	LEAK BEFORE BREAK APPLICABILITY	89 LEAK BEFORE BREAK APPLICATION D COMPONENTS 1.10 DESREV III.2.2.2. For the primary circuit, the implementation of the Leak Before Break (LBB) concept is of great importance. To introduce the concept, a general and plant specific evaluations are necessary. This include, compilation of material data, definition of loads, calculation of maximum deffect size, evaluation of ISI methods, possibility of leak detection and localization, exclusion of singular deffects. The analysis should focus on dissimilar welds, castings and welds with reduced testability.
۸ſ	LEAK BEFORE BREAK APPLICABILITY	90 LEAK DETECTION D COMPONENTS 1.10 DESREV 3.6.2 More sophisticated leak detection facilities which will allow small leaks to be detected and localized will be installed in the future. Plans should be reviewed during missions.
۲V	LEAK BEFORE BREAK APPLICABILITY	328 LEAK BEFORE BREAK EXPERIMENTS D COMPONENTS 1.10 BOHUNICE 9.4.(3) Test results should involve the comparison of non- exposed and exposed material.
IV	LEAK BEFORE BREAK APPLICABILITY	329 LEAK DETECTION D COMPONENTS 1.10 BOHUNICE 9.4.(4) Leak before break programme should be complemented with a leak detection system in both units.
11	LEAK BEFORE BREAK APPLICABILITY	330 ACCOUSTIC EMMISSION DIAGNOSTIC D COMPONENTS 1.10 BOHUNICE 9.4.(5) Install accoustic emission diagnostic system in both units as planned.
IV	LEAK BEFORE BREAK APPLICABILITY	332 LEAK DETECTION ALARM D COMPONENTS 1.10 BOHUNICE 9.4.(7) Install a leak detection system alarm in the control room.
IV	LEAK BEFORE BREAK APPLICABILITY	652 LEAK BEFORE BREAK CONCEPT D COMPONENTS 1.10 KOZLODUY 9.6 (1) Completion of leak before break study and installation of diagnostic equipment is of ultmost importance.
11	LEAK BEFORE BREAK APPLICABILITY	653 EXPERIENCE FROM OTHER PLANTS D COMPONENTS 1.10 KOZLODUY 9.6.(2) Obtain experience on leak before break applicability from other plants, specially Bohumice.
١V	LEAK BEFORE BREAK APPLICABILITY	730 LEAK IDENTIFICATION D SYSTEMS 1.10 NOVOVORONE 8.1.(1) Complemantary operating procedure to monitor continuously the hermetic compartment air radioactivity and frequently check the leakage of the primary circuit should be used until LBB detection system is implemented.
IV	LEAK BEFORE BREAK APPLICABILITY	774 LBB PREREQUISITES D COMPONENTS 1.10 NOVOVORONE 9.4.(1) Lower bound toughness of the materials should be determined Weldments are examined by repeated NDE. Safety margin for normal and transient conditions shall be quantified Calculation codes as well as the NDE methods have to be validated.
IV	LEAK BEFORE BREAK APPLICABILITY	775 LARGE SCALE TESTS D COMPONENTS 1.10 NOVOVORONE 9.4.(2) Study the failure behavior of the relevant materials in large scale tests.
IV	LEAK BEFORE BREAK APPLICABILITY	1045 LEAK BEFORE BREAK D SYSTEMS 1.10 KOLA 8.1 (3) Implement the leak before break concept to the main circuit.
14	LEAK BEFORE BREAK APPLICABILITY	1046 LEAK DETECTION D SYSTEMS 1.10 KOLA 8.1.(4) Additional measurements and monitoring of the primary system should be done i order to detect any leakage.
١V	LEAK BEFORE BREAK APPLICABILITY	1100 LEAK BEFORE BREAK REQUIREMENTS D COMPONENTS 1.10 KOLA 9.6.(1) Typical deffects have to be estimated. Data has to be collected and evaluated Inspection programme and techniques have to be compatible with this deffects.
IV	LEAK BEFORE BREAK APPLICABILITY	1101 LEAK BEFORE BREAK ANALYSIS D COMPONENTS 1.10 KOLA 9.6.(2) Estimation of highly stressed parts of components and pipes is needed. Estimation of critical deffect size and crack propagation is needed. Real strain and temperature changes should be measured.
٢V	LEAK BEFORE BREAK APPLICABILITY	1102 LEAK BEFORE BREAK TESTS D COMPONENTS 1.10 KOLA 9.6.(3) The results of full scale tests should be compared with calculations. Instructions for inspections should be developed.
١v	LEAK BEFORE BREAK APPLICABILITY	1103 INSPECTION OF OPEN VALVES D COMPONENTS 1.10 KOLA 9.6.(4) Inspect pipes whenever valves or pumps are opened. Develope inspection equipment for inner surface and volumetric inspection.

CAT	. 15	SSUE	TEM	n.	TITTLE,	/Descr1p	otion	ASPECT	AREA	CLASS	REFER	ENCE
IV	LEAK BEFORE	BREAK APPLICABILITY	104	DISS The Inve	IMILAR already stigat	WELD RE y planne ion shou	SEARCH d research Ild be impl	D program emented.	COMPONENTS me for full	1.10 scale d	KOLA Hissimilar v	9.6.(5) essel weld
1V	LEAK BEFORE	BREAK APPLICABILITY	105	PRIM The exte tech	ARY IN: annual nsive u nique.	SPECTION 1specti until al	PROGRAMME on program l weld hav	D me for p re been 10	COMPONENTS rimary system nspected onc	1.10 mweld ewith	KOLA should be k present (o	9.6.(6) ept r better)
14	LEAK BEFORE	BREAK APPLICABILITY	106	PIPI Fail Insp to c	NG SUP Ure of ection oncrete	PORT COM pipe su of supp e and ba	SIDERATION apport shou ports shoul- use plate s	S D Id be in d be inc hould be	COMPONENTS clude in LBB luded in IS1 inspected.	1.10 calcul progra	KOLA ations. Sys mme. Suppor	9.6.(7) tematic t attachment
17	LEAK BEFORE	BREAK APPLICABILITY	108	VIDE Vide insi	0 SURVI o camei de the	ElLLANCE ras shou confinm	OF LEAKS Ild be inst Went.	D alled to	COMPONENTS make a cont	1.10 1 nuous	KOLA overview of	9.6.(9) leakages

ISSUE TITLE: Primary circuit in-service inspection

RANK OF ISSUE: III

ISSUE CLARIFICATION:

In the absence of accurate design margin, the major factor determining safety is comprehensive and balanced inspection of primary circuit components.

RELATED ITEMS:

93, 96-98, 333, 334, 650, 651, 773, 776, 777, 982, 1095-1099, 1110-1113, 1298, 1299

JUSTIFICATION OF RANKING:

Primary circuit in-service inspection results are of importance to demonstrate the defence in depth ability of the circuit. The present level of inspection is insufficient.

CONCEPTUAL RECOMMENDATIONS:

Improve in-service inspection scope, techniques, methods, and programmes for primary piping and components. The improvement should include where relevant the piping preparation for inspection (Weld surfaces.....). The annual inspection programmes in the next few years should be extensive enough for all critical points to be inspected as soon as possible.

CAT.		ISSUE			ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	INCE
•••	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	93	SC In	OPE OF PRIMARY CIRCUIT 1 Service Inspection (IS)	ISI D+O	COMPONENTS imary circu	1.10 lít shoul	DESREV Ld cover 100	111.3.2.2. % volume
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	96	an ST St	id inside examination of EAM GENERATOR TUBES cam generator tubes show	all welds. D # a good per	COMPONENTS formance. C	1.10 mly 27 d	DESREV deffected to	111.3.3.1. øbes found
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	97	in MO Mo	n Kola. However the appli DERN TUBE EXAMINATION Wern Non Destructive Exe	ied ISI has D+O amination (N	been limite COMPONENTS DE) methods	d in sco 1.10 5 (e.g. 1	ope and capa DESREV Eddy current	ability. III.3.3.2. t) should be
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	98	us TU Th	ed in order to detect to BE PLUGGING CRITERIA He tube plugging criteria	ube degradat D a should be	ion at an e COMPONENTS evaluated o	early sta 1.10 M a plaa	age. DESREV nt specific	111 .3.3.2 basis.
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	333	Be sh ST	sides wall thickness, ma would be taken into consi EAM GENERATOR INSPECTION	aximum peris ideration. I D	sible lengh COMPONENTS	of a lo	BOHUNICE	deffect 9.6.(1)
						In pe eq	ncrease eddi current test er refuelling and develog quipment.	t equipment be plugging	in order to criteria ac	inspect lapted to	t 40% of tut o the inspec	pes of 2 SG ction
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	334	SC In Pl	COPE OF SG INSPECTION n each ISI a percentage of an next inspections base	D of tubes not ed of previo	COMPONENTS previously ws results.	1.10 / inspec	BOHUNICE ted should l	9.6.(2) be included.
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	650	PR In	RESSURIZER INSPECTION	D hell from th	COMPONENTS e outside w	1.10 with Ult	KOZLODUY rasound at 1	9.5.(1) the thermal
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	651	PR	MARY INSPECTION RESULT mputerization of primary	S D y inspection	COMPONENTS	1.10 iould be	KOZLODUY expedited.	9.5.(2)
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	773	VC Lo re	DLUMETRIC NDE ongitudinal welds in the egions with complex geome	D elbows of t etries shoul	COMPONENTS he main coo d be examin	1.25 Stant pij Ned by vo	NOVOVORONE ping and we olumetric NE	9.3.(1) lds in the DE methods.
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	776	SG Fo	COLLECTOR WELD TESTING or the collector welds a	D volumetric	COMPONENTS test method	1.10 1 (e.g.)	NOVOVORONE X-ray testin	9.5.(1) ng) should
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	777	'so A	S TUBE FAILURES test method should be a	D pplied to qu	COMPONENTS antify the	1.10 defects	NOVOVORONE of the tub	9.5.(2) es.
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	982	SC Ec	i TUBES ddy current techniques sl	0 hould be emp	MAINT bloyed for i	1.25 Inspectio	NOVOVORONE on of the t	4.7.(1) ubes in heat
	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	1095	PR	RIMARY WELDS INSPECTION nvestigate possibility o	D f inner surf	COMPONENTS	1.10 tion for	KOLA Longitudin	9.5.(1) al elbow
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	1096		olumetric methods. DMPONENT PARTS INSPECTIO	nd mann pound N D	COMPONENTS	1.10	KOLA	9.5.(2)
,,,,	DDIMADY	CIRCUIT	18-550/105	INSPECTION	1007	Ir tr	vestigate, deveope and v read holes of pumps, and reparation for inspection	validate UT studs and n	and ECT tec uts of gate	chniques e valve a t in	for inspect and main pur	tion of mps. 95.30
	r n i non i	CIRCOIT	IN-SERVICE	INSPECTION	1077	Ma	achine or grind reinforce ltrasonic Test of the ro	ements from ot area.	those welds	having	limitation	in
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	1098	INC Ir ha	DZZLES ORIFICES INSPECTIOn spect nozzle base mater aving orifices of 32 mm.	ON D ialwithUT	COMPONENTS in pipes of	1.10 f diamet	KOLA er less tha	9.5.(4) n. 100 mm
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	1099	LN Co Co	NSPECTION OF AUSTENITIC : potinue developing UT ter potact and co-operation (STEEL D chnique for with foreign	COMPONENTS austenitic inspection	1.10 stainle: and pre	KOLA ss steel we obe design a	9.5.(5) ld.Establish
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	1110	S1 Vo	TEAM GENERATOR INSPECTION blumetric inspection show	N D uld be appli	COMPONENTS ed to stear	1.10 n genera	KOLA tor collecte	9.7.(2) or welds and
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	1111	ST St	FEAM GENERATOR EDDY CURRI tart eddy current test o	ENT D fSGtubesa	COMPONENTS is soon as p	1.10 xssible	KOLA . Develope a	9.7.(3) a tube
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	1112	CC Pe	DLLECTOR CLADDING INSPECT	fION D clad cracks	COMPONENTS and for de	1.10 ffects i	KOLA in clad volu	9.7.(4) me for SG
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	1113	CC De	DLECTOR PARTS INSPECTION Evelope eddy current test	i D ting for tre	COMPONENTS ad holes an	1.10 d bolts	KOLA of SG colle	9.7.(5) ector to
111	PRIMARY	CIRCUIT	IN-SERVICE	INSPECTION	1298	fi S1 Al	Ind small cracks. TEAM GENERATOR EDDY CURRE Il effort should be made	ENT O I to start ed	MAINT dy current	1.10 testing	KOLA of the stea	4.7.(1) am generator
		C100117	TH-SEDVICE	INCORCTION	1200	di. pr	uning next outage.	n	MAINT	1.10	KOLA	4.7.(2)
	r Narian I	UINUUII	TH OCKATOC	LHOT COLLON		T	ne frequency of primary of be discussed with safe	circuit hydr ty authoriti	aulic test es.	should b	e reduced.	Problem has

ISSUE TITLE: Primary Circuit Stress Analysis

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Detailed primary circuit analysis is essential in evaluating the safety impact of operational conditions and deviations from normal conditions. Results, obtained using modern refined techniques are needed for integrity assessment.

RELATED ITEMS:

91, 92, 327, 331, 645-647, 649, 654, 655, 771, 772, 1091-1094, 1109

JUSTIFICATION OF RANKING:

Primary circuit stress analysis is of importance to demonstrate the defence in depth ability of the circuit.

CONCEPTUAL RECOMMENDATIONS:

Perform detailed stress analysis of primary circuit components with respect to their integrity using modern stress analysis techniques, particularly with respect to stress analysis techniques, particularly with respect to stress concentration, metallurgical discontinuities, temperature cycling, earthquakes, and water hammer.

Stress analysis should be supported by measurements in locations where cyclic loads can be expected.

CAT.	ISSU	E		ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	NCE
111	PRIMARY CIRCUI	T STRESS A	WALYSIS	91	SUR For poin	GE LINE TEMPERATURE the surge line, it is rec nts of special interest (e	D ommended .g. to m	COMPONENTS 1 to perform onitor there	1.10 tempera nocycles	DESREV ture measur due to pos	III.3.2.2. ements on sible
111	PRIMARY CIRCUI	T STRESS A	NALYSIS	92	PRE: The	SSURIZER SPRAY pressurizer should be rev area of the pressurizer s	0 iewed re prav.	COMPONENTS 1 garding post	1.10 sible th	DESREV ermal schoc	III.3.2.2. k events in
[11	PRIMARY CIRCUI	T STRESS A	MALYSIS	326	PRII Re-0 ana	MARY SYSTEM STRESS ANALYSI evaluate stress analysis r lysis considered.	S D esults i	COMPONENTS ' ncluding the	1.10 e effect	BOHUNICE of the new	9.4.(1) accident
111	PRIMARY CIRCUI	T STRESS A	MALYSIS	327	THE Mon ste	RMAL DISPLACEMENT itor with strain gauges th am generators during start ports.	D e new su up after	COMPONENTS pport of con installation	1.10 ntrol ro on of ad	BOHUNICE d drive mec itional sei	9.4.(2) hanism and smic
111	PRIMARY CIRCUI	T STRESS /	ANALYSIS	331	FAT Com	IGUE MONITORING SYSTEM puterize the data (T-t) re t process the data to esti	D gistered mate fat	COMPONENTS by the fat	1.10 igue mon	BOHUNICE itoring sys	9.4.(6) tem and
111	PRIMARY CIRCUI	T STRESS A	ANALYSIS	645	PRI	MARY STRESS ANALYSIS	D k stress	COMPONENTS	1.10 hould be	KOZLODUY	9.4.(1)
111	PRIMARY CIRCUI	T STRESS A	ANALYSIS	646	COM	PONENTS STRESS ANALYSIS ability to perform stress lation values should be de	0 analysis	COMPONENTS of component	1.10 nts such	KOZLODUY as pumps a	9.4.(2) nd
111	PRIMARY CIRCUI	T STRESS /	ANALYSIS	647	MON Met ass	ITORING SURGE LINE at temperature at the top ess stratification.	D and bott	COMPONENTS ' om of surge	1.10 lines s	KOZLODUY hould be mo	9.4.(3) mitored to
111	PRIMARY CIRCUI	T STRESS /	ANALYSIS	649	PRI Exp sei	MARY SEISMIC DESIGN erience gained from contac smic design capability.	D t with U	COMPONENTS ISSR should I	1.10 be used	KOZLODUY to develope	9.4.(5) practical
111	PRIMARY CIRCUI	T STRESS /	ANALYSIS	654	SG App gen	STRESS ANALYSIS 1y modern stress analysis erators, such as the colle	D techniqu ctor she	COMPONENTS les to comple ll junction	1.10 ex detai -	KOZLODUY ls of the s	9.7.(1) team
111	PRIMARY CIRCUI	T STRESS	ANALYSIS	655	SG	METAL TEMPERATURE	D erator t	COMPONENTS	1.10 tal temp	KOZLODUY erature dis	9.7.(2) tribution.
111	PRIMARY CIRCUI	T STRESS /	ANALYSIS	771	PRI Str sho	MARY STRESS ANALYSIS ess calculations with mode uld include an analysis of	D ern metho earthou	COMPONENTS ids for norm lake and wat	1.10 al and t er hamme	NOVOVORONE ransient co	9.2.(2) Inditions
111	PRIMARY CIRCUI	T STRESS /	ANALYSIS	772	TEM Uns ana	PERATURE LOADING teady cyclic temperature l lysis accompained by meass	D oading s urements	COMPONENTS hould be id should be	1.10 entified carried	NOVOVORONE and appropout.	9.2.(3) piate stress
111	PRIMARY CIRCUI	T STRESS A	ANALYSIS	1091	PRI New pip ear	MARY PIPING STRESS ANALYSI stress calculation with m ing D100-D500 taking into thquake and water hamer sh	S D Iodern me account Ioutd als	COMPONENTS thods shoul accident co to be perform	1.10 d be per nditions med.	KOLA formed for . Analysis	9.4.(1) primary of
111	PRIMARY CIRCU	T STRESS	ANALYSIS	1092	TEM Are wat Apr	PERATURE CYCLING as with temperature cyclin er at different temerature opriate analysis should be	D ng should shou	COMPONENTS I be identif Illy ECCS) s med with mod	1.10 ied. Ble hould be ern calc	KOLA ending of co investigat culation met	9.4.(2) Solant with Sed. Shods.
111	PRIMARY CIRCU	IT STRESS	ANALYSIS	1093	GAT Str per	E VALVE ANALYSIS regh calculations of the se formed with modern methods	D aling su	COMPONENTS Irface cladd	1.10 ing of g	KOLA jate valves	9.4.(3) should be
111	PRIMARY CIRCU	T STRESS	ANALYSIS	1094	PRE Str are	SSURIZER STRESS ANALYSIS ength calculations for the as of pressurizer should b	D stress xe perfor	COMPONENTS concentrati med with mo	1.10 on and t dern met	KOLA emperature hods.	9.4.(4) cycling
111	PRIMARY CIRCU	T STRESS	ANALYSIS	1109	THE	RMAL CYCLING	D	COMPONENTS	1.10	KOLA	9.7.(1)

Calculate the ability of the steam generator collector cladding to withstand the long term thermel cycling.

ISSUE TITLE: Vessel Support Integrity

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The reactor vessel rests on annular tank, filled with water. Comprehensive seismic analysis and ageing degradation assessment have not been performed to demonstrate its integrity.

RELATED ITEMS:

88, 319

JUSTIFICATION OF RANKING:

Ageing degradation and seismic loading could affect vessel support integrity with likely impact on vessel and primary circuit integrity.

CONCEPTUAL RECOMMENDATIONS:

Complete detailed support structure assessment with respect to seismic loads and ageing degradation.

CAT.	ISSUE	ITEM n. TITTLE/Description ASPECT AREA	CLASS REFERENCE
III VESSEL	SUPPORT INTEGRITY	88 INSPECTION OF VESSEL SUPPORT D+O COMPONE The reactor vessel support structure (annul conver also as biological chield) should be	NTS 3.3 DESREV III.3.1.2. ar vessel filled with water which
III VESSEL	SUPPORT INTEGRITY	degradation should be assessed. 319 VESSEL SUPPORT SEIMIC DESIGN D COMPONE Complete seismic analysis by including anchor biological shield structure. Also mass of we	INTS 3.3 BOXUNICE 9.1.(2) brage bolts in the concrete and the ater should be considered.

.

ISSUE TITLE: Secondary Circuit In-Service Inspection

RANK OF ISSUE: II

ISSUE CLARIFICATION:

In-service inspection of secondary piping is of vital importance to maintain its integrity due to ageing degradation and loading encountered in secondary circuit.

RELATED ITEMS:

100, 309, 608, 657, 1047, 1107

JUSTIFICATION OF RANKING:

Large break in secondary circuit could have negative impact on primary circuit integrity (overcooling, etc.).

CONCEPTUAL RECOMMENDATIONS:

Develop and apply ISI methodology and techniques to assure secondary circuit integrity.

CAT	r .	ISSUE	ITEM n	٦.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	SECONDARY	CIRCUIT IN-SERVICE INSPECTION	100 M F a h	IAIN For are aigh	STEAM LINES the main steam lines up to 30% higher than for prima velocity regionssuch as o	D o the is ry pipin ellbows	COMPONENTS solation val ng. The main . Ultrasonic	1.9 ves, al proble thickn	DESREV lowable def m is errosi ess measure	3.7.2.6. fect sizez on damage in ment gives
11	SECONDARY	CIRCUIT IN-SERVICE INSPECTION	9 309 L 0	jood EAI Onci	results and is recommend DETECTION EXTENSION leak detection system hat n fast isolation values.	ed for D s been (future use. SYSTEMS proven, exte	1.10 nd syst	BOHUNICE em to main	8.1.(1) steam lines
11	SECONDARY	CIRCUIT IN-SERVICE INSPECTION	608 S	STE/ Impl	M LINE LEAK DETECTION ement a steam line leak d	D etectio	SYSTENS n system sim	1.9 ilar to	KOZLODUY the propos	8.2.(1) ed for the
11	SECONDARY	CIRCUIT IN-SERVICE INSPECTION	657 S	SG I	INSPECTION SCOPE	0 naoutle	COMPONENTS t manifold s	1.10 bould b	KOZLODUY	9.8.(2) d.
11	SECONDARY	CIRCUIT IN-SERVICE INSPECTION	1047 S I	STE/	M LINE LEAKAGE DETECTION allation ofleak detection	D system	SYSTEMS in the main	1.9 steam	KOLA line is enc	8.1.(5) ouraged.
11	SECONDARY	CIRCUIT IN-SERVICE INSPECTION	1107 T A e	rhi(\SME equi of t	XNESS MEASUREMENT Code case N480 instructi valent) should be taken i erritic steel pipelines.	D ons for nto acc	COMPONENTS thickness m ount when in	1.10 weasurem spectin	KOLA ments (or th ng and repor	9.6.(8) e Soviet ting erosion

ISSUE NUMBER: Instrumentation and Control (I&C) 1

ISSUE TITLE: Accident Monitoring Instrumentation

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Adequate instrumentation (in terms of range, qualification and redundancy) to inform the operator whether the barriers to the release of radioactive materials are being challenged is not currently provided to support severe accident management.

RELATED ITEMS:

28, 109, 125, 346, 601, 673, 957, 1272

JUSTIFICATION OF RANKING:

Accident monitoring instrumentation is claimed for beyond DBA.

It is used to inform the operator of the status of safety related parameters linked to the defense in depth concept (e.g. primary pressure/integrity RCS, containment pressure/integrity containment, radiation level inside and outside containment/integrity RCS and containment) and to allow him to mitigate accidents consequences. This instrumentation is needed to support the use of emergency procedures reducing the probability for wrong actions to be taken. In addition, current plant instrumentation is not qualified for harsh environment (see I&C 7).

CONCEPTUAL RECOMMENDATIONS:

Identify the required post accident monitoring instrumentation.

Identify the shortcomings of the existing instrumentation.

Provide the needed instrumentation.

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
II ACCIDENT	MONITORING INSTRUMENTATION	28	BEY Acc Acc	OND DBA MONITORING ident monitoring for the co	D ore does	I&C not exist	4.6 for bey	DESREV ond Design 1 ter	III.1.1.8 Basis
11 ACCIDENT	MONITORING INSTRUMENTATION	109	SAFI The hel	TY PARAMETER DISPLAY installation of a computer to the operators for tran	D ized sa	I&C Ifety param and acciden	2.3 eter dis t manage	DESREV play system ment.	111.4.2.6 would be of
II ACCIDENI	MONITORING INSTRUMENTATION	125	POS Chei pos rec	T ACCIDENT MONITORING ck that the range of radiat sible post accident level. ording.	0 tion mon The sys	I&C itoring co tem shall	1.7 rrespond be provi	DESREV s to the ma ded with on	III.4.2.11 ximum line
II ACCIDENT	MONITORING INSTRUMENTATION	346	ACC Sev con	IDENT MONITORING ere accident monitoring ins trol room and in other hab	D strument itable r	1&C s should b	4.6 e instal	BOHUNICE led, with i	10.1.(8) ndication in
11 ACCIDENT	MONITORING INSTRUMENTATION	601	STE. Ins	AM RADIATION MONITORING tall radiation monitors at	D the ste	I&C am generat	2.3 or outle	KOZLODUY t lines.	8.1.(6)
II ACCIDENT	MONITORING INSTRUMENTATION	673	ADD An sig	ITIONAL PROCESS COMPUTER additional computer should nificant help to operator	D be inst incase o	I&C alled to end of emergency	2.3 nsure re V.	KOZLODUY dundancy an	10.6.(1) d to provide
II ACCIDENI	MONITORING INSTRUMENTATION	957	SAF The int pan	ETY PARAMETER INDICATORS instrumentation displaying o a single group and posit el.	0 g essent ioned at	OPS ial safety a promine	paramet nt place	NOVOVORONE ers should on the rea	3.7.(1) be relocated ctor control
II ACCIDENT	MONITORING INSTRUMENTATION	1272	SAFI Ins pro hig	ETY PARAMETER DISPLAY trumentation displaying sam minent group. Until modific hlighted by colour coding.	0 fety par cation i	OPS ameters sh s performe	3.3 ould be d, intru	KOLA relocated i ments shoul	3.7.(3) n a single d be

ISSUE NUMBER: I&C 2

ISSUE TITLE: Reliability of I&C equipment

RANK OF ISSUE: III

ISSUE CLARIFICATION:

I&C equipment still used is very old fashioned (e.g. electrochemical switches, relays) and its reliability is questionable. The causes include deterioration with age, difficulty of maintenance and testing and the need for frequent attention.

RELATED ITEMS:

104, 122, 342, 343, 345, 664, 1118, 1150

JUSTIFICATION OF RANKING:

I & C equipment plays a major role in preventing and mitigating abnormal and emergency situations. The provision of reliable and accurate instrumentation is of high safety concern. No investigation of failure records was carried out by the safety review missions.

CONCEPTUAL RECOMMENDATIONS:

Assess I&C component failure records as a basis for a detailed programme for upgrading by safety related instrumentation.
CAT.	I SSUE	ITEM n	. TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
III RELIAB	ILITY OF I&C EQUIPMENT	104 0 1 (1	LD INSTRUMENTATION nstrumentation and control (electromechanical switches,	D (1&C) equ relays,	I&C sipment sti and very 1	1.4 illusedi fewioldia	DESREV is very old nalog instr	111.4.1.7 I fashioned ruments).
III RELIABI	ILITY OF I&C EQUIPMENT	122 Ci Ti Si ci	ORE TEMPERATURE MEASUREMENT he functioning and accuracy witchover to analog indicat hecked and tested.	D+O of outle ion in ac	1&C et temperat dition to	2.1 ture meas computer	DESREV urements in data loggi	4.4.4.8 the case of ing should be
III RELIAB	ILITY OF I&C EQUIPMENT	342 S T S	TANDARDIZED TRANSMITTERS ransmiters located near sens hould be installed.	D sors of F	1&C RPS using s	1.4 standardi	BOHUNICE zed output	10.1.(4) signals
III RELIAB	ILITY OF I&C EQUIPMENT	343 S Qi	TEAM GENERATOR LEVEL Uality of steam generator lo	D evel meas	1&C surement st	1.4 nould be	BOHUNICE	10.1.(5)
III RELIAB	ILITY OF I&C EQUIPMENT	345 Si 1	ECONDARY DEVICES n case of a large reconstru eplaced by electronic equip	D ction sec ment.	1&C condary dev	1.4 vices and	BOHUNICE I relay logi	10.1.(7) ic should be
III RELIAB	ILITY OF I&C EQUIPMENT	664 T R	HERMOCOUPLE CONNECTORS	D	I&C s to improv	2.1 /e their	KOZLODUY availabilit	10.3.(1)
III RELIAD	ILITY OF I&C EQUIPMENT	1118 S T	TANDARDIZED TRANSMITTERS ransmitters of differencial eplaced by transmitters with	D transfor tstandar	1&C mer and e rdized out	1.4 lectromec outs of 4	KOLA hanical typ -20 mA or C	10.1.(4) be should be -20 mA.
III RELIAB	ILITY OF I&C EQUIPMENT	1150 C I s	ONTROL ROOM RECONSTRUCTION n case of a large reconstruction hould be replaced completely	D ction, th y with ma	I&C ne equipmen odern equip	2.4 ht in the pment.	KOLA main contr	10.5.(4) ol room

ISSUE TITLE: Control and protection systems interaction

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Full isolation or separation between control and protection functions of instrumentation is not provided. A fault in the non safety related instrumentation may induce the failure of safety related equipment.

RELATED ITEMS:

101, 352, 668, 782, 1120

JUSTIFICATION OF RANKING:

Control systems faults that can lead to degradation of protection function are of safety concern.

CONCEPTUAL RECOMMENDATIONS:

Identify all cases where control and protection use common equipment.

Evaluate the individual consequence

Take corrective action as required

CAT	•	ISSUE	ITE	1 n.	TITTLE/Description A	SPECT	AREA	CLASS	REFERE	INCE
11	CONTROL /	PROTECTION SYSTEMS INTERA	CTION 10	SEI	PARATION CONTROL-PROTECTION	D	180	3.1	DESREV	111.4.1.5
				At Sa CO	the time of the design, due fety/non-safety related syste ntrol and protection function	to the ms, the ns.	absence of ere was no	distinct	definition t separetion	of between
11	CONTROL /	PROTECTION SYSTEMS INTERA	CTION 352	2 CO Co av fa	MMON USE OF FLUX DETECTORS mmon use of neutron flux dete oided, or it should be shown ilure of RPS simultaneously.	D ectors that f	I&C for control ailure cann	2.1 and pro ot cause	BOHUNICE Ditection sho e malfuction	10.4.(3) buld be h and
[]	CONTROL /	PROTECTION SYSTEMS INTERA	CT10N 668	3 CO Thi shi an	WHON USE OF FLUX DETECTORS e common use of neutron flux ould be avoided, or it should d failure of RPS simultaneous	D detecti I be shi sly.	I&C ors for pow own that fa	1.6 er contr ilure ca	KOZLODUY rol and prot annot cause	10.4.(3) section malfunction
11	CONTROL /	PROTECTION SYSTEMS INTERA	CTION 783	2 DI Th th ph	VERSITY OF REACTOR TRIP e circuit for de-energizing t ose which remove power from t ysical separate location.	D the rod the con	I&C control sy trol rods e	3.5 stem sh lectrom	NOVOVORONE ould be sepa agnets, and	10.1.(4) arated from placed in a
11	CONTROL /	PROTECTION SYSTEMS INTERA	CTION 1120	CO Us pr	MMON USE OF FLUX DETECTORS e of common flux detectors fo ovide for electrical isolatio	D or powe on of t	I&C r control a he signal.	1.6 nd reac	KOLA tor protecti	10.2.(1) ion should

•

ISSUE TITLE: I&C redundancy, separation and independence.

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

There are numerous instances where redundancy, physical and electrical separation and independence of safety related instrumentation channels are not adequately provided.

RELATED ITEMS:

102, 106, 340, 359, 362, 365, 670, 671, 783, 784, 785, 786, 787, 842, 1119, 1124, 1126, 1134, 1140

JUSTIFICATION OF RANKING:

Single failure (e.g. single relay for containment spray actuation) or common cause events (e.g. fire) could lead to total failure of safety functions.

CONCEPTUAL RECOMMENDATIONS:

Either provide separation, and independence of the existing safety related instrumentation or provide an additional separate independent set of instrumentation system

CAT	. I SSUE			ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
14	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	102	SING Abso ful	GLE FAILURE CRITERIA ence of systematic indepen y meet single failure cri	D dence an terion n	I&C nd physical nor protect	3.1 separat ion agai	DESREV ion do not j nst common j	III.4.1.2 permit to mode
1V	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	106	fai SEAI A sy	ure. RCH FOR COMMON MODE FAILUR /stematic search for possi	ED blecomm	1&C Non points	3.1 and comm	DESREV on mode fai	111.4.2.4 lures in 1&C
IV	1&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	340	need I&C Sena	is to be performed on the REDUNDANCY AND SEPARATION	plant sp D f rechro	ecific dra 1&C lant 1&C sh	wings an 1.6 ould be	d layout. BOHUNICE	10.1.(2)
					and	cable ways. Where this is roved.	not pos	sible, fir	e protec	tion should	be
IV	1&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	359	ESF Mod fai	ACTUATION LOGIC REDUNDANC ify Engineering Safety Fea ure cause failure of more	Y D tures ac than or	I&C tuation lo me train. P	3.1 gic to a rovide r	BOHUNICE void that a edundancy f	10.5.(1) single rom sensor
١V	1&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	362	STE	M RELIEF CONTROL am isolation and BRU-A rel	D ief valv	1&C re control	3.6 circuits	BOHUNICE should be	10.5.(4) made
IV	1&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	365	SIG In e	AL PROCESSING EQUIPMENT	D tion, th	I&C e signal p	1.6 rocessin	BOHUNICE g equipment	10.6.(3) should be
IV	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	670	180	REDUNDANCY AND SEPARATION	D .	1&C	1.6	KOZLODUY	10.5.(2)
IV	1&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	671	CONI	ismitters of redundant det FINMENT SPRAY LOGIC esign confinment spray act	ectors s D uation l	nould be 1 I&C .ogic for r	nstalled 1.6 edundanc	in separat KOZLODUY y from snso	e rooms. 10.5.(3) rs to
IV	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	783	acti WIR:	Hators. ING SEPARATION	D	1&C	3.5	NOVOVORONE	10.1.(5)
					Safe star	ety system wiring should b ndards.	e separa	ited in acc	ordance	with releva	nt modern
IV	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	784	MIT; If a devi	GATING MEASURES adequate separation can no aloped and implemented.	D t be obt	I&C ained, mit	3.5 igating	NOVOVORONE measures sh	10.1.(6) ould be
IA	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	785	BAC	(UP PROTECTION SYSTEM elop and install a simplif	D ied baci	1&C up protect	3.5 ion syst	NOVOVORONE em whose se	10.1.(7) nsors,
IV	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	786	WIF PRE The	ing, and togic units are t SSURE LEVEL REDUNDANCY pressurizer level channel	D D S should	separated f 1&C 1 be increa	rom the 3.5 sed to a	NOVOVORONE t least a t	stems. 10.1.(8) wo-way
11	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	787	red SEN One	undancy. SOR RELOCATION of the two sensor should	D be reloc	I&C ated to or	3.5 e of the	NOVOVORONE other inst	10.1.(9) rument
īv		SEPARATION		862	COM	partments.	n	ACCIDENT	35	NOVOVOPONE	12 2 (3)
11	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	1119	Ana I&C	lyse whether the reactor p REDUNDANCY AND SEPARATION	orotectio	n system d I&C	lesign is 1.6	single fai KOLA	lure-proof. 10.1.(5)
					Sep be	aration and independence o improved as much as possib	of redund ole.	dant channe	ts and a	ctuation lo	gic should
IV	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	1124	SEP. Sep as	ARATION OF PROTECTION aration of portions of the possible. This include wir	D protect ing, rad	<pre>I&C tion functi cks, cable</pre>	1.6 ons shou trays, p	KOLA Ild be achie Danels and r	10.2.(5) wed as much elay
IV	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	1126	cab SAF Saf	inets. ETY INJECTION ACTUATION ety injection pumps actuat	D ion log	1&C ic should t	3.1 xe modifi	KOLA ied in such	10.4.(1) way that a
IV	I&C REDUNDANCY	SEPARATION.		1134	sin SPR	gle failure cannot cause f AY ACTUATION	failure D	of more the I&C	an 2 pump 3.1	XS. KOLA	10.4.(9)
					Ind suc	ependence and separation on head the second se	of spray re canno	actuation t cause fai	channels ilure of	should be more than c	attained in me pump.
IV	I&C REDUNDANCY,	SEPARATION,	INDEPENDENCE	1140	AFW The red	S ACTUATION Auxiliary Feedwater Syste undant double train system	D am actua n.	I&C tion system	3.1 n should	KOLA be redesign	10.4.(15) Ned as a

ISSUE TITLE: I&C support to operation and control room design.

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Excessive demands placed on operators due to insufficient degree of information, centralization and automation for normal, abnormal and emergency situations.

RELATED ITEMS AND PRIORITIES:

103, 113, 126, 127, 129, 131, 157, 182, 246, 256-265 353, 363, 364, 366, 367, 473, 599, 648, 733, 792, 802, 803, 804, 938, 947, 948, 949, 950, 951, 952, 956, 1048, 1052, 1061, 1128, 1130, 1135, 1136, 1137, 1138, 1141, 1146, 1147, 1148, 1149, 1152, 1267, 1269, 1277

JUSTIFICATION OF RANKING:

Operators errors are likely to occur but a single error will probably not lead to more frequent challenging of the protection system. In emergency conditions, operator errors may lead to more severe consequences.

CONCEPTUAL RECOMMENDATION:

A control room design review is strongly recommended (NUREG 0700) as a joint effort by designers and operators.

This issue is linked to operator training in the proper use of information and follow up of procedures. A program for upgrading the operator information system needs to be established.

CAT.	ISSUE	ITEM	n TITTLE/Description ASPECT AREA CLASS REFERENCE
111	&C SUPPORT TO OPERATION / CONTROL ROOM	103	DEGREE OF AUTOMATION D I&C 15 DESREV 11I 4 1 6 There is an insufficient degree of automation and centralization. The computer
111	&C SUPPORT TO OPERATION / CONTROL ROOM	113	is mainly for data aquisition INHIBITING PROTECTION FUNCTION D+O I&C 3.5 DESREV III 4.3.2 Investigate what are the possibilities of inhibition of protection functions and what are the means in the plant to control such actions (alarms,
111	&C SUPPORT TO OPERATION / CONTROL ROOM	126	administrative procedures,etc). CONTROL ROOM TASKS D+0 I&C 2.4 DESREV III.4.3.1
			rooms, specially during accident procedures. Comunication between various locations should be checked.
111	SC SUPPORT TO OPERATION / CONTROL ROOM	127	CONTROLS AND DISPLAYS GROUPING D+0 I&C 2 3 DESREV 4 6 5 A review of grouping of controls and displays by task to be performed on all modes of operation should be done. The grouping by importance and frequency of use should also be evaluated
111	&C SUPPORT TO OPERATION / CONTROL ROOM	129	CONTROL ROOM DESIGN REVIEW D I&C 2.4 DESREV 4.6.6 A full control room design review, following criteria given after TMI accident
111	L&C SUPPORT TO OPERATION / CONTROL ROOM	131	is recommended. AUTOMATIC REACTOR CONTROL D+O 1&C 1.5 DESREV 111.4.3.3 Investigate the manual actions that operators have to take to switch from
111	&C SUPPORT TO OPERATION / CONTROL ROOM	157	manual to automatic reactor control (procedures, location of actuators, etc). NINIC OF ELECTRIC DISTRIBUTION D 1&C 2.3 DESREV 5.9.1 A minic diagram should be provided in the control room clearly should be
111	L&C SUPPORT TO OPERATION / CONTROL ROOM	182	v minite drag and should be provided in the control room eventy should be provided in the control room eventy should be provided in the control room events should be provided in the control of room events of a control of the contro
			(SG) level indication and feedwater flow indication are readly available to operators.
	LAC SUPPORT TO OPERATION / CONTROL ROOM	246	SAFELY PARAMETER DISPLAY O OPS 3.3 BOHUNICE 3.4 (3) A safety parameter display system (SPDS) should be developed.
	IGC SUPPORT TO OPERATION / CONTROL ROOM	230	A human factor design review of the control room should be conducted
111	AC SUPPORT TO OPERATION 7 CONTROL ROOM	257	DPGRADE PROCESS COMPUTER O TAC 5.5 BOHUNICE 5.6.(2) The process computer should be upgraded to include parameter trending, alarm, and graphics.
111	I&C SUPPORT TO OPERATION / CONTROL ROOM	258	SG LEVEL INDICATION 0 OPS 2 3 BOHUNICE 3 6 (3) New SG level indicators with vertical scale should be installed in desk 7 and
111	I&C SUPPORT TO OPERATION / CONTROL ROOM	259	SHUTDOWN LEVEL INDICATION O OPS 2.3 BOHUNICE 3.6.(4) Reactor water level indication should be installed for use during shutdown and refueling.
ш	I&C SUPPORT TO OPERATION / CONTROL ROOM	260	LOW GRID FREQUENCY ALARM O OPS 2.3 BOHUNICE 3.6.(5)
111	I&C SUPPORT TO OPERATION / CONTROL ROOM	261	ADDITIONAL INDICATORS 0 OPS 2.3 BOHUNICE 3.6.(6) Individuals indicators should be added such as. level in male-up tank, flow in both ECCS collectors, flow in euxiliary and emergency feed water collectors,
111	I&C SUPPORT TO OPERATION / CONTROL ROOM	262	flow of sprinkler pumps. STANDARD INSTRUMENTATION O OPS 2.3 BOHUNICE 3.6.(7)
111	1&C SUPPORT TO OPERATION / CONTROL ROOM	263	RELIABILITY OF INSTRUMENTS 0 OPS 2 3 BORUNICE 3.6.(8)
111	I&C SUPPORT TO OPERATION / CONTROL ROOM	264	in control room which ones can be used. ELIMINATION OF ALARMS 0 OPS 2.3 BOKUNICE 3.6.(9) Consider eliminating useless alarms from standby pumps by preventing low
111	I&C SUPPORT TO OPERATION / CONTROL ROOM	265	pressure alarm after pump is not running. CONTROL ROOM COMMUNICATION 0 OPS 1 19 BORUNICE 3.6 (10) Communication system between control room, shift supervisor office and field

CAT.	1	SSUE		ITEM	a. TITTLE/Description ASPECT	AREA CLASS REFERENCE
			(CONTROL DOOM	757	operators should be upgraded.	
111	IEC SUPPORT	TO OPERATION	CONTROL ROOM	223	Improve neutron flux position and meas signals from channels in operations sh	aured value indication. At least the nould be indicated simultaneously.
111	I&C SUPPORT	TO OPERATION	/ CONTROL ROOM	363	NFORMATION TO OPERATORS D I The control room should be fitted with	&C 2.3 BOHUNICE 10.6.(1) additional with additional equipment
111	120 51100001			364	FOR OPERATOR INFORMATION, INCLUDING VI	aeo displays. & 2.4 BOHUNICE 10.6.(2)
	Tue sorrow		, control room	504	in case of a large reconstruction, the	equipment of the control room should be
					completely replaced by modern equipmen	it.
111	1&C SUPPORT	TO OPERATION	/ CONTROL ROOM	366	ADDITIONAL PROCESS COMPUTER D I An additional computer should be insta	&C 2.3 BOHUNICE 10.6.(4)
111	1&C SUPPORT			367	INSTALLATIONOT VIDEO DISPLAY AND PROTO	ac 2.3 BOHUNICE 10.6.(5)
			,	501	in case of a large reconstruction the by a more powerful and fully redundant	entire plant computer should be replaced computer.
ш	I&C SUPPORT	TO OPERATION	/ CONTROL ROOM	473	DISPLAY OF LIMITING CONDITIONS O	PS 2.3 KOZLODUY 3.3.(6)
					pevelope an operator aid to visually d operation.	lisplay existing limiting condition for
111	I&C SUPPORT	TO OPERATION	/ CONTROL ROOM	599	AIN VALVE INDICATIONS D S	SYSTEM 2.3 KOZLODUY 8.1.(4)
					Operator information about position of optimized.	main isolation valves should be
111	I&C SUPPORT	TO OPERATION	/ CONTROL ROOM	648	RIMARY CIRCUIT MONITORING D I Monitoring of loose parts and rotating introduced.	&C 1.10 KOZLODUY 9.4.(4) equipment in the primary should be
111	I&C SUPPORT	TO OPERATION	/ CONTROL ROOM	733	G RUPTURE INDICATION D S	YSTEMS 1.19 NOVOVORONE 8.1.(4)
					line which will atert the control room	l.
ш	I&C SUPPORT	TO OPERATION	/ CONTROL ROOM	792	ROD POSITION INDICATION D I	&C 2.3 NOVOVORONE 10.2.(1)
					Hodify the continuous system to count	and display the number of the complete
					revolutions from the bottom of the cor rods.	e to reduce the probability of misplaced
111	1&C SUPPORT	TO OPERATION	/ CONTROL ROOM	802	READABILITY OF DISPLAYS D I	&C 1.19 NOVOVORONE 10.7.(5)
					Reduce the reflections by controlling entering from the windows.	room lighting and by reducing light
111	I&C SUPPORT	TO OPERATION	/ CONTROL ROOM	803	LABELS AND LETTERING D I	&C 1.19 NOVOVORONE 10.7.(6)
					Replace the labels and alarm window le Letters.	ettering, new labels should have larger
111	1&C SUPPORT	TO OPERATION	/ CONTROL ROOM	804	IERMATIC CLOSURE EQUIPMENT D	&C 1.25 NOVOVORONE 10.7.(7)
					Other forms of surveillance for equipm should be considered.	ment within the hermetic enclosure,
ш	I&C SUPPORT	TO OPERATION	/ CONTROL ROOM	938	CONTROL ROOM OPERATIONS O	DPS 1.19 NOVOVORONE 3.4.(1)
					Redesign the operators desks, storage introduction of the third person.	cupboards and aids to provide for the
111	I&C SUPPORT	TO OPERATION	/ CONTROL ROOM	947	COMPUTER DISPLAYS CONTROL ROOM O CO	OPS 1.19 NOVOVORONE 3.6.(1)
111	1&C SUPPORT	TO OPERATION	/ CONTROL ROOM	948	USE OF NEW EQUIPMENT O C	DPS 1.17 NOVOVORONE 3.6.(2)
-					A policy and instruction should be imp	plemented to control the use of the
					of operational use.	principal road and roat babbequente per roa
111	I&C SUPPOR	TO OPERATION	/ CONTROL ROOM	949	PANEL DEMARCATION O C	OPS 2.3 NOVOVORONE 3.6.(3)
					The control panels should be provided	with the visible demarcation of systems,
ш	1&C SUPPOR	TO OPERATION	/ CONTROL ROOM	950	najoi planti itemis and/or functions. INSTRUMENTATION O (DPS 1.19 NOVOVORONE 3.6.(4)
					where a new design of instrument is to	be fitted the existing features of
					symmetry should be maintained.	

CAT.		15	SUE					ITEM	n.	TITTLE/Descri	iption .	ASPECT	AREA	CLASS	REFER	ENCE
111	1 8 C	SUPPORT	TO C	PERATION	1	CONTROL	ROOM	951	AL Th	ARM SYSTEM e alarm system	should be enh	0 anced t	OPS o improve a	1.19 Ind harm	NOVOVORONE	3.6.(5) Isual and
111	18C	SUPPORT	то с	PERATION	,	CONTROL	ROOM	952	au SW	dible distincti ITCH COVERS	on betwen the	relatı O	ve prioriti OPS	es of a 1.19	NOVOVORONE	s. 3.6.(6)
									[m th	prove the designt they are add	gn of covers o	f switc ned.	hes on the	unit co	ntrol desk s	to ensure
111	180	SUPPORT	TO C	PERATION	1	CONTROL	ROOM	956	IN Pr	DICATIONS	tain adequate	0 Indicat	OPS ions at all	1.19 control		3.6.(10)
11	180	SUPPORT	то с	PERATION	1	CONTROL	ROOM	1048	ON	-LINE BORON-MET	TER	D	SYSTEMS	2 3	KOLA	8 1.(6)
111	1&C	SUPPORT	TO (PERATION	,	CONTROL	ROOM	1052	On SG	-line Boron-met LEVEL CONTROL	ter should be	ınstall D	ed in each SYSTEMS	block. 1.5	KOLA	8.2.(4)
									To co	avoid overfill nsidered.	ling of the st	eam gen	erator, an	automat	ic device sl	nould be
111	1&C	SUPPORT	TO (OPERATION	1	CONTROL	ROOM	1061	co	OLDOWN FROM CON	NTROL ROOM	D	SYSTEMS	1.5	KOLA	8.4.(3)
									1n do	the frame of i wn of the plant	reconstruction t from control	room s	es, the pos houd be ass	essed.	y of conduc	ting cool
ш	I&C	SUPPORT	TO (OPERATION	1	CONTROL	ROOM	1128	MA	NUAL INITIATION	N OF INJECTION	D	180	3.1	KOLA	10.4 (3)
									та го	om should be in	n of each inde nstalled.	penaent	satety inj	ection	Crain from	the control
111	1&C	SUPPORT	то с	OPERATION	/	CONTROL	ROOM	1130	MO	DE SWITCHES AL/	ARM on on the safe	D tv inie	I&C	2.1	KOLA should be a	10.4.(5)
									th	e priority annu	unciator in th	e contr	ol room.	Sarten		
111	180	SUPPORT	TO (OPERATION	/	CONTROL	ROOM	1135	MA Ma	NUAL INITIATION	n OF SPRAY n of each redu	D Indants	1&C prav system	3.1 strain	KOLA from the co	10.4.(10) ntrol room
									sħ	ould be provide	ed.					
ш	180	SUPPORT	TO (OPERATION	/	CONTROL	ROOM	1136	SP Re	RAY MODE SWITCH design of spray	HES y actuation sy	D sten sh	I&C Iould avoid	2.1 mode sw	KOLA 1tches. If	10.4.(11) block
									po	sition is need	ed it should a	larm ir	priority a	annuncia	tor in the	control
	1 & C	SUPPORT	TO (OPERATION	1	CONTROL	ROOM	1137	SP	RAY VALVE CONTI	ROL	Ð	1&C	2.1	KOLA	10.4.(12)
111	120	SUPPOPT	TO (DEPATION	,	CONTROL	ROOM	1138	Ke sp	y lock switches	s should be pr	ovided	for each sp	oray inj 2 1	ection valv	e. 10 4 (13)
•••	140	JOFFORT		or ERRI I ON	,	CONTROL	ROOM	1.30	Sp 1a	pressure in plemented.	ndication of t	he two	additional	channel	s should be	10.4 (157
111	1&C	SUPPORT	TO (OPERATION	1	CONTROL	ROOM	1141	MA	NUAL INITIATIO	N OF AFWS	D	1&C	3.1	KOLA	10.4.(16)
									10 10	e new design of itiation from (t Auxiliary Fe the control ro	edwater om.	· System act	tuation	should incl	ude manual
111	1&C	SUPPORT	TO (OPERATION	1	CONTROL	ROOM	1146	ST	EAM GENERATOR (LEVEL CONTROL	D auto/ma	1&C	2.3	KOLA Id be provid	10.4.(21) ded for each
									st	eam generator	level control,					
ш	IÆC	SUPPORT	TO (OPERATION	/	CONTROL	ROOM	1147	SA A	Safety panel d	PANEL Isplaying safe	D ty para	1&C meters and	2.3 the sta	KOLA tus of safe	10.5.(1) ty systems
		610000T			,				sh	iould be instal	led in the con	trol ro	xom.	- 1	KOLA	10 5 (2)
	140	SUPPORT	10 1	UPERATION	1	CONTROL	ROOM	1148	AL Th	ne audible alari	KAIION m signal shoul	ປ dibe pe	1&C ermanent uni	2.3 til oper	KULA ator acknow	10.5.(2) ledge.
ш	1&C	SUPPORT	TO (OPERATION	1	CONTROL	ROOM	1149	00	INTROL PANEL LA	BELING	D to coni	I&C	2.3	KOLA	10.5.(3)
									ar	nunciator wind	ow lettering.	to rept	acingatt		ting includ	ng atarm
111	1&C	SUPPORT	TO I	OPERATION	1	CONTROL	ROOM	1152	PR	OCESS COMPUTER	UPGRADING 100 system of	D the los	1&C stalled com	2.3 outer sh	KOLA outd be inc	10.5.(6) reased to
									pe	rform alarm fu	nction, post t	rip rev	new and eve	ent reco	rding.	
111	I&C	SUPPORT	TO	OPERATION	1	CONTROL	ROOM	1267	CC Tł	NTROL ROOM UPG ie control room	RADE should be upg	0 Fraded.	OPS More inform	2.4 mation t	KOLA o operator	3.6.(1) should be
111	180	SUDDODT	το :		,	CONTROL	ROOM	1269	pr	OVIDED.	DANELS	0	085	24	KOLA	3.6.(3)
					•				Ba	ack of open int	rumentation pa	inels st	nould be pro	otected	from inadve	rtent
111	180	SUPPORT	TO	OPERATION	1	CONTROL	ROOM	1277	ap ON	pproach. I LINE BORON ME	ASUREMENT	0	OPS	2.3	KOLA	3.8.(5)
	_				-				Or	line boron me	asuring equip	ment sho	ould be ins	talled w	ith indicat	ion in the
									co	MILFOL FOOM.						

ISSUE TITLE: Interlocking

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Insufficient automatic interlocking to prevent unacceptable operating conditions or transients.

RELATED ITEMS:

38, 40, 45, 139, 159, 160, 347, 350, 351, 597, 598, 662, 666, 667, 731, 748, 796, 797, 815, 1058, 1063, 1121, 1122, 1131, 1142

JUSTIFICATION OF RANKING:

Absence of sufficient automatic interlocks places excessive pressure on the operator which may lead to human errors.

CONCEPTUAL RECOMMENDATIONS:

Implement corrective action according to the specific single items given above.

For some items a temporary solution may be found in administrative procedures.

Identify possible additional problems related to interlocking.

CAT	. ISSUE	ITEM	n. TITTLE/Description ASPECT AREA CLASS REFERENCE	
11	INTERLOCKING	38	INADVERIENT LOOP ISOLATION D+O I&C 1.10 DESREV 2.1.6.A Investigate the methods used to prevent inadvertent closure of primary loop	>
11	INTERLOCKING	40	isolation valves CLOSING ALL ISOLATION VALVES D I&C 1.10 DESREV 2.1.9 There should be some kind of safeguard to prevent inadvertent closure of al	t
11	INTERLOCKING	45	Drimary loop isolation valves. DPERATING REGIMES AND PUMPS D+0 I&C 1.9 DESREV 2.3.9. A problem area related to potential switching errors of main coolant with regard to permissible reactor power has been identified in Greifswald. Consideration of appropriate interlocks is recommended. It is recommended is implement measures to prevent this kind of erroneous switching.	:0
11	INTERLOCKING	139	INTERCONNECTION BETWEEN TRAINS D+0 ELECTRICAL 1.6 DESREV 5.1.6.3 Interconnection between trains and units shall have adequate interlocks and shall be displayed in control score to minimize operator errors	ł
11	INTERLOCKING	159	POWER LIMITS AND PUMPS D I&C 1.9 DESREV 5.125. Limitation of reactor power given the configuration of electric power supplication reactor coolant pumps should be reconsidered. An interlock solution might	; oly it
11	INTERLOCKING	160	POWER LIMITS AND PUMPS CONTROLD I&C 1.9 DESREV 5.12.5.3 Power LIMITS AND PUMPS CONTROLD I&C 1.9 DESREV 5.12.5.3 Assess the reliability of equipment and administrative control to keep power limits according to reactor coolant pumps configuration, including: switch over to auxiliary generator supply, logic for scram or power reduction, procedures.	i.A :r
11	INTERLOCKING	347	REACTOR POWER LIMITS D I&C 3.5 BOHUNICE 10 2 (1) A system should be installed which prevents inadmissible reactor power situations depending on the primary pumps configuration.	ł
11	INTERLOCKING	350	STARTUP INTERLOCK D 1&C 2.1 BOHUNICE 10.4 (1) Interlock should be installed to prevent startup without proper positioning) 3 of
11	INTERLOCKING	351	EX CORE TLUX MERCEORS. FLUX MEASURING RANGES D 1&C 2.1 BOHUNICE 10.4.(2) Automatic switching of partrop flux measuring carges should be installed)
11	INTERLOCKING	597	PUMP INTERLOCKS D I&C 2.3 KOZLODUY 8.1 (2) Interlocks should be installed to prevent starting of more than one main	
11	INTERLOCKING	598	AAIN VALVE INTERLOCKS D I&C 2.3 KOZLODUY 8.1 (3) Interlocks should be installed to prevent operator to close/open more than	one
11	INTERLOCK ING	662	main isolation valve at a time. REACTOR POWER LIMITS D I&C 2.3 KOZLODUY 10.2.(1) Interlocks or an automatic system should be installed for the adjustment of reactor power in calation to availability of main conlant pumps) F
11	INTERLOCKING	666	STARTUP INTERLOCK D I&C 2.1 KOZLODUY 10.4.(1) Interlock should be installed to prevent plant startup without proper providencing of poutcon flux detectors	>
11	INTERLOCKING	667	FLUX MEASURING RANGES D I&C 2.1 KOZLODUY 10 4.(2 Automatic switching of neutron measuring ranges should be installed.)
II	INTERLOCKING	731	SPURIOUS LOOP ISOLATION D SYSTEMS 1.10 NOVOVORONE 8 1 (2) Implement an administrative procedure that requires disconnection of some the contactors of the isolation valves.	of
11	INTERLOCKING	748	ECCS ACTIVATION D SYSTEMS 3.6 NOVOVORONE 8.6.(1) Determine whether the signal of the ECCS activation on the pressurizer ver-	Y
11	INTERLOCKING	796	SAFETY INJECTION INTERLOCK D I&C 3.1 NOVOVORONE 10.5.(1 Interlocks on pump suction and lubrication oil pressure should be deleted) and
11	INTERLOCKING	797	replaced with an alarm on the main control board. SAFETY INJECTION PUMPS D I&C 3.1 NOVOVORONE 10.5.(2 The valves in the cooling water circuit should be normally open to prevent pumps from starting when required) the

CAT	. ISSUE	ITEM n. TITTLE/Description ASPECT AREA CLASS REFERENCE	
11	INTERLOCKING	815 RCP POWER SUPPLY D ELECTRICAL 4.3 NOVOVORONE 11.1.(3) Minimize the number of possible power supply configurations and reduce the	1
		opportunity of operator errors by removing the two sectional circuit breake from the 6 KV supply bus bars during normal operation of the power plant.	: rs
11	INTERLOCKING	1058 SPRAY PUMPS INTERLOCK D SYSTEMS 3.6 KOLA 8.3.(6) Provide an interlock to avoid two spray pump switches being put in the "off	: 00
п	INTERLOCKING	position. 1063 AUX FEED PUMPS INTERLOCK D SYSTEMS 3.6 KOLA 8.5.(2)	
		Provide interlock to avoid two auxiliary feedwater pump switches being put "off" position.	: 1 n
11	INTERLUCKING	Interlocks should be installed to prevent plant startup and power operation	I
11	INTERLOCKING	1122 FLUX MEASURING RANGES D I&C 2.1 KOLA 10.2.(3)	i
11	INTERLOCKING	1131 SAFETY INJECTION VALVE CONTROL D I&C 2.1 KOLA 10.4.(6)	I.
11	INTERLOCKING	1142 AFWS ACTUATION INTERLOCKS D I&C 3.1 KOLA 10.4.(17 The new design of Auxiliary Feedwater System actuation should ensure that	` >

undue interlocks.

initiation signal actuates all active elements (pumps and valves) without

ISSUE TITLE: I&C and Electrical Equipment Qualification

RANK OF ISSUE: III

ISSUE CLARIFICATION:

At the time the design was made, the environmental and seismic qualification of instrumentation and electrical equipment was not addressed, and there was no backfitting program developed in that field up to now.

RELATED ITEMS:

107, 344, 789, 791, 795, 834, 1116, 1117, 1159

JUSTIFICATION OF RANKING:

The total absence of seismic and environmental qualification of I&C and electrical equipment could lead to total loss of safety functions.

A HELB (High Energy Line Break) leading to harsh environmental conditions may be conservatively assumed as a likely event for which the consequences may be high.

CONCEPTUAL RECOMMENDATIONS:

Identify the safety related I & C and electrical equipment for the postulated faults (HELB, earthquake, etc.). Establish a qualification programme for this equipment. A generic programme may be established for all VVER 440/230 considering the occurrences which have taken place (earthquakes).

Replace instrumentation which cannot be qualified.

CAT.	ISSUE			LTEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
111 I&C ,	/ ELECTRICAL	EQUIPMENT	QUALIFICATION	107	ENV Saf	IRONMENTAL QUALIFICATION ety related instrumentation	D an and Co Stion ar	I&C ontrol (I&C	3.3) should	DESREV preserve t	III.4.2.3 heir
111 1&C	/ ELECTRICAL	EQUIPMENT	QUALIFICATION	344	ENV	TRONMENTAL QUALIFICATION truments which has to with t accident conditions or b	D Istand h De repla	I&C arsh enviro ced by quli	3.3 nment sha	BOHUNICE ould be qua ipment.	10.1.(6) lified for
III I&C .	/ ELECTRICAL	EQUIPMENT	QUALIFICATION	789	ENV Exp det acc	IRONMENTAL QUALIFICATION ected environmental condit ermined for all plant norm ident.	D tons fo mal and	I&C r all safet accident mo	3.3 y-relate de inclu	NOVOVORONE dequipment ding loss o	10.1.(12) should be f coolant
III 1&C	/ ELECTRICAL	EQUIPMENT	QUALIFICATION	791	SE1 The and	SMIC DESIGN BASIS e equipment require to func qualified.	D tion af	1&C ter a seism	3.3 lic event	NOVOVORONE should be	10.1.(14) identified
111 180	/ ELECTRICAL	EQUIPMENT	QUALIFICATION	795	NEW New Cor	FLUX SYSTEM I nuclear flux system shoul rect upper limit of the SL	D .d be te JZ room.	I&C sted to fun	3.3 ction co	NOVOVORONE	10.4.(1) 45 C, the
111 1&C	/ ELECTRICAL	EQUIPMENT	QUALIFICATION	834	EL. Per	ENVIRONMENTAL QUALIFICATIO	N D Xncernin	ELECTRICAL g ambient c	3.3 ondition	NOVOVORONE s inside an	11.7.(1) d outside
III I&C	/ ELECTRICAL	EQUIPMENT	QUALIFICATION	1116	ENV Exp spe	TRONEMENTAL QUALIFICATION ected environmental condition	D tions sh	1&C ould be det	3.3 ermined.	KOLA Equipment should be	10.1.(2) made.
111 1&C .	/ ELECTRICAL	EQUIPMENT	QUALIFICATION	1117	SEI A s	SMIC QUALIFICATION ensmic design basis should smic event should be ident	D be dev tified a	I&C eloped. Ins nd seismica	3.3 trumenta	KOLA tion requir ified	10.1.(3) ed after
111 1&C	/ ELECTRICAL	EQUIPMENT	QUALIFICATION	1159	BAT Sei	TERY SEISMIC QUALIFICATION smic qualification of exis	l D sting ba	ELECTRICAL tteries sho	1.6 uld be c	KOLA hecked. Rep	11.5.(1) lacement

should be carried out if necessary.

ISSUE TITLE: I&C and Electrical Equipment Classification

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Safety classification is the basis for applying the corresponding design criteria such as single failure, qualification, common cause failure, testability and maintenance.

RELATED ITEMS:

105, 110, 339, 661, 779, 780, 781, 1115,

JUSTIFICATION OF RANKING:

I&C and electrical equipment cannot be demonstrated to be in accordance with its safety role. It needs to be resolved as a means to implement other related issues.

CONCEPTUAL RECOMMENDATIONS:

Establish a plan for equipment classification and the related criteria to be applied.

CAT.	I SSUE			ITEN	n. TIT	TLE/Descrij	otion	ASPECT	AREA	CLASS	REFER	ENCE
III I&C	/ELECTRICAL	EQUIPMENT	CLASSIFICATION	105	IMPROVE Explore	SEPARATIO	N OF I&C bility to as	D sure may	1&C timum separ	3.1 ation an	DESREV Id independe	III.4.2.1 nce between
111 180	/ELECTRICAL	EQUIPMENT	CLASSIFICATION	110	SEPARAT Separat differe	and non-sa ION OF 1&C ion between nt redundan	POWER SUPPL n safety and nt protectic	y D y D i non-sat	i&C fety I&C po	na contr 3.1 wer supp be provi	DESREV DESREV blies and be ded.	111.4.2.10 tween
III I&C	/ELECTRICAL	EQUIPMENT	CLASSIFICATION	339	I&C FUN All I&C safety. improve	CTION CLAS functions Use class equipment	SIFICATION should be c ification as	D Classifie a basis	I&C ed accordin to decide	3.3 Ig to the about m	BOHUNICE air importan Measures nec	10.1.(1) ce to essary to
111 1&C	/ELECTRICAL	EQUIPMENT	CLASSIFICATION	661	1&C FUN All 1&C safety.	CTION CLAS	SIFICATION should be a	D classifie	I&C ed accordin	3.1 ng to the	KOZLODUY ir importan	10.1.(1) ce to
111 1&C	/ELECTRICAL	EQUIPMENT	CLASSIFICATION	779	DESIGN Identif authori	BASES y the requ ties.	ired documer	D hts and i	I&C request cop	1.5 Dies from	NOVOVORONE the proper	10.1.(1)
111 I&C	/ELECTRICAL	EQUIPMENT	CLASSIFICATION	780	DESIGN Systema	REQUIREMEN tic study be made to	TS of the exist identify al	D ting syst LL design	I&C em and equiname	1.5 Nipment s	NOVOVORONE pecificatio	10.1.(2) n documents
111 I&C	/ELECTRICAL	EQUIPMENT	CLASSIFICATION	781	APPLICA Study t Novovor	BLE CODES in the relevant onezh NPP,	AND STANDARD t codes and incorporate)S D standard them in	1&C Is to ident nto the des	1.5 ify thos ign basi	NOVOVORONE e which app s and make	10.1.(3) Why to the the necesary
111 I&C	/ELECTRICAL	EQUIPMENT	CLASSIFICATION	1115	I&C FUN I&C Sys should	ations to CTION CLAS tems should form a bas	ensure compl SIFICATION d be classif is for estat	D fied acco blishing	1&C ording to t measures f	3.3 heir imp or impro	KOLA cortance to ovements.	10.1.(1) safety. This

-

ISSUE TITLE: I&C Signal priority.

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Operation of some of the safety systems can be inhibited by equipment protection signals or manual actions.

RELATED ITEMS:

56, 341, 360, 669, 672, 678, 679, 742, 822 1055, 1127, 1129, 1132, 1145

JUSTIFICATION OF RANKING:

The potential for safety functions to be inhibited is a high safety concern.

CONCEPTUAL RECOMMENDATIONS:

Identify safety functions which can be inhibited.

Establish and evaluate the potential consequences.

Implement corrective actions as needed.

CAT.	ISSUE	ITEM n. TITTLE/Description ASPECT AREA CLASS / REFERENCE
III I&C SIGNA	LPRIORITY	56 SAFETY INJECTION INTERRUPTION D+0 I&C 3.6 DESREV 2.7.5.2 It is possible to stop emergency injection from the control room without any empired delay. This present a extential for human error
III I&C SIGNA	L PRIORITY	341 SIGNAL PRIORITY D I&C 3.1 BOHUNICE 10.1.(3) RPS and ESF signals should have priority over equipment protective devices.
		Otherwise the protective circuit should be built with redundant logic (e.g. 2 out of 3).
III I&C SIGNA	L PRIORITY	360 SAFETY INJECTION ISOLATION D I&C 3.1 BOHUNICE 10.5.(2) Safety injection system should be modified so that automatic actuation get
III I&C SIGNA	L PRIORITY	669 SAFETY INJECTION ISOLATION D 1&C 3.1 KOZLODUY 10.5.(1)
		Safety injection logic should be redesigned so that automatic actuation gets priority over manual isolation.
III I&C SIGNA	L PRIORITY	672 SPRAY ISOLATION D I&C 3.1 KOZLODUY 10.5.(4)
		Redesign confirment spray actuation logic so that automatic actation gets
THE LAC STONA	PRIORITY	PRIORITY DELECTION
		In Unit 1/2 an interlock should be installed to prevent switch off of Diesel Generators by operator as long as automatic actuation conditions exist.
III I&C SIGNA	L PRIORITY	679 DG ACTUATION AND PROTECTION D I&C 3.1 KOZLODUY 10.7.(5)
		An interlock should be installed to give priority of Diesel Generator actuation signals over protective devices.
III I&C SIGNA	L PRIORITY	742 ECCS DEACTIVATION AFTER LOCA D SYSTEMS 3.6 NOVOVORONE 8.4.(2)
		Deactivation of the ECCS after LOCA should be prevented for a time to be
III I&C SIGNA	L PRIORITY	822 DG LOAD SEQUENCER LOGIC D ELECTRICAL 3.1 NOVOVORONE 11.2.(3)
		Redesign the diesel logic that the automatic diesel start signal has definite priority over manual operator action from the main control room.
III 1&C SIGNA	L PRIORITY	1055 SAFETY INJECTION ISOLATION D SYSTEMS 3.1 KOLA 8.3.(3)
		To avoid inadvertent deactivation of safety injection system without delay, time interlock feature should be installed.
ILI I&C SIGNA	L PRIORITY	1127 OIL PRESSURE INTERLOCK D 1&C 3.1 KOLA 10.4.(2)
		Interlock of safety injection pumps on oil pressure should be deleted and replaced by alarm in the control room.
III I&C SIGNA	L PRIORITY	1129 MODE SWITCHES CONTROL D I&C 2.1 KOLA 10.4.(4)
		Safety injection mode switches should be provided with key locks which should be kept under administrative control.
111 I&C SIGNA	L PRIORITY	1132 SIGNAL FOR VALVE ACTUATION D I&C 3.1 KOLA 10.4.(7)
		Safety injection valves should be open by safety injection signal (not by line pressure signal).
III I&C SIGNA	L PRIORITY	1145 AFWS ACTUATION RESSETING D I&C 3.1 KOLA 10.4.(20)
		Manual resetting of Auxiliary Feedwater System actuation should only be possible after actuation conditions have disappeared
		possible differ detaction conditions have disappedied.

ISSUE TITLE: Testability of I&C Equipment

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Design of most safety related systems does not allow testing activities during normal operation.

RELATED ITEMS:

112, 349, 356, 357, 358, 506, 1123, 1133, 1139, 1143, 1144

JUSTIFICATION OF RANKING:

The reliability of the instrumentation and control systems and equipment will deteriorate due to undetected faults and the absence of periodic testing.

CONCEPTUAL RECOMMENDATIONS:

Establish the list of safety related systems to be tested and the test intervals.

Take corrective measures to allow testing of these systems during power operation.

CAT.	ISSUE	I TEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	INCE
111 .	TESTABILITY OF I&C EQUIPMENT	112	TES Tes pro	STING PROTECTION FUNCTIONS sting the complete protection ovided. Missions should che rformed during normal opera	D+D on funct ck how t tion and	I&C nons (from his is peri	1.25 sensor s formed, i	DESREV to final act which tests elling.	4.1.6 (uation) are are
111	TESTABILITY OF I&C EQUIPMENT	349	IN The to act	CORE MONITORS CALIBRATION e replacement of in core fl allow calibration of on li tivated wires.	D ux monit ne measu	1&C coring system inement with	2.1 em should n period	BOHUNICE d be done 18 1c measureme	10.3.(1) n such way ents by
111 .	TESTABILITY OF I&C EQUIPMENT	356	RED	DUNDANT CHANNEL COMPARATORS	D	I&C	3.5	BOHUNICE	10.4.(7)
111 .	TESTABILITY OF 1&C EQUIPMENT	357	TES Tes Imp	STABILITY OF RPS stability of the Reactor Pr provements of the system st	D otection ructure	1&C System sho	34 build be a	BOHUNICE accomplished	10.4.(8) i by
111	TESTABILITY OF 1&C EQUIPMENT	358	SEL 1 f	LF TESTING OF RPS a large reconstruction is designed for self testing c	D undertak anabilit	1&C en, Reactor	3.5 Protec	BOHUNICE tion System	10.4.(9) should be
IH	TESTABILITY OF I&C EQUIPMENT	506	TES	STING REACTOR PROTECTION actor protection system sho dification of equipment in	0 uld be t Unit 1/2	I&C sested at ev	3.4 /ery 3 m	KOZLODUY onths. This	3.7.(7) requires
111	TESTABILITY OF I&C EQUIPMENT	1123	TES	STABILITY OF RPS difications to enable compl eartion should be implement	D ete test ed.	I&C Ing of Read	3.4 ctor Pro	KOLA tection Syst	10.2.(4) tem during
111 1	TESTABILITY OF I&C EQUIPMENT	1133	TES Tes rea	STING OF ACTUATION LOGIC sting of safety injection s actor in operation should b	D ignalar eimplem	I&C nd logic fro mented.	3.5 om senso	KOLA r to actuate	10.4.(8) or with the
111	TESTABILITY OF I&C EQUIPMENT	1139	TES Tes rea	STING OF SPRAY LOGIC sting of sray actuation log actor inoperation should be	D 1c signa provide	I&C al from sens ad.	3.5 sor to a	KOLA ctuator with	10.4.(14) n the
111	TESTABILITY OF I&C EQUIPMENT	1143	SPR Spr tes	RAY COMPONENTS TESTING ray pumps and valves should sting, but this should not	D be prov inhibit	1&C /ided with (system act)	3.5 manual s uation.	KOLA witches for	10.4.(18) individual
111	TESTABILITY OF I&C EQUIPMENT	1144	TES Tes act	STING OF AFWS LOGIC stability of the Auxiliary tuatorwith the reactor in o	D Feedwate peration	I&C er System an should be	3.5 ctuation incorpo	KOLA from senso rated in the	10.4 (19) r to e new

des≀gn.

ISSUE TITLE: Control Room Habitability/Remote Shutdown Panel

RANK OF ISSUE: III

ISSUE CLARIFICATION:

There is insufficient provision to maintain control room habitability. In case of main control room inhabitability or unavailability, there is no other centralized location from where a safe shutdown can be performed.

RELATED ITEMS:

108, 317, 400, 497, 498, 621, 674, 805, 807, 808, 811, 958, 959, 1014, 1078 1151, 1271

JUSTIFICATION OF RANKING:

Inhabitability or unavailability of the main control room should be considered likely and the consequences of high safety concern if no alternative solution exists.

CONCEPTUAL RECOMMENDATIONS:

Additional measures should be provided to maintain, as far as possible, control room habitability and function in the event of fire, contamination and other similar threats. Identify functional requirements and design basis for the remote shutdown panel and implement. Interim procedures should be prepared to allow the safe plant shutdown from outside the control room.

Additionally, measures (such as self contained breathing apparatus, door improvement, etc.) should be taken immediately to protect Main Control Room personnel in accident conditions until permanent habitability improvements can be made.

CAT.	ISSUE	ITEM	n. IIIILE/Description	ASPECT AREA	CLASS	REFERENCE
III CONTROL	ROOM HABITABILITY/SHUTDOWN PANEL	108	REMOTE SHUTDOWN PANNEL Plants should have a remote si	D I&C	2.4	DESREV 111.4.2.7
III CONTROL	ROOM HABITABILITY/SHUTDOWN PANEL	317	REMOTE SHUTDOWN PANEL	D SYSTEMS	2.4	BOHUNICE 8.4.(1)
III CONTROL	ROOM HABITABILITY/SHUTDOWN PANEL	400	HABITABILITY OF CONTROL ROOM	0 FIRE	4.6	BORUNICE 12.4.(4)
			contamination should be perfo	ntrol room, incl rmed.	uaing fire	, radiation and
III CONTROL	ROON HABITABILITY/SHUTDOWN PANEL	497	CONTROL ROOM VENTILATION	0 OPS	2.4	KOZLODUY 3.6.(1)
			Ventilation system of the con	trol room (and	shutdown p	anel of Units 3/4)
			should be modified to ensure '	habitability und	ler accider	it conditions or
III CONTROL	ROON HABITABILITY/SHUTDOWN PANEL	498	BREATHING APPARATUS	O OPS	5.2	KOZLODUY 3.6.(2)
			Self contained breathing appa room.	ratus should be	readly ava	ilable in the control
III CONTROL	ROOM HABITABILITY/SHUTDOWN PANEL	621	REMOTE SHUTDOWN PANEL	D 1&C	2.4	KOZLODUY 8.4.(4)
			Install a remote shutdown pan	nel in units 1/2	and reloc	ate pannel of units
III CONTROL	ROOM HABITABILITY/SHUTDOWN PANEL	674	REMOTE SHUTDOWN PANEL	D 1&C	2.4	KOZLODUY 10.6.(2)
			An emergency shutdown panel s control room.	hould be install	.ed, geogra	phically separates from
III CONTROL	ROOM HABITABILITY/SHUTDOWN PANEL	805	REMOTE SHUTDOWN PANEL	D 18C	2.4	NOVOVORONE 10.7.(8)
			A comprehensive strategy and main control room should be d	plan for achievi eveloped.	ing sate sh	utdown from outside the
111 CONTROL	ROOM HABITABILITY/SHUTDOWN PANEL	. 807	TRIP LOGIC ENDANGERING	D 1&C	2.4	NOVOVORONE 10.7.(10)
			Place an interposing relay in	the logic cabir	net to isol	ate the trip line from
THE CONTROL	ROOM HABITABLI ITY/SHUTDOWN PANEL	808	TRIP LOGIC ENDANGERING	D 1&C	2.4	NOVOVORONE 10.7.(11)
			Relocate the contact of an in as possible to further reduce	terposing relay	as close t	to betwen the 220 V bus
			failures.) pass	
III CONTROL	ROOM HABITABILITY/SHUTDOWN PANEL	. 811	AIRBONE MISSILE PROTECTION	D I&C	2.4	NOVOVORONE 10.7.(14)
			airbone missile.	d by a wall capa	able of res	isting a design basis
III CONTROL	. ROOM HABITABILITY/SHUTDOWN PANEL	. 958	VENTILATION	O OPS	4.6	NOVOVORONE 3.7.(2)
			The ventilation system should	be modified to	maintain h	abitability for the
III CONTROL	. ROON HABITABILITY/SHUTDOWN PANEL	959	BREATHING APPARATUS	0 OPS	4.6	NOVOVORONE 3.7.(3)
			The number of breathing air s	ets should be in	creased to	a minimun of four.
111 CONTROL	. ROOM HABITABILITY/SHUTDOWN PANEL	1014	SEVERE ACCIDENT CONDITIONS	O EP	5.4	NOVOVORONE 6.4.(4)
			the station dispatcher room u	control rooms, inder the severe	accident o	ogical control room and conditions should be
THE CONTROL	ROOM HABITABLI ITY/SHIITDOWN PANEL	1078	CONTROL ROOM VENTILATION		2.4	KOLA 8-8-(3)
			Filters should be installed i	n the closed ci	cuit which	would cool the control
	DOON HARITARII ITY (CHITTOON DANC	1161	room in case of activity rele	ase.	2 /	KOLA 10 5 /51
III CONTROL	. NOON RADITADILITT/SHUTDOWN PARES	. 1121	Remote shutdown capability sh	ould be complete	د.₄ ely indeper	NOLM 10.3.(3) Ndent from power supply
			and instruments in the contro	l room. Transfe	switches	should be located in
			the remote shutdown panel.	• •••		
III CONTROL	. KOUM HABITABILITY/SHUTDOWN PANEI	. 1271	BREATHING APARATUS	O OPS	5.2 trol room f	KULA 3.7.(2)
			bottles should be provided.	apara cas tri 6018		o an numeronal an

ISSUE TITLE: Instrumentation setpoint margins

RANK OF ISSUE: II

ISSUE CLARIFICATION:

The uncertainties (accuracies, drift, calibration) of instrumentation channels setpoints of reactor protection and engineered safety features actuation systems have to be determined. The safety margins to account for uncertainties have to be consistent with the values used in safety analysis.

RELATED ITEMS (AND PRIORITIES):

1125

JUSTIFICATION OF RANKING:

This evaluation is the only mean to ensure that safety limits are not violated.

CONCEPTUAL RECOMMENDATIONS:

Determine the list of uncertainties affecting the instrumentation channels of reactor protection and engineered safety systems, actuation systems and their values (in percent of range).

Combine the uncertainties to fix the total channel inaccuracy. Evaluate if the plant setpoints were conservatively set and take corrective measures if needed.

CAT.	ISSUE	ITEM	n.	TITTU	/Description	ASPEC	T ARE	A CLASS	REF	ERENCE
11	INSTRUMENTATION SETPOINT MARGINS	1125	SET	POINT	ACCURACY	D	1&C	1.21	KOLA	10.2.(6)
			Cal cha	culati racter	ons utilizing d istic should be	lata from ac done to ch	tual i eck if	nstrumentatio safety limit	n accuracy s are stil	and drift l maintained.

ISSUE TITLE: Electrical redundancy, separation and independence.

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

There are numerous instances where redundancy, physical and electrical separation and independence of electrical supplies are not adequately provided.

RELATED ITEMS:

132, 134, 135, 137, 146, 147, 148, 149, 154, 155, 156, 369, 675, 677, 788, 819, 820, 824, 827, 828, 830, 1155, 1160

JUSTIFICATION OF RANKING:

Single failure (e.g. 220 V DC switchboard) or common cause event (e.g. fire...) could lead to total failure of a safety function.

CONCEPTUAL RECOMMENDATIONS:

Either provide separation and independence of the safety-related electrical power supplies or provide an additional separate set of power supplies.

CAT	•	I SSUE			ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
1V	EL.	REDUNDANCY.	SEPARATION,	INDEPENDENCE	132	POW	ER SUPPLY TO I&C	D	18C	46	DESREV	4.9.4
		•	•			Int see rec fai	erconnection of electric ms to give ways to ensur over from incident situa lure.	power sup e good rel tions. But	ply to Inst lability and this may a	rumentat davaila ilso lead	ion and Co bility and to common	ntrol (1&C) Ways to mode
IV	EL	REDUNDANCY,	SEPARATION,	INDEPENDENCE	134	POW Ele cas	ER SUPPLY FAILURES ctric power systems show e of events such as huma	D I a substan In errors,	ELECTRICAL stial common fires (incl	16 mode fa uding ca	DESREV Milure pote ble fires)	III.5.1.4 ntial in , failure of
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	135	ser RED It	vice water, due to compl UCE INTERCONNECTIONS is recommended to attemp	ex interco D of to reduc	nnections, ELECTRICAL e the numbe	partial 1.6 r of aut	separation DESREV comatic or (t,etc. 111.5.2.4 quick manual
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	137	1nt CA8 Duc	erconnections. LE SEGREGATION	D cable rou	ELECTRICAL	1.13	DESREV red in deta	5.1.6.1
1V	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	146	1 nc COO	luding plan of routes an LING WATER FOR DIESELS	d visual i D	nspection (ELECTRICAL	followin 16	ng cable ro DESREV	utes). 5.5.5.1
						twi aff	n units. It is possible ect more than one Diesel	that a sin	gle failure	within	service wa	ter can
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	147	LOA Inv wit	D SEQUENCER REDUNDANCY estigate whetre the load h respect to local arran	D I sequencer Igement and	ELECTRICAL 15 redunda 1 auxiliary	1.6 int for t рожег su	DESREV the two Die upply.	5.5.6.1 sel buses
IV	ει.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	148	OIL The	TRANSFER PUMP re is only one pump to t ks. Check if this pump o	D ransfer ou an be elec	ELECTRICAL 1 from rese	4.3 rvoirs t	DESREV to individu	5.5.5.4 al Diesel nt Diesel
IV	EL	REDUNDANCY,	SEPARATION,	INDEPENDENCE	149	dis DIE	tributions. SEL STARTUP LOGIC	D	ELECTRICAL	4.3	DESREV	5 5.6.4
						D1e red	sels startup logic shoul undant and how the stand	d be evalu Aby Diesel	ated. Inves is started.	tigate v	wheter the	logic is
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	154	IMP It uni	ROVEMENTS IN BATTERIES should be considered the t, to separate them phys	D Installat	ELECTRICAL tion of 2 se l electrical	4.3 parate b ly as fa	DESREV patteries f ar as possi	5.6.9.1 or each ble and to
						1nc fur	rease the discharge time ther increase reliabilit	y of batte	ry operation	mattery d m.	CIFCUIT MON	ITOP Would
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	155	SWI All 1nd	TCHGEAR CONTROL REDUNDAN 6 kV switchgear may be ependent redundant contr	ICY D connected ols. This	ELECTRICAL to a single should be c	1.5 e unit ba shecked i	DESREV attery, ins in individu	5.7.1 tead to al plants.
14	ΕL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	156	DIR The com	ECT CURRENT DISTRIBUTION deign of Direct Current plexity by avoiding inte	I D : (DC) dist erconnectio	ELECTRICAL ribution sh	1.6 would be wnits.	DESREV modified t	5.8.1 o reduce the
IV	EL	REDUNDANCY,	SEPARATION,	INDEPENDENCE	369	INT Int	ERNAL POWER DISTRIBUTION ernal power distribution	I D n network s	ELECTRICAL	1.6 Implified	BOHUNICE d by minimi	10.7.(2) zing
I۷	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	675	int MOT As	erconnections between tw OR GENERATOR SETS a first step, improve se	io units D sparation d	ELECTRICAL of motor gen	1.5 merator s	KOZLODUY sets in uni	10.7.(1) t 1/2. As a
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	677	sec CAB Ele	ond step, install static LE PROTECTION ctrical cables of Unit 1	D 1/2 should	s in all uni ELECTRICAL be also sep	its. 1.6 parated a	KOZLODUY and covered	10.7.(3) With fire
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	788	ret DIE The	ardant material. SEL LOAD SEQUENCES LOGIC	D Should be	1&C	1.6	NOVOVORONE	10.1.(11)
I۷	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	819	D1S Imp	TRIBUTION SEGREGATION	Degregation	ELECTRICAL concept, so	1.6 b that fi	NOVOVORONE ailures und	i 11.1.(7) Her all worst
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	820	cas SER Not fir	e scenarios will be rest VICE WATER SUPPLY all diesel generators o e or flooding or after a	D D Df both un Service i	one train. ELECTRICAL its should t water break.	4.3 become 11	NOVOVORONE noperative	11.2.(1) during a

CAT	•	ISSUE			ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
1V	٤L.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	824	DG	GAS OIL SUPPLY	D e them di	ELECTRICAL	4.3	NOVOVORONE	11.2.(5)
1V	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	827	DC Ins roo	DISTRIBUTION BOARD tall modern DC swithgear ms and arrange this syst in configuration for eac	D within to em togethe	ELECTRICAL WO Separate er with batt	1.6 and phy teries a	NOVOVORONE sically ind nd chargers	11.3.(3) lependent in a two
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	828	REV Sep Rel	ERSIBLE MOTOR GENERATORS arate the redundant RMGs ocate RMGs from the turb	D from each froe hall.	ELECTRICAL h other incl	1.6 Luding s	NOVOVORONE eparate cab	11.4.(1) le routes.
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	830	CA8 I de and	LE SEGREGATION ntify all junction areas fire protection.	D with the	ELECTRICAL aim to furt	1.6 ther imp	NOVOVORONE rove local	11.5.(1) separation
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	1155	DIE Red	SEL GENERATOR SEPARATION	D sets shou	ELECTRICAL d be physic	1.5 allv se	KOLA parated.	11.4.(1)
IV	EL.	REDUNDANCY,	SEPARATION,	INDEPENDENCE	1160	BAT A s imp	FERIES REDUNDANCY ystem of two DC batterie rovement.	D s per Bloo	ELECTRICAL ck should be	4.3 e analys	KOLA ed as a pos	11.5.(2) sible

•

•

ISSUE TITLE: Reliability of Electrical Equipment.

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The reliability and performance of electrical equipment in general does not meet current standards. The causes include deterioration with age, difficulty of maintenance and testing, and the need for frequent attention.

RELATED ITEMS:

136, 140, 161, 158, 370, 533, 814, 829, 999, 1156, 1157, 1158, 1161, 1163, 1164

JUSTIFICATION OF RANKING:

Electrical equipment plays a major role in preventing and mitigating abnormal and emergency situations. The provision of reliable electrical equipment is of high safety concern.

CONCEPTUAL RECOMMENDATIONS:

Set up a programme for upgrading electrical equipment and implementing it according to international standards.

CAT.	1 SSUE	LTEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	RENCE
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 136	OLD Cert Dies age	DESIGN ELECTRIC EQUIPMEN tain electric equipment re sel-Generators and Revers ing may justify replacing	T D eflects ible Mot such ec	ELECTRICAL the historic or-Generator uipment with	3.3 al limit s. This, modern	DESREV tations, e. , together version, 1	5.0.6.1.A g. with natural thereby
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 140	VOL ¹ Perr spec	TAGE AND FREQUENCY CONTRO missible voltage and freq cific figures for consume review test results.	th tess L D uency de rs are c	ELECTRICAL EVIATIONS Sho consistent wi	1.5 buld be i th limit	DESREV reviewed. (ts. Check (5.2.6 Check if calculations
III REL	TABILITY OF ELECTRICAL EQUI	PMENT 158	REVI Reve Cons bat	ERSIBLE MOTOR GENERATORS ersible motor generator s siderations should be giv tery chargers and inverte	D ets have en to si rs.	ELECTRICAL a very comp implifying th	1.5 blex meth Ne design	DESREV hod of oper n by provid	5.11.1 ration. ding separate
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 161	ELE(Cri con wil	CTRICAL COMPONENTS AGEING tical electrical componen ditions and the remaining l give a chance for impro	D ts shoul lifetim vements.	ELECTRICAL d be checked ne in view of	3.3 I with re a poss	DESREV espect to 1 ible replac	5.16.6 their cement which
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 370	MOT Revi cha	DR GENERATOR SETS ersible motor generator s rgers.	D ets shou	ELECTRICAL sld be replac	1.5 ed by re	BOHUNICE ectifiers a	10.7.(3) and battery
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 533	SHO The inv	RT CIRCUIT IN 6kV BREAKER cause of short circuits estigated and corrected.	S O occurrin	ELECTRICAL ng in 6kV cir	1.6 cuit bro	KOZLODUY eakers show	5.1.(3) uld be
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 814	VOL Cal with con	TAGE DEVIATIONS culation on the voltage s h the design figures unde ditions.	D ituation r the as	ELECTRICAL at motor te sumption of	4.3 erminals the pos	NOVOVORONE should be sible worst	E 11.1.(2) compared t case
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 829	MOTI A si Lea	OR GENERATOR SETS eparation of the two func ding to a simpler functio	0 tions ba nal stru	ELECTRICAL attery charge cture.	1.5 er and i	NOVOVORONI nverter is	E 11.4.(2) suggested
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 999	ELC Ele hav	TRICAL JUNCTION BOXES ctricity junction boxes l e water proof seals insta	0 ocated r lled.	FIRE near the fire	1.6 e fighti	NOVOVORONI ng water na	E 5.3.(11) ozzles should
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 1156	DIE Sei eva	SEL SEIMIC QUALIFICATION smic qualification of Die luated.	D sel Gene	ELECTRICAL erators and a	1.5 auxiliar	KOLA y equipment	11.4.(2) t should be
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 1157	D I E Con pum	SEL GENERATOR OIL PUMPS sideration should be give ps in order to achieve a	D n to rep shorter	ELECTRICAL blacing the D starting per	1.6 Diesel G riod.	KOLA enarator s	11.4.(3) tarting oil
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 1158	DIE The a f als	SEL EXCITATION SYSTEM advantages of using a st aster response should be o considered.	D atic typ analysed	ELECTRICAL De Diesel gen d. Use of a b	1.6 nerator prushles	KOLA excitation s exciter :	11.4.(4) system with should be
III REL	IABILITY OF ELECTRICAL EQUI	PHENT 1161	DC	DISTRIBUTION PANELS	D	ELECTRICAL	3.3	KOLA	11.5.(3)
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 1163	MOT Imp	OR GENERATOR BEARINGS	D f the back	ELECTRICAL earings of the	3.3 ne rever	KOLA sible mot	11.5.(5) or generator
III REL	IABILITY OF ELECTRICAL EQUI	PMENT 1164	NOT Rep inv	s or their replacements s OR GENERATOR REPLACEMENT lacement of Reversible Mo reters should be analysed	D D tor Genu	ELECTRICAL erator sets i	3.3 oy stati	KOLA c rectifie	11.5.(6) rs and

ISSUE TITLE: Diesel Generator Loading

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

The system of load sequencing is vulnerable to single failure causing loss of all diesels. In addition, for beyond DBA/LOCA, the rating of each diesel is not sufficient to supply the total load of one unit.

RELATED ITEMS :

144, 150, 151, 152, 823

JUSTIFICATION OF RANKING:

The failure of the diesels to supply the demanded load when required is a major safety concern.

CONCEPTUAL RECOMMENDATIONS:

Upgrade the design of the diesel load sequencer taking into account the single failure criterion.

Provide new diesels to ensure two independent trains per unit, considering LOCA breaks beyond 32mm.

CAT	. ISSUE	ITEM r	۱.	TITTLE/Description	ASPECT	AREA	CLASS	REFE	RENCE
14	DIESEL GENERATOR LOADING	144 0	DIES	EL GENERATOR RATING	D	ELECTRICAL	1.5	DESREV	5.0.5.4
		R	tela are	itive low rating of 1600 km necessary to provide neces	wis a c ssary po	concern. For ower.	LOCA	conditions	two Diesels
IV	DIESEL GENERATOR LOADING	150 C T)IES The	EL LOAD ASSIGNMENT adequacy of plant specific becked in view to enhance	D assign indener	ELECTRICAL ment of ess	1.6 ential eparati	DESREV loads to D	5.13.6 iesels should as possible
IV	DIESEL GENERATOR LOADING	151 D 0 0	DIE: Desi Seno Shou	EL LOAD CALCULATIONS gn calculations should be rators have sufficient cap ild be supported by test re	D provide pacity 1 esults.	ELECTRICAL ed to demons to perform t	1.5 trate 1 heir du	DESREV that the Di uties. The	5.14.4 esel calculations
IV	DIESEL GENERATOR LOADING	152 P 1 s	POW Thre shou genu	R TO SERVICE WATER PUMPS be out of 5 service water p ald be checked that, either erator is not overloaded.	D pumps ai r two pu	ELECTRICAL re required umps do not	4.3 to oper run, or	DESREV rate in an that the	5.15.1 emergency. It Diesel
14	DIESEL GENERATOR LOADING	823 C F C	DG 1 Reca over	OAD BALANCE alculate the load balance u cloading cannot occur if or the assumption that the thi	D underwa nlyone irdisr	ELECTRICAL orst case co DG is servi not available	4.3 ndition ng the e.	NOVOVORON ns and clar respective	E 11.2.(4) ify whether 6 KV bus due

ISSUE TITLE: Battery discharge time and Surveillance

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The discharge time of the batteries is too short (i.e. 30 minutes) and there is no monitoring system to detect galvanic interruption in due time.

RELATED ITEMS:

133, 153, 825, 826

JUSTIFICATION OF RANKING:

The failure if the batteries to supply DC powers when required is of high safety concern.

CONCEPTUAL RECOMMENDATIONS:

Increase the capacity of batteries to a discharge time of 1 to 2 hours and install a monitoring system to detect galvanic interruptions.

CAT	. 1SSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERI	ENCE
111	BATTERY DISCHARGE	TIME 133	BA1 Che	TERIES ck the capacity and status	D surveit	ELECTRICAL lance of th	4.6 e batte	DESREV	111.4.3.7 e
111	BATTERY DISCHARGE	TIME 153	int BAT The	erconnected use for supply TERIES DISCHARGE TIME E battery capacity is design	of two D ated fo	units. ELECTRICAL r 30 min di	4.3 scharge	DESREV time. Nowa	5.6.4 days,
111	BATTERY DISCHARGE	TIME 825	ext acc BAT	ended discharge time (2 to ident management measures a TERY DISCHARGE AND CAPACITY	3 hours nditoc D) are used onsider sta ELECTRICAL	in other tion bla 4.3	countris (ackout requi	to permit irements. 11.3.(1)
111	BATTERY DISCHARGE	TINE 826	Ins inc GAL	stall two physically and ele rease the designed battery VANIC INTERRUPTION	ctrical dischar D	ly isolated ge time and ELECTRICAL	batteri capacii 4.3	ies to each :y. NOVOVORONE	unit and 11.3.(2)
			lns tin	stall a battery circuit moni Ne.	tor to	detect galv	anic in	erruptions	in due

•

ISSUE TITLE: Connection to offsite Power Supplies

RANK OF ISSUE: II

ISSUE CLARIFICATION:

The need for manual action to restore off-site supplies following a reactor trip places unnecessary demands on the diesel generators.

RELATED ITEMS (AND PRIORITIES):

141, 142, 368, 676, 813

JUSTIFICATION OF RANKING:

Loss of off-site power is conservatively assumed to be an expected event. This places frequent demands on the diesel generators.

CONCEPTUAL RECOMMENDATIONS:

Two independent off-site supplies should be available. The first should be available immediately and the standby supply without any unreasonable delay.

CAT.	•	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	CONNECTION	TO OFF-SITE POWER SUPPL	IES 141	EXT	ERNAL POWER SOURCES	D wer bus	ELECTRICAL 4	i.3 lied fr	DESREV	5.3.6
				dur rem	ing all modes of operation oving all off-site supplie	. No sir s.	ngle accident	shoul	d be capable	e of
11	CONNECTION	TO OFF-SITE POWER SUPPL	1ES 142	ADD Add gr1 con	ITIONAL POWER SOURCE ition of an independent po d (or a separate connectio sidered.	D wersoui In to a h	ELECTRICAL 4 rce, such as hydro or gas	i.3 the co turbin	DESREV nnection to e) should b	III.5.2.1 a strong
11	CONNECTION	TO OFF-SITE POWER SUPPL	IES 368	EXT Inc swi	ERNAL POWER SUPPLY rease availability of exte tches.	D rnal poi	ELECTRICAL 4 Her supplies	1.3 by ins	BOHUNICE stalling main	10.7.(1) n generator
11	CONNECTION	TO OFF-SITE POWER SUPPL	IES 676	EXT Mai a s	ERNAL POWER SUPPLY n generator circuit breake ource even when main gener	D Ins shoul ator tri	ELECTRICAL 4 ld be instali ips.	4.3 led, to	KOZLODUY keep the m	10.7.(2) ain grid as
11	CONNECTION	TO OFF-SITE POWER SUPPL	IES 813	GR (Ins sta) CONNECTION tall an automatic power tr rt up transformer can be a	D ansfer i utomatic	ELECTRICAL 4 relay so that cally transfe	4.3 t the f erred t	NOVOVORONE ailed suppl o the secon	11.1.(1) y from one d one.

.

ISSUE NUMBER: Accident Analysis 1

ISSUE TITLE: Confinement Analysis

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The concern is that for breaks larger than the design basis, the confinement system may be overpressurized, causing structural failure, possibly resulting in core damage, and increasing release of radioactivity to the atmosphere. In addition, since a negative confinement pressure might result after sprays are initiated, the ability of the structure to withstand negative pressure is of concern. Not enough analyses have been performed with this respect.

RELATED ITEMS (AND PRIORITIES):

67, 383, 386, 629, 704, 705, 706, 707, 778, 869

JUSTIFICATION OF RANKING:

Actions are necessary to improve confinement performance as well as the performance of confinement systems. Analyses done to date (DOE/NE-0086) indicates structural failure may not occur, even for large break LOCAs. Ability of the overpressure protection flaps to function properly under high pressure/flow rate conditions is not known and is a mater of concern.

CONCEPTUAL RECOMMENDATIONS:

Perform structural analyses to assess confinement integrity, including accident conditions beyond the original design basis. Adequate accident analysis have to be performed in order to obtain these input conditions. Additional analyses are necessary to design additional confinement systems (venting, bubbler condenser, etc).
CAT.	. Issue	ITEM 1	n. TITTLE	/Description	ASPECT	AREA	CLASS	REFER	RENCE
ш	CONFINEMENT ANALYSIS	67 (FLAP CHARA	CTERISTICS	D	SYSTEMS	3.7	DESREV	2.9.6.B
		1	the number	, types and charac	teristic	s of the fl	aps inst	alled in th	ne hermetic
			compartmer	ts for overpressur	e protect	tion should	l be chec	ked on site	es.
ш	CONFINEMENT ANALYSIS	383 (CONFINMENT	SUB-ATMOSPHERIC	D	ACCIDENT	1.11	BOHUNICE	11.9.(1)
		1	At the sam	e time that confin	ment tig	htness is i	increased	installati	ion of
			devices to	prevent sub-atmos	pheric c	onditions ((vacuum b	reakers) fo	ollowing
		1	spray acti	on may have to be	installe	d.			
ш	CONFINEMENT ANALYSIS	386 (CONFINMENT	ANALYSIS	D	ACCIDENT	1.11	BOHUNICE	11.9.(4)
		1	Further co	nfinment analysis	should b	e conducted	lusing m	ore sophist	ticated codes
		4	and usin b	est estimate input	data.				
ш	CONFINEMENT ANALYSIS	629 (CONFINMENT	ANALYSIS	D	SYSTEMS	3.7	KOZLODUY	8.5.(8)
		l l	Confinment	: sub-compartment a	nalysis	should be p	performed	land specia	al measures
			(blowoff p	panels, openings) p	provided	if necessa	·y.		
ш	CONFINEMENT ANALYSIS	704 (CONFINMENT	ANALYSIS	Ð	ACCIDENT	1.11	KOZLODUY	11.5.(1)
		,	Various an	walysis should be p	performed	to find ou	ut what w	ould be the	e maximum
		I	break size	e the present confi	inment ca	n cope with	1.		
111	CONFINEMENT ANALYSIS	705 (CONFINMENT	IMPROVEMENTS	D	ACCIDENT	1.11	KOZLODUY	11.5.(2)
		1	deasures a	should be taken to	improve	performance	e of conf	inment syst	tems (spray,
		I	bubbler, 1	venting, etc.).					
ш	CONFINEMENT ANALYSIS	706 (CONFINMENT	SUB-ATNOSPHERIC	D	ACCIDENT	1.11	KOZLODUY	11.5.(3)
		I	Possibili	y of sb-atmospheri	ic pressu	re in the d	compartme	ents after l	OCA should
		I	be studied	i and the consequen	nces evalu	uated.			
ш	CONFINEMENT ANALYSIS	707	CONFINMENT	LOADS	D	ACCIDENT	1.11	KOZLODUY	11.5.(4)
		:	Static and	dynamic loads to	the conf	inment stru	uctures a	ind to the e	emergency
			water tan	during LOCA shoul	d be ana.	lysed.			
ш	CONFINEMENT ANALYSIS	778	CONFINEME	IT ANALYSIS	D	COMPONENTS	s 1.11	NOVOVORONI	5 9.6.(1)
			Investiga	tion and analysis o	of the co	nfinement l	pehavior	under accid	dent
		1	condition	s (LOCAs) should be	e perform	ed.			
111	CONFINEMENT ANALYSIS	869	EQUIPMENT	QUALIFICATION	D	ACCIDENT	3.3	NOVOVORONI	12.7.(1)
			Analyses :	should be performed	d with co	mputer code	es having	internatio	onally
			accepted o	condensation models	s, to det	ermine pres	ssure, te	mperature a	and humidity
			transients	after LOCA and SL	B to be	used for ea	quipment	qualificat	ion purposes.

ISSUE TITLE: Emergency protection signals

RANK OF ISSUE: III

ISSUE CLARIFICATION:

There is a concern that reactor scram is not achieved or achieved very late during some transients.

RELATED ITEMS (AND PRIORITIES):

115, 169, 170, 188, 348, 354, 355, 371, 377, 378, 385, 387, 663, 841, 870, 1181, 1195

JUSTIFICATION OF RANKING:

- 1) The reactor scram on low SG level assists in maintaining the large water inventory in case of some feedwater line ruptures and loss of feedwater events
- 2) The reactor scram under high containment pressure might not be achieved due safety injection and confinement spray actuation.
- 3) Reactor trip on high pressure can avoid the opening of pressurizer safety valves.
- 4) Reactor trip on high pressurizer level can avoid discharge of liquid water through relief valves.
- 5) Reactor trip on low DNBR is partly covered actually by TC monitoring.

CONCEPTUAL RECOMMENDATIONS:

The implementation of additional scram signals is recommended. The ranking into categories depends on the new trip signal.

Reacto	<u>Categories</u>	
1 2	low SG level actuation of safety injection	IV
	and spray system	III
3	high pressurizer pressure	III
4	high pressurizer level	III
5	low DNBR	II
<u>Safety</u>	System Activation Signals:	

6	low PRZR pressure	III
7	low pressurizer level	III

CAT.		ISSUE		ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
111	EMERGENCY	PROTECTION	SIGNALS	115	COV Saf	FERAGE OF PROTECTION SIGNALS	; D wild inv	I&C estigate if	2.3 protect	DESREV	4.2.5 s indicated
111	EMERGENCY	PROTECTION	SIGNALS	169	ADD It add inv	PERCINAL SCRAM SIGNALS is suggested that considera fitional signals: low steam ventory) and high primary pr vent	D generat essure	ACCIDENT given to t for level ((to avoid c	2.3 ripping to prese opening o	DESREV the reactor erve the lat of pressuri	required. III.6.2.6 r on two rge water zer safety
111	EMERGENCY	PROTECTION	SIGNALS	170	SCR The (sa rea	AM ON SAFETY SYSTEM TRIP Fre is a concern that reactor fety injection and confinme (ctor scram). Combining reac (ld avoid this situation.	D er scram ent spra tor scr	ACCIDENT I is not ach Iy are initi am with saf	2.3 lieved du ated at ety syst	DESREV We to safety lower press tem actuatio	111.6.2.6A y actuation sure than on signals
111	EMERGENCY	PROTECTION	SIGNALS	188	SCR The WOL	AM ON LOW SG LEVEL - implementation of a reactor ld assist in maintaining th me available to restore feed	D or scram de large Mater.	ACCIDENT signal on water inve	2.3 low Stea entory. 1	DESREV Mn Generato This would	6.7.5.4 r (SG) level extend the
111	EMERGENCY	PROTECTION	SIGNALS	348	PRE A r	ESSURIZER LEVEL LIMITATION reliable system for automati eration should be installed.	D ic press	I&C Surizer wate	2.1 er level	BOHUNICE limitation	10.2.(2) in normal
111	EMERGENCY	PROTECTION	SIGNALS	354	ADC Cor pre Rat	DITIONAL REACTOR TRIPS seider implementing addition ressurizer high level, low se tio.	D nal read g level,	ACCIDENT tor trip or low Depart	2.3 n: high p ture from	BOHUNICE primary pre n Nucleate	10.4.(5) ssure, Boiling
111	EMERGENCY	PROTECTION	SIGNALS	355	TRI Rea	IP ON COMPARTMENT PRESSURE actor trip on high pressure thout additional conditions.	D in SG a	1&C and RCP comp	2.3 partments	BOHUNICE s should be	10.4.(6) activated
111	EMERGENCY	PROTECTION	SIGNALS	371	MIN The be	VIMUM TENSION FOR DG START e minimum tension on the 6kv increased to 80% of nominal	D /busto lvoltag	ELECTRICAL b trigger Di ge.	1.5 iesel Ger	BOHUNICE verators st	10.7.(4) artup should
111	EMERGENCY	PROTECTION	SIGNALS	377	SAI Ins Lev	FETY INJECTION ACTUATION stall additional signals for vel or low pressurizer press	D r safety sure.	ACCIDENT / injection	3.1 actuatio	BOHUNICE on on low p	11.6.(2) ressurizer
111	EMERGENCY	PROTECTION	SIGNALS	378	HIC Cor pos	GH TEMPERATURE SIGNAL nsider disconnecting high te sition,since in the calculat	D emperatu tions th	ACCIDENT ure scram(A) nis scram se	2.3 Z-2) sign et point	BOHUNICE nat or modi was never	11.6.(3) fying sensor reached.
111	EMERGENCY	PROTECTION	SIGNALS	385	HIC The sho	GH COMPARTMENT PRESSURE TRIF e trip set point for reactor ould be the same as the spra	> D r scram ay actua	ACCIDENT on high pro ation set p	2.3 essure in pint.	BOHUNICE h the RCP a	11.9.(3) nd SG room
111	EMERGENCY	PROTECTION	SIGNALS	387	STE A r ins	EAM GENERATOR LOW LEVEL TRIF new AZ-1 reactor scram signa stalled.	D al on lo	ACCIDENT W steam ge	2.3 nerator	BOHUNICE level shoul	11.10.(1) d be
111	EMERGENCY	PROTECTION	SIGNALS	663	PRE An	ESSURIZER LEVEL LIMITATION automatic protection should essurizer.	D d be ins	ACCIDENT stalled to p	2.3 prevent (KOZLODUY overfilling	10.2.(2) of the
111	EMERGENCY	PROTECTION	SIGNALS	841	ADI	DITIONAL REACTOR TRIP nsideration should be given	D to trij	ACCIDENT oping the re	2.3 eactor o	NOVOVORONE n a high pr	12.2.(2) essurizer
111	EMERGENCY	PROTECTION	SIGNALS	870	HIC	GH COMPARTMENT PRESSURE TRI nsideration should be given ich actuate containment spr	PD to comb	ACCIDENT bining the	2.3 reactor	NOVOVORONE trip with t	12.7.(2) he signals
111	EMERGENCY	PROTECTION	SIGNALS	1181	HI	GH CONFINMENT PRESSURE SCRAi ram on high confinment press	U D sure she	ACCIDENT build be der	2.3 ived fro	KOLA m the same	12.5.(6) signal which
111	EMERGENCY	PROTECTION	SIGNALS	1195	SCI A 1 or	RAM ON SECONDARY PARAMETERS reactor scram signal based of trip of feedwater pumps sho	D D on seco ould be	ACCIDENT ndary side (installed.	2.3 paramete	KOLA rs, e.g. lo	12.7.(5) w SG level

ISSUE TITLE: Severe accident analysis

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Few severe accident scenarios have been studied. This is no satisfactory basis for the preparation of a appropriate procedures.

RELATED ITEMS (AND PRIORITIES):

288, 708

JUSTIFICATION OF RANKING:

The results of an analysis of the plant response of the plant to potential severe accidents involving extensive core damage have to be used in preparing guidance on an accident management strategy and emergency preparedness.

CONCEPTUAL RECOMMENDATIONS:

The complete list of potential severe accidents must be developed. In accordance to created list appropriate accident analysis must be conducted and guidance on accident management should be prepared.

CAT.	ISSUE	ITEM n. TITTLE/Description	ASPECT	AREA	CLASS	REFEREN	NCE
11	SEVERE ACCIDENT ANALYSIS	288 ACCIDENT MANAGEMENT MEASU Results of accident analy measures and to estimate	RES O sis should source term	EP be used to	4.4 plan acc	BOHUNICE (ident manager	6.3.(2) ment
н	SEVERE ACCIDENT ANALYSIS	708 SEVERE ACCIDENTS More scenarios of severe management.	D accident sh	ACCIDENT ould be st	4.4 udied as	KOZLODUY a basis for a	11.6.(1) accident

.

ISSUE TITLE: Accident during shutdown or refuelling

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Accidents occurring during refuelling and shutdown may represent a substantial contribution to overall plant risk. No sufficient analyses have been performed to investigate the potential accidents during refuelling and handling the fuel in spent fuel storage

RELATED ITEMS (AND PRIORITIES):

14, 52, 74, 175, 595, 617, 714, 750, 1036, 1037, 1060

JUSTIFICATION OF RANKING:

Adequate analyses are necessary to verify the subcriticality of the reactor during refuelling and of the fuel storage pool and to determine technical measures to prevent accidents at these conditions.

CONCEPTUAL RECOMMENDATIONS:

Appropriate analyses should be performed. Procedures and technical measures are necessary to avoid boron dilution, drainage of storage pool and loss of decay heat removal capability during shutdown operation. Increase of storage pool capacity may be needed in some plants.

CAT	-	I SSUE				ITEN	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	ACCIDENT D	URING	Shutdown	OR	REFUELLING	14	FUEI The orde	L HANDLING INCIDENTS record of fuel handling er to state if there is a	D+O incidents relation	CORE should be with the a	1.8 discusses	DESREV ed in each p design.	1.3.6.3. plant in
11	ACCIDENT DU	URING	Shutdown	OR	REFUELLING	52	LOSS The by: refu Furt ward	S OF DECAY HEAT REMOVAL Soviets have suggested th a) use of high pressure welling pond water and its ther assessment of the ef- ranted.	D+O hat loss injection s associa fectivene	SYSTEMS of decay he ; b) intere ted heat re ss and rel	4.6 eat removision conection emoval m iability	DESREV val can be in n between un eans. of these mu	2.6.5.A mitigated nits; c) ethods is
11	ACCIDENT DI	URING	Shutdown	OR	REFUELL ING	74	ACCI In v plar it i acci	IDENTS AT SHUTDOWN view of recent PSA results nt shutdown represents a d is recommended to assess t idents.	D s,which consideral the exist	SYSTEMS indicate th ble contrib ing possibi	1.11 mat accid pution to ilities f	DESREV dents occurr o overall p to cope with	III.2.2.3 ring during lant risk, h such
11	ACCIDENT DU	URING	Shutdown	OR	REFUELLING	175	PREN The wate remo	VENTING BORON DILUTION existence of both technic er supply into the reactor oval of make-up pump breat	D+O a cal and a r during kers).	ACCIDENT dministrat refuelling	1.11 ive measu should l	DESREV ures to pre- be verified	6.3.6 vent clean (e.g.
11	ACCIDENT DL	URING	Shutdown	OR	REFUELLING	595	STOR Calc	RAGE POOL SUBCRITICALITY culations should be done to especially under off-on	D I to verify	CORE the subcri ditions.	2.2 iticality	KOZLODUY y of the fu	7.9.(1) el storage
11	ACCIDENT DU	URING	SHUTDOWN	OR	REFUELL ING ¹	617	SPEN Add	IT FUEL POOL a check valve on the inlevent pool drainage.	D et pipe o	SYSTEMS f spend fue	1.11 el pool (KOZLODUY cooling sys	8.3.(6) tem to
11	ACCIDENT DL	JRING :	SHUTDOWN	OR	REFUELLING	714	FUEL Acci	. HANDLING ACCIDENTS idents during fuel handlin	D /	ACCIDENT cerning spe	1.11 ent fuel	KOZLODUY storage she	11.7.(5) ould be
11	ACCIDENT DU	URING	Shutdown	OR	REFUELLING	750	LO99 Esti prim	S OF OPEN REACTOR COOLING imate core melt probabilit nary circuit is open and	D ty caused its water	SYSTEMS by the los inventory	1.11 is of rea is limit	NOVOVORONE actor cooli ted.	8.6.(3) ng when the
11	ACCIDENT DL	URING	Shutdown	OR	REFUELLING	1036	RERA The impl	CKING OF STORAGE POOL planned reracking of the lemented.	D i fuel sto	CORE rage pool w	2.2 With bord	KOLA on steel sho	7.7.(4) ould be
11	ACCIDENT DU	JRING	SHUTDOWN	OR	REFUELLING	1037	STO Star eval	RAGE POOL CALCULATIONS Inderd deviation of calcula Luate uncertainties.	D (ated reac	CORE tivity shou	2.2 ald be of	KOLA btained fro	7.7.(5) m Obninsk to
11	ACCIDENT DU	URING	Shutdown	OR	REFUELLING	1060	LOC# Deve	A DURING SHUTDOWN elope a procedure to cope	D : with LOC	SYSTEMS A occurring	3.9 g during	KOLA shutdown.	8.4.(2)

ISSUE TITLE: Qualification of safety analysis

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Computer codes used for accident/transient analysis at the time of design or by supporting institutes have some severe limitations. There was also a lack of adequate computer facilities, trained personnel and lack of experimental data for appropriate code validation. Validated state-of-the-art computer codes are necessary for realistic description of transients and accidents.

RELATED ITEMS:

16, 17, 29, 31, 35, 36, 165, 178, 179, 305, 375, 382, 586, 589, 590, 591, 682-688, 698, 702, 710, 718, 844, 1029, 1030, 1173, 1175, 1185

JUSTIFICATION OF RANKING:

If an accident analysis according to international practices is to be prepared to each unit, appropriate advanced computer codes, computer facilities and trained personnel would be required.

CONCEPTUAL RECOMMENDATIONS:

Obtain adequate advanced computer codes, improve computer facilities and provide trained personnel in order to prepare the necessary safety analysis. Some of earlier analysis should be confirmed with advanced computer codes.

Advanced 3D neutronic /thermal-hydraulic computer codes should be used for core transient analysis. Participation in code verification and validation programmes is also recommended. Independent verification of design calculations is necessary and feedback from reviews of calculations should be provided to the plants.

CAT	. I SSUE	ITEM n.	. TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	QUALIFICATION OF SAFETY ANALYSIS	16 IN Th	FORMATION ON PIN 04 CODE here is a lack of information	D non the	CORE PIN 04 co	14 de, e.g.	DESREV the thermal	1.3.8.2. I
		co	onductivity of UO2, as a fund	tionof	burnup.			
II	QUALIFICATION OF SAFETY ANALYSIS	17 CC	DDES FOR PIN TRANSIENTS	D	CORE	1.4	DESREV	1.3.8.3.
		Co	odes for pin transient calcul	ations	exist, but	no info	rmation was	obtained
11	QUALIFICATION OF SAFETY ANALYSIS	29 TH	REE-DIMENSIONAL KINETICS	D	CORE	1.11	DESREV	1.6.7
		Fo	or rod ejection accident, it	is nece	essary to p	erform ti	hree dimens	Ional
		k1	inetics calculations.	~	0005			
11	QUALIFICATION OF SAFELY ANALYSIS	51 FL 74	L CALCUCATIONS	U	LUKE funt mana	1.0	DESKEV	1.7.0.1
			erformed in each plant.	11000		generie et		
п	QUALIFICATION OF SAFETY ANALYSIS	35 TI	FERNO HYDRAULICCORRELATION	D	CORE	1.11	DESREV	111.1.1.5
		tt	ne review of correlations for	accide	ent conditi	ons has i	not been di	scussed
		du	uring the Design Review Meeti	ing, and	should be	done du	rin the Safe	ety Review
		M	ISSION.					
11	QUALIFICATION OF SAFETY ANALYSIS	36 00	DRE DYNAMIC BEHAVIOUR	D .	CORE	1.11	DESREV	111.1.1.6
		11	he dynamic behaviour of the d	core dur	ing reacti	vity trai	nsients suci	n as root
		e	jection requires three dimensional actionally and as a reference	sional i	lece elebo	aes to a	escribe more	e
11	ONAL FEICATION OF SAFETY ANALYSIS	165 AI	VALYSIS WITH MODERN CODES	0	ACCIDENT	1 4	DESPEV	111 6 2 2
••		VI VI	hen accident analysis is exte	ended, 1	it should b	e demons:	trated that	the
		C	omputer codes used are valid	for the	s applicat	ions, or	more sophi	sticated
		C	odes should be used.			·	·	
п	QUALIFICATION OF SAFETY ANALYSIS	178 L	INITATIONS OF DINAMIKA CODE	D	ACCIDENT	1.4	DESREV	6.4.4
		Tł	he DINAMIKA code when used ir	n the ar	nalysis of	loss of	flow transi	ents appears
		t	o have limited capability to	model	relief valv	es and s	team conden	sation.
11	QUALIFICATION OF SAFELY ANALYSIS	179 Pt	UMP RUN-DOWN TEST	U of Booul	ACCIDENT	1.10	UESKEV	0.4.0 sum doum of
		11 m:	ain coolant nimes following of	disconne	ection of n	over sum	nties.	
п	QUALIFICATION OF SAFETY ANALYSIS	305 C	ORE CALCULATION CODES	D	CORE	1.4	BOHUNICE	7.3.(1)
•••		Va	alidation of core calculation	n comput	ter codes s	hould be	extended t	hrough the
		P	articipation in available tes	st prob	ems.			
11	QUALIFICATION OF SAFETY ANALYSIS	375 AI	DVANCED COMPUTER CODES	D	ACCIDENT	1.11	BOHUNICE	11.2.(1)
		S	ome of the accident analyses	should	be redone	with more	e advanced	computer
		C:	odes.	-				14 0 44
11	QUALIFICATION OF SAFEIT ANALYSIS	382 S	TEAM GENERATOR LEAK ANALISTS	0	ACCIDENT	1 11 aka a ma	BOHUNILE	(1.8.(1)
			e used (such as RFIAP5/mod2)	steam g		aks a 110	le sullable	code snoutd
11	QUALIFICATION OF SAFETY ANALYSIS	586 FI	UEL PERFORMANCE CODE	D	CORE	1.8	KOZLODUY	7.2.(2)
		A	fuel performance computer co	ode sho	uld be obta	ined or a	developed t	o evaluate
		t.	eak tightness over the cycle.	•				
11	QUALIFICATION OF SAFETY ANALYSIS	589 C	ORE CALCULATION VALIDATION	D	CORE	1.4	KOZLODUY	7.4.(3)
		I	n core flux measurements show	uld be i	used to val	idate ne	utronic com	puter codes.
п	QUALIFICATION OF SAFETY ANALYSIS	590 3	-D CALCULATIONS	D	CORE	1.4	KOZLODUY	7.6.(1)
		A d	avanced three dimensional the	ermonya	raulic code	s snouta	be obtaine	a or
п	QUALIFICATION OF SAFETY ANALYSIS	591 0	OMPUTING RESOURCES	Ð	CORE	1.4	KOZLODUY	7.6.(2)
		C	omputer resources in Bulgaria	a need	to be upgra	ded to u	se advanced	
		t	hermohydraulic codes.		• -			
11	QUALIFICATION OF SAFETY ANALYSIS	682 P	ERSONNEL FOR ANALYSIS	Ð	ACCIDENT	1.17	KOZLODUY	11.1.(3)
		C	onsiderably more personnel s	hould b	e allocated	to the	field of ac	cident
		a 	nalysis.					
11	WUALIFICATION OF SAFETY ANALYSIS	683 C	UMPUTERS FOR ANALYSIS	U ave: 1 - 1	ACCIDENT	1.11	KUZLODUY	11.1.(4)
11	MIAL LEICATION OF SACETY ANALYSIS	M 484 0	OPE COMPUTERS STOULD DE MADE	avaita	ACCIDENT	5000000 1 11	KOTI CUTION	». 11 1 /51
••	WHELIWHING VI ONFELL ANALISIS	004 C	fast running code should be	acouse	ed for nara	metric s	tudies.	
11	QUALIFICATION OF SAFETY ANALYSIS	685 R	EACTIVITY DISTURBANCES	0	ACCIDENT	1.11	KOZLODUY	11.1.(6)
		A	dynamics code should be acq	uired f	or the anal	ysis of	reactivity	

disturbances.

CAT.	. I SSUE			ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	NCE
11	QUALIFICATION OF	SAFETY	ANALYSIS	686	ADV/ The	ANCED COMPUTER CODES existing results with RELA	D P4/modi6	ACCIDENT should be	1.11 confirm	KOZŁODUY ed agains RE	11.1.(7) LAP5/mod2
					cald	culations.					
11	QUALIFICATION OF	SAFETY	ANALYSIS	687	CODE	VALIDATION	D	ACCIDENT	1.11	KOZLODUY	11.1.(8)
				(00	Reso	burces should be allocated	to code	validation	1. 		
11	QUALIFICATION OF	SAFEIY	ANALYSIS	668	INIE	RNATIONAL COOPERATION	0	ACCIDENT	1.II Javatia	KUZLOUUT	11.1.(9)
					imm	oved	yanızac			scron should	be
п	QUALIFICATION OF	SAFETY	ANALYSIS	698	REC	RITICALITY	D	ACCIDENT	1.11	KOZLODUY	11.3.(2)
					Pos	sibility of re-criticality	after a	steam line	e break :	should be an	alysed,
					usir	ng multidimensional neutron	kineti	cs.			
п	QUALIFICATION OF	SAFETY	ANALYSIS	702	DNB	CORRELATION	D	ACCIDENT	1.11	KOZLODUY	11.4.(3)
					The	limits of the DNB correlat	ion sha	uld be che	ked. Pos	ssibly anoth	ег
					сога	relation should be used.					
П	QUALIFICATION OF	SAFETY	ANALYSIS	710	REAC	CTIVITY TRANSIENTS	D	ACCIDENT	1.11	KOZLODUY	11.7.(1)
					A pl	roper reactor dynamics code	should	be acquiri	ed and vi	Blidated for	the
		CACETY	ANALYSTS	710	anal	Solution contractivity transle	nts.	0005	1 11	NOVONOBONE	7 7 /1)
11	WUALIFICATION OF	SAFEIT	ANAL 1313	110	Cone	ider recalculating core an	u d reios	une uith et:	r sta-of-ti	NUVUVUKUME	1.3.(1)
						state readeatating core an	4 / 6100				•
11	QUALIFICATION OF	SAFETY	ANALYSIS	844	DNB	CORRELATIONS	D	ACCIDENT	1.11	NOVOVORONE	12.2.(5)
					Anal	lyses should use the same D	NBR cor	relation (reactivi	ty perturbat	ions, loss
					of	flow events).					
11	QUALIFICATION OF	SAFETY	ANALYSIS	1029	FEEC	BACK FROM REVIEWERS	D	CORE	1.17	KOLA	7.3.(3)
					A fo	ormal process for learning	from er	rors ident	ified by	reload desi	gn
					revi	iewers should be establishe	d.				
п	QUALIFICATION OF	SAFETY	ANALYSIS	1030	CROS	SS-SECTION CALCULATIONS	D	CORE	1.4	KOLA	7.3.(4)
					1f 4	reload enrichment is change	d to 4.	4w/o, the	cross-se	ction calcul	ation
		CAPETY	ANALVELC	1177	metr	NODOLOGY Should be re-quali	tied.	ACCIDENT		KOLA	12 2 /12
11	WOALTFICATION OF	SAFEIT	ANALISIS	1115	Meas	verification with events	U tect i	n 1982 in I	(ozlodiny	NULA Whore Roll-8	12.2.(1) fail to
					nco:	a should be used for code v	erifica	11 1702 111 1 Ition.	(021000)	MICIE ONO-N	
11	QUALIFICATION OF	SAFETY	ANALYSIS	1175	THRE	E - DIMENSIONAL CODE	D	ACCIDENT	1.11	KOLA	12.4.(1)
				-	Thre	e-dimensional core compute	r codes	with coup	led neuti	ronic/thermo	hydraulic
					mode	el should be used for contr	ol rod	ejection e	vents.		
11	QUALIFICATION OF	SAFETY	ANALYSIS	1185	VAL	IDATED CODE	D	ACCIDENT	1.11	KOLA	12.5.(10)
					A va	alidated advanced thermal-h	ydraul i	c code sho	uld be u	sed in the c	lesign of
					new	Emergency Core Cooling Sys	tem.				

ISSUE TITLE: Scope of accident and transient analysis

RANK OF ISSUE: III

ISSUE CLARIFICATION:

At present, no safety analysis report exists for some plants. Moveover, a systematic approach to accident analysis is necessary to ensure that all relevant accident/transients have been evaluated and that the analyses are adequate and that applicable acceptance criteria are fulfilled. This is necessary to ensure plant safety and to provide a basis for development of plant procedures and operator training.

RELATED ITEMS:

117, 164, 166, 167, 171-174, 177, 184-186,372, 376, 390, 680, 681, 691-693, 699, 700, 701, 703, 711-713, 720, 835, 837, 838, 839, 840, 843, 859, 860, 863, 867,868, 1023, 1165, 1166, 1167, 1169, 1170, 1172, 1174, 1187, 1189, 1192, 1194, 1196, 1197

JUSTIFICATION OF RANKING:

Although some analyses have been performed at the design stage and additional calculations have been performed at supporting institutions, the lack of a systematic approach does not allow a conclusion about the completeness of the analysis. Even for some accident already analyzed, the analysis need to be redone with different assumptions or completed to final stable conditions. Some analyses have to be redone with state-of-the-art computer codes.

CONCEPTUAL RECOMMENDATIONS:

A systematic approach should be taken to accident analysis. First by a methodological identification of accidents to be analyzed and the appropriate boundary conditions. Then by ensuring consistency of the analysis with actual plant specific data and expected operator action according plant procedures. The single failure criterion should be applied and common mode failure should be taken into account. Accidents not considered so far, including accidents beyond the design basis, have to be included in the analysis. All analyses should be carried out to final stable conditions and results should be compared with applicable acceptance criteria. Some realistic (rather than conservative) analysis should be performed to form a basis for development and optimization of operating procedures and operator training.

CAT.	ISSUE	ITEM n. TITTLE/D	escription A	SPECT AREA	CLASS	REFERENCE
111 SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	117 SET POINT SP Technical sp margins cont	ECIFICATIONS mecification content emplated in the des	D+O ACCIDENT s with respect 1 ign to cover ins	1.21 DESRE to set point ca strument innacc	V 4.3.4.A Aculations and Auracies, drift
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	and response 164 SYSTEMATIC A It is recomm analysis of analysis, us carried out carried out	time, should be re CCIDENT ANALYSIS initiating events a ing assumptions whi up to plant stable to develope plant p	viewed. D ACCIDENT fety assessment nd multiple fail ch maximize the conditions. Best rocedures and fo	1.11 DESRE of the plants ure. A set of parameters of estimate anal properator tra	V III.6.2.1 by a systematic conservative concern should ysis should be ining.
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSIS	166 ANALYSIS TO Analysis sho is necessary	STABLE CONDITIONS uld be carried on u to define operator	D ACCIDENT ntil stable plar actions.	1.11 DESRE	V III.6.2.3 The achieved. This
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSIS	167 PLANT SPECIF Accident ana the analysis	IC ANALYSIS lysis should be pla vary from plant to	D ACCIDENT nt specific, sin plant.	1.11 DESRE nce many featur	V III.6.2.4 res important for
111 SCOPE OF	ACCIDENT OR TRANSIENT ANALYSIS	171 CONSISTENCY Review plant scram signal	ANALYSIS/OPERATION specific analysis s and operating pro	D ACCIDENT for consistency cedures.	1.11 DESRE with actual pl	V III.6.2.7 ant arrangements,
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSIS	172 INCOMPLETE A The followin Anticipated refuelling; common mode	CCIDENT ANALYSIS in g accidents apparen Transient Without S Transients Leading failure.	D ACCIDENT tly have not bec cram (ATWS); Acc to thermal shock	1.11 DESRE en analysed: In cidents at shut c; Accidents re	V 6.1.5.2 Iterfacing LOCA; down or Isulting from
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSIS	173 USE OF SINGL The way sing in the accid	E FAILURE CRITERIA le failure criteria lent analysis should	D ACCIDENT (both active a be reviewed.	1.4 DESRE and passive fai	V 6.1.8.1 lures) is applied
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSIS	174 OPERATIONAL Additional a the ability margins.	TRANSIENT ANALYSIS malysis of operatio of control systems	D ACCIDENT nal transients a to cope with the	1.11 DESRE are required to am and to quant	V 6.2.9 o further assess ify operating
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSIS	177 FAILURE OF A A failure of	Z-IV AZ-IV in the event	D ACCIDENT of a single roo	1.11 DESRE didrop should t	V 6.3.8.A me discussed.
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	184 SG TUBE RUPT A complete s should be pe valves).	URE ANALYSIS tudy of all possibl erformed (e.g. opera	D ACCIDENT e system failure tion of gate val	1.11 DESRE es involved in lves, stuck ope	V 6.6.7 SG tube rupture en pressurizer
111 SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	185 PRESSURIZED Overcooling	THERMAL SHOCK and consequent Pres	D ACCIDENT surized Thermal	1.11 DESRE Shock (PTS) du	V 6.6.8 uring small break
111 SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	186 WORST CASE S The full spe should be in location, in	STEAM LINE BREAK Ectrum of initial an investigated in order nitial power, availa	D ACCIDENT d boundary cond to identify the bility of power	1.11 DESRE itions for stea e worst case (e supply, single	V 6.7.5.2 Am line break e.g break size and e failure).
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	372 BEST ESTIMAT Best estimat	TE ANALYSES te analyses using re ant response, develo	D ACCIDENT alistic assumpt	1.11 BOHUH ions should be	(ICE 11.1.(1) performed to
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	376 COLD TEMPER/ Analyse the	ATURE SHOCK effect of cold wate	D ACCIDENT er injection in	1.11 BOHUN	NICE 11.6.(1) ssel inlet nozzle
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	during small 390 ATWS A review sho Scram (ATWS)	breaks. build be made to veri) events need to be	D ACCIDENT fy which furthe analysed.	1.11 80KU r Anticipated ¹	NICE 11.12.(1) Fransient Without
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	680 SCOPE OF ACC The list of	CIDENT ANALYSIS accidents to be and t should be reviewed	D ACCIDENT alysed in the ne	1.11 KOZL ar future shou	00UY 11.1.(1) ld be more
III SCOPE OF	ACCIDENT OR TRANSIENT ANALYSI	681 SCHEDULE OF A realistic	THE ANALYSIS time table should b	D ACCIDENT be developed tak	1.11 KOZLI en into accoun	ODUY 11.1.(2) t priorities and

.

CAT. 1 SSUE ITEM n. TITTLE/Description ASPECT AREA CLASS REFERENCE availability of computer and personnel. 111 SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 691 ACCIDENT ANALYSIS RESULTS D ACCIDENT 1.11 KOZLODUY 11.2.(3) A more standardized format for reporting result of accident analysis should be used III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 692 ACCEPTANCE CRITERIA Ð ACCIDENT 1.11 KOZLODUY 11.2.(4) Acceptance criteria should be stated for each accident analysed. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 693 PRESSURIZED THERMAL SHOCK D ACCIDENT 1.11 KOZLODUY 11.2.(5) The possibility of pressurized thermal shock and the way it is analysed should be mentioned in LOCA results. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS ACCIDENT 1.11 KOZLODUY 11.3.(3) 699 SCOPE OF SECONDARY ACCIDENTS D The decrease of feedwater temperature and the increase of steam flow should be analysed. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 700 PUMP RUNDOWN ANALYSIS D ACCIDENT 1.11 KOZLODUY 11.4.(1) A new pump rundown analysis with RELAP5/mod2 should be made with conservative pressure boundary conditions from the DNB point of view. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 701 HOT CHANNEL ANALYSIS D ACCIDENT 1.11 KOZLODUY 11.4.(2) After the new pump rundown has been analysed with RELAP5/mod2 and appropriate boundary conditions, a new hot channel analysis should be performed. 111 SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 703 SCOPE OF FLOW PERTURBATIONS D ACCIDENT 1.11 KOZLODUY 11.4.(4) Seizure of main circulating pump rotor and inadvertent closing of a main isolation valve should be analysed. ACCIDENT 1.11 KOZLODUY 11.7.(2) III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 711 SCOPE OF TRANSIENT ANALYSIS D At least the following transients should be analysed: uncontrolled control assembly withdrawal, control rod ejection, startup of an isolated colder primary loop. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 712 SCOPE OF ATWS ANALYSIS D ACCIDENT 1.11 KOZLODUY 11.7.(3) At least the following ATWS cases should be analysed: loss of feedwater, control assembly withdrawal. 111 SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 713 ACCIDENTS DUE TO SECONDARY D ACCIDENT 1.11 KOZLODUY 11.7.(4) Accidents due to secondary disturbances such as turbine trip, decrease in steam flow or loss of external power, should be analysed. 111 SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 720 INSERTED REACTIVITY RATE D CORE 3.5 NOVOVORONE 7.4.(2) Evaluate if reactivity insertion rate is enough for all credible accidents. 111 SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS ACCIDENT 1.11 835 USE OF SINGLE FAILURE CRITERIA D NOVOVORONE 12.1.(1) The way the single failure criterion is applied throughout the accident analysis should be carefully reviewed. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 837 BEST ESTIMATE ANALYSIS D ACCIDENT 1.11 NOVOVORONE 12.1.(3) Best estimate analyses using actual plant data, realistic assumptions with respect to equipment performance should be performed. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 838 INCOMPLETE ACCIDENT ANALYSIS D ACCIDENT 1.11 NOVOVORONE 12.1.(4) The scope of the accident analyses should be completed in accordance with international practices. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 839 SAFETY ANALYSIS REPORT D ACCIDENT 1.11 NOVOVORONE 12.1.(5) A complete safety assessement of the plant by a systematic and thorough analysis of initiating events and multiple failures should be conducted and incorporated in the safety analysis report. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 840 OPERATION WITH 3-5 MCP D ACCIDENT 1.11 NOVOVORONE 12.2.(1) The operational benefit of operating with 5-3 pumps should be evaluated versus challenge to safety. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 843 FLOW PERTURBATIONS ACCIDENT 1.11 D NOVOVORONE 12.2.(4) Analyse the inadvertment closure of a main coolant isolation valve for Novovoronezh-4 specific data. III SCOPE OF ACCIDENT OR TRANSIENT ANALYSIS 859 FEED WATER LINE BREAK D ACCIDENT 1.11 NOVOVORONE 12.4.(1) Adequacy of the main feedwater system isolation should be assessed for all possible scenarios.

CAT.	ISSUE		ITEM	n. TITTLE/Description	ASPECT	AREA	CLASS	REFERI	INCE
111 SCOPE OF	ACCIDENT OR	TRANSIENT ANALYSIS	860	FEED WATER LINE BREAK	D	ACCIDENT	1.11	NOVOVORONE	12.4.(2)
				Closure of the pump discharge	valves	should be	contempla	ated to ensu	ure reliable
				main feedwater system isolati	on.				
III SCOPE OF	ACCIDENT OR	TRANSIENT ANALYSIS	863	SG TUBE RUPTURE ANALYSIS	D	ACCIDENT	1.11	NOVOVORONE	12.5.(1)
				close the main coolant isolat	ion vari	ious scenar	105, 1nc	lucing the	raiture to
III SCOPE OF	ACCIDENT OR	TRANSIENT ANALYSIS	867	ATUS	D	ACCIDENT	1.11	NOVOVORONE	12.6.(1)
				Future analyses should assume	a compl	lete failur	e of the	reactor pro	otection and
				safeguards systems.					
III SCOPE OF	ACCIDENT OR	TRANSIENT ANALYSIS	868	ATWS	D	ACCIDENT	1.11	NOVOVORONE	12.6.(2)
				The calculations should be pe	rformed	until stab	le condi	tions are re	eached.
TTT SCOPE OF	· ACCIDENT OR	IRANSIENT ANALTSIS	1023	CORE CALCULATIONS	Denced	CORE and come d	1.11 Acien co	KULA Louintione d	(.1.())
				be increased to provide the r	equired	interface	data.		scope should
III SCOPE OF	ACCIDENT OR	TRANSIENT ANALYSIS	1165	ACCESS TO EARLIER CALCULATION	S D	ACCIDENT	1.11	KOŁA	12.1.(1)
				Earlier accident analysis of	WER-440	0/230 shoul	d be com	piled and m	ade
				accessible and understandable	to plan	nt personne	t.		
III SCOPE OF	ACCIDENT OR	TRANSIENT ANALYSIS	1166	PLANT SPECIFIC ANALYSIS	D	ACCIDENT	1.11	KOLA	12.1.(2)
				A complete set of analysis sp	ecific (to the plan	t should	be perform	ed. It
				should be updated if its affe	cted by	plant modi	fication	s.	
III SCOPE OF	ACCIDENT OR	TRANSIENT ANALYSIS	1167	ACCIDENTS BEYOND DESIGN BASIS	Ð	ACCIDENT	1.11	KOLA	12.1.(3)
				Accidents beyond the original	design	basis shou	ld be co	nsidered, s	uch as ATWS,
ULL SCOPE OF		TRANSIENT ANALYSIS	1160	INTERTACING LUCA.	n	ACCIDENT	1 11	KOLA	12 1 (5)
111 30012 01	AUDIOLAT DA		1107	Accident analysis should be c	omplete	with respe	ct of th	me period o	f
				calculations, i.e., up to sta	ble con	ditions or	to relea	ses.	
111 SCOPE OF	ACCIDENT OR	TRANSIENT ANALYSIS	1170	BEST ESTIMATE ANALYSIS	D	ACCIDENT	1.11	KOLA	12.1.(6)
				Best estimate analysis should	be per	formed for	optimizi	ng operaing	procedures.
III SCOPE O	ACCIDENT OR	TRANSIENT ANALYSIS	1172	SYSTEMATIC ACCIDENT ANALYSIS	D 1-1-5	ACCIDENT	1.11	KOLA	12.1.(8)
				code and models used, initial	and ho	undary cond	n respec litions.	acceptance	criteria.
				results with plot of all rele	vant pa	rameters ar	d conclu	sions.	·····,
III SCOPE OF	F ACCIDENT OR	TRANSIENT ANALYSIS	1174	LOSS OF FLOW EVENTS	D	ACCIDENT	1.11	KOLA	12.3.(1)
				A complete set of loss of flo	w events	s covereing	all ope	rating mode	s should be
				performed. This includes clos	ing of	gate valves	and cos	t down of a	ll 6 pumps.
III SCOPE O	F ACCIDENT OR	TRANSIENT ANALYSIS	1187	SG TUBE RUPTURE ANALYSIS	D	ACCIDENT	1.11 	KOLA d be nonfor	12.6.(1)
				actual plant data. Best estim	ate ana	lvsis of va	rious sc	enarios sho	uld be used
				to optimize operating procedu	res.	.,			
III SCOPE O	F ACCIDENT OR	TRANSIENT ANALYSIS	1189	SG COLLECTOR RUPTURE	D	ACCIDENT	1.11	KOLA	12.6.(3)
				Analysis of steam generator c	ollecto	r rupture s	hould be	continued	and results
				should be documented. Emergen	cy oper	ating proce	dures sh	ould be rev	ised based
111 00005 0	ACCIDENT OF		4402	on the results.		ACCIDENT			13 7 /21
III SLOPE U	F ACCIDENT OR	(IKANJICHI ANALIJIA	1192	Steam line runture accident f	rom zer	o power sho	uld be a	nalvsed to	demonstrate
				that no recriticality will oc	cur.				
III SCOPE O	F ACCIDENT OR	R TRANSIENT ANALYSIS	1194	MULTIPLE STEAM LINE BREAKS	D	ACCIDENT	1.11	KOLA	12.7.(4)
				An analysis of multiple ruptu	ire (up	to 3) of si	team line	s should be	performed.
III SCOPE O	F ACCIDENT OR	R TRANSIENT ANALYSIS	1196	LOSS OF FEEDWATER ANALYSIS	D	ACCIDENT	1.11	KOLA	12.7.(6)
111 00000 0	-		1107	Analysis of complete loss of	main fe n	edwater sho	2010 be p 1 11	KOLA	12 8 /11
III SCOPE U	F ACCIDENT UN	LIKANJIENI ANALIJIJ	1197	A set of Anticinated Transfer	v nt Witho	ut Scram s	nould be	analysed. i	ncluding
				loss of feedwater, loss of po	wer, ro	d withdraw	al. Resul	ts should b	e used to
				dimension second shutdown sys	tem (bo	ron).			

ISSUE TITLE: Loss of coolant accidents

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The scope and the quality of plant specific LOCA analysis is insufficient for some plants even within the original design basis

RELATED ITEMS:

168, 180, 181, 380, 694, 690, 696, 740, 793, 846, 847, 848, 849, 850, 851, 852, 853, 854, 857, 858, 1176, 1177, 1179, 1182, 1183, 1184

JUSTIFICATION OF RANKING:

Additional analysis are necessary to reach the international practice, especially when, the emergency core cooling systems are redesigned to cope with leaks larger than 32 mm in diameter.

CONCEPTUAL RECOMMENDATIONS:

A consistent analysis of the complete (with respect of break size and location and loop isolation condition) spectrum of loss-of-coolant accidents with best-estimate computer codes is recommended. The computer codes should be qualified by verification against a matrix of singe effect and integral thermal-hydraulic tests according to international practice. Single failure and repair cases should be taken into account as well as the aspect of long term core cooling. The analysis should be done on a plant specific basis. The analysis should be carried out until the coolability of the reactor core can be proven.

CAT.	I SSUE		I TEM	n. 1	ITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
III LOSS O	F COOLANT	ACCIDENTS	168	INVES	TIGATE LIMITING LOCA	D	ACCIDENT	1.11	DESREV	111.6.2 5
				It is	recommended an analysi	s of inci	reased size	Loss Of	Coolant Ac	cident
				(LOCA) to determine whoch si	ze break	the curren	t safety	systems ca	an cope with.
				Esser	tial plant parameters s	hould be	varied (e.	g. availa	able redund	lancies,
				ромег	supply, etc).			-		
III LOSS O	F COOLANT	ACCIDENTS	180	RUPTU	RE OF INJECTION COLLECT	ORD	ACCIDENT	1.11	DESREV	6.5.7
				The r	upture of one safety in	jection (collector s	hould be	analysed.	
III LOSS O	F COOLANT	ACCIDENTS	181	POST	LOCA LONG TERM COOLING	D+0	ACCIDENT	1.11	DESREV	6.6.6
				Analy	sis of post LOCA long t	erm cool	ing should l	be revie	wed. The re	elative
				орега	ting procedures should a	also be i	reviewed.			
ITT LOSS O	F COOLANT	ACCIDENTS	380	ANALY	SIS OF 200mm LOCA	D	ACCIDENT	1.11	BOHUINCE	11.6.(5)
				Condu	ct a detailed analysis	of the m	inimum numb	er of sa	fety inject	tion pumps
				neces	sary to avoid clad fail	ure, assu	umang loss (of power	and Diesel	capacity.
III LOSS O	F COOLANT	ACCIDENTS	690	ANALY	SIS TO STABLE CONDITION	S D	ACCIDENT	1.11	KOZLODUY	11.2.(2)
				The L	OCA analysis should be	allways (carried out	to fina	l stable co	onditions.
III LOSS O	F COOLANT	ACCIDENTS	694	UNITS	1 AND 2 LOCA ANALYSIS	D	ACCIDENT	1.11	KOZLODUY	11.2.(6)
				The L	OCA analysis should be	extended	to Units 1	and 2 s	pecific con	nditions.
111 LOSS O	F COOLANT	ACCIDENTS	696	SCOPE	OF LOCA ANALYSIS	D	ACCIDENT	1.11	KOZLODUY	11.2.(8)
				Analy	se also steam generator	collect	or break, s	urge lan	e rupture a	and small
				break	s in hot leg and emerge	ncy wate	r collector	•		
III LOSS O	F COOLANT	ACCIDENTS	740	BORON	CRISTALLIZATION	D	SYSTEMS	3.6	NOVOVORONE	8.3.(2)
				Verit	y that in case of a hot	leg brea	ak, the inc	rease in	boron cond	centration
				does	not lead to boron crist	allızatı	on.			
III LOSS O	F COOLANT	ACCIDENTS	793	OPENI	NG OF 2 SAFETY VALVES	D	1&C	3.1	NOVOVORONE	10.2.(2)
				The a	afety analysis of inadv	ertent o	pening of t	wo valve	s should be	e evaluated
				to er	sure that this failure	is within	n the desig	n basis I	LOCA envelo	xpe.
III LOSS O	OF COOLANT	ACCIDENTS	846	SINGL	E FAILURE CRITERION	. D	ACCIDENT	1.11	NOVOVORONE	12.3.(1)
				Appli	cation of the single fa	ilure cr	iterion sho	uld be r	eviewed and	d new
				analy	sis should be performed	accordi	ngly.			
III LOSS O	IF COULANT	ACCIDENTS	847	LOCA	SENSITIVITY STUDIES	D	ACCIDENT	1.11	NOVOVORONE	: 12.3.(2)
				sensi	tivity studies should b	e perton	nea to aemo	strate ti	ne conserva	acism of the
111 1055 0		ACCIDENTS	8/.8	LOCA	SENSITIVITY STIDIES	n	ACCIDENT	1 11		= 12 3 (3)
111 1035 0	I COUCHRI	ACCIDENTS	040	Sensi	tivity studies to diffe	rent avi	al nover sh	anes sho	uld be perf	formed
111 1055 0		ACCIDENTS	840	CODE	VALIDATION	D	ACCIDENT	1 11		= 12 3 (4)
	OUCCANT	ROUDERID	047	Compi	ter codes valudated for	hot lea	injection	should b	e used.	
				- Compo		not teg	injection i	onoutu o	c abca.	
III LOSS C	F COOLANT	ACCIDENTS	850	DATA	TRANSFER	D	ACCIDENT	1.11	NOVOVORONE	12.3.(5)
				Data	transfer for DINAMIKA c	ode to t	he UROVEN c	ode shou	ld be impro	ove.
III LOSS C	F COOLANT	ACCIDENTS	851	LOCA	ANALYSIS	D	ACCIDENT	1.11	NOVOVORONE	E 12.3.(6)
				Analy	ses shuold be extended	to the t	ime stable	conditio	ns are obta	anned.
III LOSS C	OF COOLANT	ACCIDENTS	852	COLD	LEG BREAK LOCA	D	ACCIDENT	1.11	NOVOVORONE	E 12.3.(7)
				The a	nalysis without safety	injectio	n actuation	should	be repeated	d for a cold
				leg I	oreak.				•	
III LOSS C	OF COOLANT	ACCIDENTS	853	COLD	LEG BREAK LOCA	D	ACCIDENT	1.11	NOVOVORONE	E 12.3.(8)
				The e	esults obtained sick DI	NAMIKA c	ode after t	he loss	of circulat	tion should
				be us	ed with care.					
III LOSS C	OF COOLANT	ACCIDENTS	854	POST	LOCA LONG TERM COOLING	D	ACCIDENT	1.11	NOVOVORONE	E 12 3.(9)
				Analy	sis demostrating the lo	ng term	capability	of the s	afety syste	ems to remove
				decay	heat should be conduct	ed.				
III LOSS C	OF COOLANT	ACCIDENTS	857	LARG	LOCA ANALYSIS	D	ACCIDENT	1.11	NOVOVORONE	E 12.3.(12)
				Comp	iter codes validated for	the Nov	ovoronezh N	PP Large	LOCA analy	ysis with an
				upgra	ided safety injection sy	stem sho	uld be used			
III LOSS C	OF COOLANT	ACCIDENTS	858	OPEN	ING SAFETY RELIEF VALVES	D	ACCIDENT	1.11	NOVOVORONE	E 12.3.(13)
				Open	ing of two pressurizer s	afety va	lves in cas	e of sin	gle failure	e in the
				logi	should be further inve	stigated	-			

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
111	LOSS OF COOLANT A	ACCIDENTS 1176	LOCA The p	ANALYSIS WITH MODERN CC present LOCA results sho	DED Nuldbeva	ACCIDENT alidated wit	1.11 h a mod	KOLA iern code cov	12.5.(1) vering the
111	LOSS OF COOLANT A	ACCIDENTS 1177	ADD1 Calci	e spectrum of thermo-hyd TIONAL DBA ANALYSIS ulation of 32 mm break,	Design ba	ACCIDENT asis Acciden	1.11 It with	KOLA leak in the	12.5.(2) cold leg
111	LOSS OF COOLANT A	ACCIDENTS 1179	SENS A sei shou	reactor trip on primary ITIVITY STUDY nsitivity study of LOCA ld be performed.	rsystem p D results t	ACCIDENT to different	nd subs 1.11 axial	equent loss KOLA рожег distri	ibution
111	LOSS OF COOLANT A	ACCIDENTS 1182	SMALI The i	L BREAK LOCA ANALYSIS 20 mm break analyiss sho ty injection flow	D butd be ex	ACCIDENT (tended in t	1.11 ime up	KOLA to leak flow	12.5.(7) requal to
111	LOSS OF COOLANT A	ACCIDENTS 1183	ANAL'	YSIS OF 60 mm BREAK ysis of 60 mm break shou	D Ild be per	ACCIDENT	1.11 four E	KOLA P-50 inject	12.5.(8) ion pumps
[]]	LOSS OF COOLANT A	ACCIDENTS 1184	ANAL' Calco	- YSIS OF 100 mm BREAK ulation of 100 mm break	D should be	ACCIDENT continued	1.11 until c	KOLA oolability d	12.5.(9) of the core

has been proven.

ISSUE TITLE: Radiological consequences

RANK OF ISSUE: II

ISSUE CLARIFICATION:

The ultimate objective of nuclear safety is to avoid indue radiological consequences to the public in case of a major accident. Therefore, in case of accidents contemplated in Accident Analysis 6 and 7 issues with outside release, the radiological consequences should be estimated and legal dose limits verified.

RELATED ITEMS:

388, 389, 695, 709, 732, 836, 864, 866, 1171, 1180, 1186, 1188, 1190, 1193

JUSTIFICATION OF RANKING:

For most of the accidents there is no radiation release outside the plant. For those with release, the amount of radioactivity has been estimated to be very low. However, no calculations in terms of dose to the public have been performed.

CONCEPTUAL RECOMMENDATIONS:

For accidents which involve release of radioactivity to the environment, the complete calculation of source terms and radiological consequences to the public should be calculated taking into account the actual leak tightness of the confinement.

CAT	. ISSUE	ITEM	n. TI	TTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	RADIOLOGICAL CONSEQUENCES	388	RADIOL Radiol	OGICAL CONSEQUENCES ogical consequences of	D the stea	ACCIDENT am generato	1 11 r collec	BOHUNICE tor should	11.11.(1) be completed
11	RADIOLOGICAL CONSEQUENCES	389	SOURCE Conser radiol be def	TERMS vative source terms sho ogical consequences. As ined .	D Duld be (s a mini	ACCIDENT defined for num, Technia	5.4 the cal cal Spec	BOHUNICE culation of ification v	11.11.(2) alues should
11	RADIOLOGICAL CONSEQUENCES	695	RADIOL The ra	OGICAL CONSEQUENCES diological consequences	D sof LOC	ACCIDENT As should b	1.11 e evalua	KOZLODUY ted.	11.2.(7)
11	RADIOLOGICAL CONSEQUENCES	709	RADIOL The ra	OGICAL CONSEQUENCES diological consequences be evaluated.	D s of the	ACCIDENT total blac	5.4 kout sev	KOZLODUY ere acciden	11.6.(2) t scenario
11	RADIOLOGICAL CONSEQUENCES	732	STEAM Study SG saf releas	GENERATOR HEADER RUPTUR steam generator collect ety valve in the open p es.	RE D tor head position	SYSTEMS rupture co to estimate	1.11 mbined w e the in	NOVOVORONE 1th a block duced radio	8 1.(3) age of the active
11	RADIOLOGICAL CONSEQUENCES	836	RADIOL Radiol	OGICAL CONSEQUENCES ogical consequence eval ational practices.	D Luations	ACCIDENT should be	1.11 performe	NOVOVORONE d in accord	12.1.(2) ance with
11	RADIOLOGICAL CONSEQUENCES	864	SG TUB Establ analys	E RUPTURE CONSEQUENCES 1sh radiological consecutions	0 quences	ACCIDENT to the envi	1.11 ronment	NOVOVORONE by a conser	12.5 (2) vative
11	RADIOLOGICAL CONSEQUENCES	866	SGTR W The st analys radiol	THOUT SG ISOLATION eam/water releases to a is failure to isolate a ogical consequence cal	D the envi the stea culation	ACCIDENT ronment obt m generator	5.4 ained fr should	NOVOVORONE om an SGTR be used for	125(4) assuming
11	RADIOLOGICAL CONSEQUENCES	1171	RADIOL Radiol accide	OGICAL CONSEQUENCES ogical consequence ana nts	D Lyses sh	ACCIDENT ould be per	5.4 formed f	KOLA or all rele	12.1.(7) vant
11	RADIOLOGICAL CONSEQUENCES	1180	LOCA R Analys based	ADIOLOGICAL CONSEQUENCE is of Design Basis LOC on measured leaktightm	ES D A radiol ess of c	ACCIDENT ogical cons onfinment.	1 11 equences	KOLA should be	12.5.(5) performed,
11	RADIOLOGICAL CONSEQUENCES	1186	NEW DE Analys be per	A CONSEQUENCE ANALYSIS is of radiological con- formed, based on confil	D sequence nment le	ACCIDENT s of the ne aktightness	1.11 W Design Measure	KOLA Basis Acci ments.	12.5.(11) dent should
11	RADIOLOGICAL CONSEQUENCES	1188	SG TUB Calcul should	E RUPTURE CONSEQUENCES ation of radiological be performed.	D conseque	ACCIDENT nces of ste	1 11 am gener	KOLA ator tube r	12.6.(2) upture
11	RADIOLOGICAL CONSEQUENCES	1190	COLLEC Radiol	TOR RUPTURE CONSEQUENCE ogical consequences of med.	ES D steam g	ACCIDENT enerator co	1.11 Ilector	KOLA rupture sho	12.6.(4) uld be
11	RADIOLOGICAL CONSEQUENCES	1193	STEAM The ru tube s	LINE AND SG TUBE BREAK upture of the steam lin should be analysed, inc	D e with s luding r	ACCIDENT ubsequent r adiological	1.11 upture o consequ	KOLA of a steam g mences.	12.7.(3) Menerator

ISSUE TITLE: Evaluation of Modifications

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Modifications and upgrades in systems with deficiencies in protection against single failures and high potential for common cause failures need to be evaluated using methods which can consider these problems in a systematic and methodological way.

RELATED ITEMS:

73, 111, 316, 373, 374, 618, 631, 741, 754, 756, 760, 767, 1071, 1074

JUSTIFICATION OF RANKING:

A systematic identification of design weaknesses of individual systems and the evaluation of possible modification options are of high safety importance. Risk based methods although not a formal requirement, have been recognized in may countries as an useful tool for supporting safety decisions.

CONCEPTUAL RECOMMENDATIONS:

A systematic evaluation of backfitting measures, including the risk impact (positive or negatives) of each measure in the overall plant safety should be conducted prior to any implementation.

Reliability analysis methods should be used to evaluate the risk impact of design options and to prioritize modifications.

CAT.	ISSUE	ITEM	n. TITTLE/Descript	ion A	SPECT	AREA	CLASS	REFER	ENCE
III EVALUATIO	N OF HODIFICATIONS	73	BACKFITTING EVALUAT A systematic evalu (positive and negat conducted prior to complementary means	ION AND PSA ation of bac ive) of each any implenta to assess t	D ckfitti n measu ation s this sa	SYSTEMS ing measure ure in the steps. PSA afety impac	1.11 es, inclu overall presents et.	DESREV ding the im plant safet an adequat	111.2.2.2 ppact y should be e
III EVALUATIO	N OF MODIFICATIONS	111	REACTOR PROTECTION The reliability of to establish the po	SYSTEM the reactor tential weak	D protec	1&C tion systems of the s	3.5 m should	DESREV be evaluat	III.4.2.12 ed in order
III EVALUATIO	N OF MODIFICATIONS	316	SAFETY SYSTEM INPRO Complete planned mo involved system, in modifications.	VEMENTS difications. cluding supp	D Also, port sy	SYSTEMS perform a /stems, to	1.6 fault t evaluate	BOHUNICE ree analysi impact of	8.3.(2) s of
III EVALUATIO	N OF MODIFICATIONS	373	COMMON MODE FAILURE A complete study of internal and extern	STUDY common mode al events to	D e failu p ident	ACCIDENT ures should tify weak p	1.6 1 be perf xoints.	BOHUNICE ormed, incl	11.1.(2) uding
III EVALUATIO	N OF MODIFICATIONS	374	PROBABILISTIC SAFET Undertake a level-1 practices and to ev	Y ASSESSMEN Probabilist aluate prior	D tic Saf	ACCIDENT ety Assess modificat	1.11 ment acc	BOKUNICE ording to i	11.1.(3) nternational
III EVALUATIO	N OF MODIFICATIONS	618	SAFETY SYSTEM IMPRO Complete proposed b involved systems, i modifications.	VEMENTS ackfitting a ncluding sup	D neasure oport s	SYSTEMS es. Also pe systems, to	1.11 erform a evaluat	KOZLODUY fault tree e impact of	8.4.(1) analysis of
III EVALUATIO	N OF MODIFICATIONS	631	COMMON CAUSE FAILUR Perform a systemati ruptures and earthc	ES STUDY c integrated wake.	D d hazaı	SYSTEMS d analysis	1.6 includi	KOZLODUY ng fire, fl	8.6.(1) .ooding, tank
III EVALUATIO	N OF MODIFICATIONS	741	ECCS - MODIFICATION Before undertaking select the most app	S important mo ropiate solu	D Ddifica J tion .	SYSTEMS ations, per	3.6 form rel	NOVOVORONE iability ar	8.4.(1) alysis to
III EVALUATIO	N OF MODIFICATIONS	754	LOSS OF ELECTRICAL Perform probabilist complete loss of el	POWER ic studies o ectrical pom	D concern wer suj	SYSTEMS ning the ri oply.	1.11 isk encou	NOVOVORONE Intered from	8.7.(4) h the
III EVALUATIO	N OF MODIFICATIONS	756	LOSS OF SG FEEDWATE Perform probabilist complete loss of fe	R ic studies (edwater.	D	SYSTEMS ning the ri	1.11 isk encou	NOVOVORONE Intered from	8.8.(2) n the
III EVALUATIO	N OF MODIFICATIONS	760	LOSS OF SAFETY SYST Perform a probabili safety injection sy	EM stic study (/stem.	D of the	SYSTEMS total loss	1.11 s of the	NOVOVORONE spray syste	8.8.(6) and/or the
III EVALUATIO	N OF MODIFICATIONS	767	LOSS OF HEAT SINK Perform a probabili loss of heat sink.	stic study (D conceri	SYSTEMS n the risk	1.11 encounte	NOVOVORONE red from th	E 8.10.(2) ne complete
III EVALUATIO	N OF MODIFICATIONS	1071	CONTROL ROOM DESTRU A probebilistic stu of the control room	ICTION ady should be n.	D e perf	SYSTEMS ormed to ev	1.6 valuate t	KOLA he risk of	8.6.(6) destruction
III EVALUATIO	N OF MODIFICATIONS	1074	SERVICE WATER SYSTE A probabilistic sat evaluate proposed r	M ANALYSIS fety study o modification	D f serv s.	SYSTEMS ice water :	1.6 system sh	KOLA Iould be per	8.7.(2) rformed to

ISSUE NUMBER: Fire Protection 1

ISSUE TITLE: Fire Protection Analysis

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Further fire hazard analysis is needed for areas previously not studied and to analyze the effectiveness of previous upgrades.

RELATED ITEMS:

397, 399, 537, 398, 536, 1304, 1306, 1312, 991, 992, 993, 998, 1069, 816, 821, 1162, 1000, 1326

JUSTIFICATION OF RANKING:

Due to insufficient redundancy and segregation of safety related systems, fire hazard is one of the major sources of common cause failure of the safety functions.

CONCEPTUAL RECOMMENDATIONS:

Fire protection should be upgraded. To do it systematically, a fire risk evaluation should be conducted in each plant with the objective of defining precise recommendations in order to reduce significantly the fire risk.

CAT.	I SSUE		ITEM	n	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
III FIRE	PROTECTION ·	- ANALYSIS	397	FIR	E HAZARDS ANALYSIS e hazards analysis should	0 be done	FIRE for the co	1.6 ntroled	BOHUNICE area and fo	12.4.(1) or conditions
III FIRE	PROTECTION -	- ANALYSIS	398	ADD	ITIONAL FIRE ALARNS	0	FIRE	1.6	BOHUNICE	12.4.(2)
				Dec pri	ision on installation of mary circuit rooms should	fire ala be base	rm in the r d on a fire	eactor b hazards	uilding and analysis.	i other
III FIRE	PROTECTION -	- ANALYSIS	399	FIR As	E PROTECTION UPGRADES tudy assessing the contril	0 bution o	FIRE f the sever	1.6 al propo	BOHUNICE sed fire pr	12.4.(3) otection
				upg	radings should be perform	ed. This	should lea	d to est	ablishing p	priorities.
III FIRE	PROTECTION	ANALYSIS	536	FIR	E HAZAKDS ANALISIS e hazard analysis should l eading from one unit to th	U be carri be other	ed out to d	1.0 etermine	the threat	5.3.(2) of fire
III FIRE	PROTECTION -	- ANALYSIS	537	CON	TROL FIRE HAZARD ANALYSIS		FIRE	1.6	KOZLODUY	5.3.(3)
III FIRE	PROTECTION ·	- ANALYSIS	816	SWI	TCHGEAR ROOM PROTECTION	D	ELECTRICAL	3.3	NOVOVORONE	: 11.1.(4)
				Ins	tall a drainage system to	remove	the water o	r foam d	we to the e	extinguishing
III FIRE		ANALYSIS	821	DG	COMPARTMENTS	D	ELECTRICAL	at equip 1.6	NOVOVORONE	= 11.2.(2)
				Mos die the	t relevant components and sel compartment should be risk of fire.	devices identif	which cont ied. Realiz	ribute t e local	o fire load improvement	i within each ts to reduce
III FIRE	PROTECTION	ANALYSIS	991	DET	ECTION AND SUPRESSION	0	FIRE	1.6	NOVOVORONE	5.3.(3)
				Dla	nt areas where there is a	risk of	causing co	nation mod	le failure d	over all
III FIRE	PROTECTION	ANALYSIS	992	HIT	IGATION	0	FIRE	1.6	NOVOVORONE	5.3.(4)
				All doo	buildings should be analy rs should be installed.	ysed rel	ative to th	e fire r	nsk, fire p	protection
111 FIRE	PROTECTION	ANALYSIS	993	FIR	E RISK ANALYSIS	0	FIRE	1.6	NOVOVORONE	5.3.(5)
				A c	omprehensive fire risk an e spread and common cause	alysis s failure	hould be co s of vital	nducted safety.	relative to	o the risk of
III FIRE	PROTECTION	ANALYSIS	998	SMO	KE INTRUSION	0	FIRE	1.6	NOVOVORONE	5.3.(10)
				ALL	fire doors should be inspected.	pected f	or capabili	ty again	ist smoke ir	ntrusion, and
III FIRE	PROTECTION	- ANALYSIS	1000	DG	FIRE RISK	0	FIRE	1.6	NOVOVORONE	5.3.(12)
				A f	ire risk analysis of the formed.	whole di	esel genera	tor buil	ding should	i be
III FIRE	PROTECTION	- ANALYSIS	1069	BOR	ON ROOM FIRE DETECTION	0	SYSTEMS	1.6	KOLA	8.6 (4)
III FIRE		- ANALYSIS	1162	FIR	E PROTECTION OF DC CABLES	Dennsc	ELECTRICAL	3.3	KOLA	11.5.(4)
				Fir	e protection of DC cables	in the	electrical	rooms sh	ould be car	ried out.
III FIRE	PROTECTION	- ANALYSIS	1304	FIR	E RISK ANALYSIS	0	FIRE	1.6	KOLA	5.3.(2)
				A f F1r corr	ire risk analysis should e detection should be ext mon mode failure.	be compl ended to	eted for co all plant	ntrolled areas wh	larea and t iere fire ca	turbine hall. an cause
III FIRE	PROTECTION	- ANALYSIS	1306	ANA	LYSIS OF FIRE BARRIERS	0	FIRE	1.6	KOLA	53(4)
				A t	horough analysis of adequ	acy of f	ire barrier	s should	l be done. D	esign and
111 5105	PROTECTION	- ANALYSIS	1212	000	BUINCTION OF NEW DARFIERS BARIIISTIC FIDE DISK	SNOULD	FIDE	u. 16	KOLA	5 5 (1)
111 FIK	- AKOTECTION	MMAL 1919	1312	Fir	e risk probabilistic anal	ysis sho	uld be perf	ormed fo	operation	nal and
	-		470/	out	age conditions.	•		F 9	KOL 4	<i>(()</i>
JII FIRE	E PROTECTION	- ANALTSIS	1526	F I R	IN COMMUNICATION CENTER	U t fire o	tr f the talan). 2	KULA	0.4.(/)
				whe	n room evacuated.		n the tetep	HULE CON	NUTICALION	equipiient

ISSUE NUMBER: Fire Protection 2

ISSUE TITLE: Fire Protection Equipment

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Many existing fire protection systems are inadequate and there is not sufficient fire protection in some areas. Many modifications to upgrade existing fire protection systems have been identified but not yet completed.

RELATED ITEMS:

392, 535, 540, 541, 543, 810, 832, 1002, 1302, 1305, 1307, 1313

JUSTIFICATION OF RANKING:

Fire protection equipment and systems, including fire detection and fire barriers are of high safety relevance and integral part of fire protection.

CONCEPTUAL RECOMMENDATIONS:

The adequacy of existing fire protection systems should be analyzed in the frame of the fire risk evaluation. The modification deemed necessary to improve or complete the existing equipment should then be implemented.

CAT.	I SSUE	I	TEM I	n .	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
III FIRE	PROTECTION -	EQUIPMENT	392 (1	FIRE The Soon	DETECTION AND ALARM installation of new fire c as possible.	0 letectio	FIRE n and alarn	1.6 n system	BOHUNICE should be a	12.2.(1) completed as
III FIRE	PROTECTION -	EQUIPMENT	535 (FIRE Fire Gene	DETECTION IN DIESEL TANKS detection system should b rators.	iO peinsta	FIRE lled in day	1.6 / tank o	KOZLODUY f Unit 3/4	5.3.(1) Diesel
III FIRE	PROTECTION -	EQUIPMENT	540 I 1	FIRE The supp	SUPPRESSION IN OIL TANKS day tank of Diesel generat ression system.	0 :ors of	FIRE Unit 3/4 sł	1.6 Iould be	KOZLODUY protected	5.4.(1) by a fire
III FIRE	PROTECTION -	EQUIPMENT	541 I 1	ROT Cons	ECTIVE WALL FOR OIL TANKS ider costructing a protect rators of Unit 3 and 4 are	0 ive wal locate	FIRE lintheau d.	1.6 rea were	KOZLODUY day tanks	5.4.(2) for Diesel
III FIRE	PROTECTION -	EQUIPMENT	543 (1	JPGR Jtil	ADING FIRE PROTECTION ity management is urged to used programme for fire pr	0 provid	FIRE le adequate	1.17 resource	KOZLODUY es to comple easonable t	5.5.(1) ete the ime.
III FIRE	PROTECTION -	EQUIPMENT	810 <i> </i>	AUTO Auto Auto	MATIC DOOR CLOSING matic door closing mechani ance door, glass doors sho	D isms sho puldibe	I&C uld be prov replaced by	2.4 vided on v fire d	NOVOVORONE the main co	10.7.(13) ontrol room
III FIRE	PROTECTION -	EQUIPMENT	832 ((CABL Comp	E COATING letely coat cables in unit	D 3 and	ELECTRICAL 4 with flar	1.6 ne retar	NOVOVORONE	11.5.(3) al.
III FIRE	PROTECTION -	EQUIPMENT 1	002 i	F1RE Cond	PROTECTION UPGRADING uct a review of proposals	0 for upg	FIRE rading fire	1.6 e protec	NOVOVORONE	5.5.(1)
III FIRE	PROTECTION -	EQUIPMENT 1	302 (JPGR Impl prio	ADING FIRE PROTECTION ementation of fire protect rity.	0 tion upg	FIRE rading plar	1.17 n should	KOLA be given h	5.2.(1) igh
III FIRE	PROTECTION -	EQUIPMENT 1	305	IMPL Expe	EMENTATION OF UPGRADINGS dite construction of desig	0 gned fir	FIRE e detection	1.6 n and al	KOLA arm systems	5 .3. (3)
III FIRE	PROTECTION -	EQUIPMENT 1	307 I	MAIN Main	TENANCE OF FIRE BARRIERS	0 Darriers	FIRE should be	1.6 improve	KOLA d.	5.3.(5)
III FIRE	PROTECTION -	EQUIPMENT 1	313	FIRE The stri	UPGRADING SCHEDULE fire upgrading schedule st ckly followed.	0 nould be	FIRE revised,	1.6 if possil	KOLA ble shorten	5.5.(2) ed, and

.

ISSUE NUMBER: Fire Protection 3

ISSUE TITLE: Fire Protection. Inspection

RANK OF ISSUE: III

ISSUE OF CLARIFICATION:

Further actions are necessary to improve fire inspection activities, to eliminate fire hazards, and to assure fire equipment is properly maintained.

RELATED ITEMS:

391, 393-396, 531, 534, 538, 539, 542, 809, 818, 967, 989, 990, 994-997, 1303, 1308, 1309, 1310, 1311, 1321

JUSTIFICATION OF RANKING:

Inspections are a basic element to identify and prevent fire hazards and to ensure the operability of fire protection systems.

CONCEPTUAL RECOMMENDATIONS:

Fire inspection activities should be improved to make sure that the required level of protection is maintained throughout the plant lifetime.

CAT.	ISSUE		1TEM	n. 1	IITTLE/Description	ASPECT	AREA	CLASS	REFER	INCE
	Destasta									
III FIRE	PROTECTION -	INSPECTION	391	FIRE	RAZARDS INSPECTION	0	FIRE formed by	1.6 (ing ange	BOHUNICE	12.1.(1)
III FIRE	PROTECTION -	INSPECTION	393	EVAC	JATION ROUTES	0 O	FIRE	1.6	BOHUNICE	12.2.(2)
				Evaci	uation routes in the plant	t should	be more e	ffectivel	y marked an	d visible
				in b	ack-out conditions.					
III FIRE	PROTECTION -	INSPECTION	394	FIRE	EQUIPMENT TESTING	0	FIRE	1.6	BOHUNICE	12.3.(1)
				The i	fixed fire fighting equips	ment sho	uld be tes	t in most	unfavoreb	le
III FIRE	PROTECTION -	INSPECTION	395	FIRE	EQUIPMENT MAINTENANCE	0	FIRE	1.6	BOHUNICE	12.3.(2)
				More	attention should be paid	to fire	fighting	equipment	maintenen	ce. Tags
				shoul	d indicate last inspection	on check	. .			
III FIRE	PROTECTION -	INSPECTION	396	FOAM	SYSTEM TESTING	0	FIRE	1.6	BOHUNICE	12.3.(3)
				Test	ing of foem fire fighting	system	should be	repeated	under cond	itions which
III FIRE	PROTECTION -	INSPECTION	531	FIRE	HAZARDS INSPECTION	e. 0	FIRE	1.6	KOZLODUY	5.1.(1)
				Thore	ough fire hazards inspect	ion shou	ild be carr	ied out r	outinely.	
III FIRE	PROTECTION -	INSPECTION	534	FIRE	PROTECTION STANDARDS	0	FIRE	1.6	KOZLODUY	5.2.(1)
				Cons	ider including fire prote	ction st	andards sp	acific fo	or nuclear p	power plants
LIT FIRF	PROTECTION -	INSPECTION	538	IN 8	national or company stand	aara. N	FIDE	1.6	KOZI ODUY	5.3.(4)
			,,,,	A sta	ationwide inspection/main	tenance	programme	of fire o	bors should	d be
				init	iated.		• -			
III FIRE	PROTECTION -	INSPECTION	539	PENE	TRATION FIRE BARRIERS	0	FIRE	1.6	KOZLODUY	5.3.(5)
				Cabl	e and pipe penetration she	ould be	inspected	to identi	ify and rep	air missing
ITT FIRF	PROTECTION -	INSPECTION	542	PEST	DATTIERS.	\$ 0	FIDE	1.6		5 4 (3)
	· KOTEOTTON		546	Free	standing fire extinguish	ers shou	ild be rest	rained to	prevent ti	nem from
				fall	ing.				•	
III FIRE	PROTECTION -	INSPECTION	809	FLOO	RING MATERIAL	D	1&C	2.4	NOVOVORONE	10.7.(12)
				The	flooring material should a	meet app	proved flam	mability	requiremen	ts otherwise
III FIRE	PROTECTION -	INSPECTION	818	ELEC	RICAL DISTRIBUTION BOARD	ateriat S D	ELECTRICAL	1.6	NOVOVORONE	11.1.(6)
				Кеер	doors betwen sections an	d differ	ent trains	permaner	ntly closed	. Install a
				fire	detection system.					
	DROTECTION .	INCOLCTION	047	E2 00		0	MAINT	1 17	NOVOVORONE	(2 (2)
III FIKC	PROTECTION -	INSPECTION	901	A be	tter and more suitable ma	terial s	should be u	sed to p	novovokone rotect the	floors in
				the 4	controlled area.					
III FIRE	PROTECTION -	INSPECTION	989	FIRE	DOORS INSPECTION	0	FIRE	1.6	NOVOVORONE	5.3.(1)
				fire	protection doors should	be monit	tored stric	tly by ti	ne fire bri	gade (see
III FIRE	PROTECTION -	INSPECTION	998	5.5. F1RE	RISK RELATED WORK	٥	FIRE	1.6	NOVOVORONE	5.3.(2)
				Fire	risk related work should	be cont	trolled by	using fi	re protecti	on blankets
				andi	barriers to eliminate ris	ks from	sparks.			
III FIRE	PROTECTION -	INSPECTION	994	FIRE	DOORS	0	FIRE	1.6	NOVOVORONE	5.3.(6)
				A ST all	ation wide inspection/mai the fire doors function a	ntenance s inten	e programme ted	snould	be initiate	a to make
III FIRE	PROTECTION -	INSPECTION	995	FIRE	DOORS PROTECTION	0	FIRE	1.6	NOVOVORONE	5.3.(7)
				Mini	mize the need to run cabl	es and l	hoses throu	gh fire (doors.	
III FIRE	PROTECTION -	INSPECTION	996	FIRE	DOORS	0	FIRE	1.6	NOVOVORONE	5.3.(8)
		INSPECTION	007	FILE	doors should be kept clo	sector i n	a continuos	1 6	NOVOVORONE	5 3 (9)
FIRE	. NOTEGILON -	THAT FOLIAN	771	The	quality of the inspection	by the	Militarize	d Fire B	rigade shou	ld be
				impr	oved to ensure that fire	doors r	emain close	d.		
III FIRE	PROTECTION -	INSPECTION	1303	FIRE	INSPECTIONS	0	FIRE	1.6	KOLA	5.3.(1)
				Fire	brigade inspectors shoul	d inspe	ct carefull	y fire f	ighting equ	ipment in
III FIRE	PROTECTION -	INSPECTION	1308	ROOF	/ FLOOR FLAMABLE MATERIA	L O	FIRE	1.6	KOLA	5.3.(6)
				ALL	flamable material used in	the ro	ofs and flo	or cover	ings should	be
				repl	aced.					
111 FIRE	PROTECTION -	INSPECTION	1309	EVAC	UATION ROUTES INDICATION	0	FIRE	1.6	KOLA	5.3.(7)
				nece	uation routes and emerger ssary repainted or restat	icy exit: Dished	s signs sho Signs sho	uld be vi	nspected an sible under	blackout
				cond	itions.		213.13 0.101			
III FIRE	PROTECTION -	INSPECTION	1310	FIRE	FIGHTING EQUIPMENT	0	FIRE	1.6	KOLA	5.4.(1)
				Insp	ect fire hoses and portab	ole fire	extinguis!	ners. Rep	lace as nec	essary.
III FIRE	PROTECTION -	INSPECTION	1311	FIRE	HOSE NOZZLES	0 hookod	FIRE for their :	1.6	KOLA	5.4.(2)
III FIRF	PROTECTION -	INSPECTION	1321	FLAM	MABLES IN CONTROL CENTER	0	EP	лэе ансіе 5.2	KOLA	6.4.(2)
				Flan	mables containers and equ	uipment	for emerge	ncy prese	nt in the E	mergency
				Cont	rol Center should be repl	laced by	non-flamma	able mate	rial.	

4. OPERATIONAL ISSUES

ISSUE TITLE: Management Involvement

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

Management should take an active role in station operation to ensure practices, policies, and standards are being properly implemented. This pertains to plant personnel as well as contractors. Setting management goals allows a means to measure the accomplishment of safety objectives through tools such as performance indicators, operation and maintenance daily meeting records outage meeting records, industrial safety performance, and plant inspections.

RELATED ITEMS:

230, 411, 458, 488, 490, 873, 874, 876, 880, 882, 944, 965, 974, 988 1201, 1202, 1205, 1206, 1209, 1240, 1241, 1258

JUSTIFICATION OF RANKING:

Effective management involvement and monitoring of station activities are necessary for ensuring an adequate approach to safety. Management bears the responsibility for ensuring unsafe conditions are prevented and corrected.

CAT.		ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	NCE
IV	MANAGEMENT	INVOLVEMENT	230	MA	NAGEMENT SUPERVISION ant managers and supervisors	0 should	OPS make frequ	1.17 Ment tour	BOHUNICE s around th	3.1.(4) e plant.
IV	MANAGEMENT	INVOLVEMENT	411	IN In se co	DUSTRIAL SAFETY dustrial Safety practices mu nior management. Priority sh rrecting material conditions	0 st be s ould be . Train	MAQ trongly and given to r the staff.	1.18 I consist emoving Enforce	KOZLODUY ently enfor safety haza use of saf	1.5.(1) reced by ands and fety
IV	MANAGEMENT	INVOLVEMENT	458	eq MAI Op	uipment such as hard hats. NAGEMENT SUPERVISION eration management should be	0 more e	OPS ffectively	1.17 involved	KOZLODUY I in shift a	3.1.(7) ctivities.
IV	MANAGEMENT	INVOLVEMENT	490	MAI St de	NAGEMENT SUPPORT rong management support shou fficiencies on plant materia	0 Id be p I condi	OPS rovided to tions. Mana	1.17 ensure d igement s	KOZLODUY correction o should make	3.4.(10) of an effort
1V	MANAGEMENT	INVOLVEMENT	873	to MA Th	change staff atitude toward NAGEMENT RESPONSIBILITY e management of should enfor	s safe O ce hous	operation a MOA ekeeping, i	ind plant 1.17 Industria	Conditions NOVOVORONE Il safety an	i. 1.2.(1) nd radiation
IV	MANAGEMENT	INVOLVEMENT	874	Pr MA Pe	NAGEMENT TOOLS rformance indicators should	0 be deve	NOA loped for t	1.17 he monit	NOVOVORONE oring and i	1.2.(2) improvement
IV	MANAGEMENT	INVOLVEMENT	876	or QA Ma ma	plant satety and performanc IMPLEMENTATION nagers and supervisors must nagement and be convinced to	e. O be trai take a	MOA ned in the n active pa	1.17 principl art in th	NOVOVORONE es of quali ne implement	1.3.(2) ity tation of
IV	MANAGEMENT	INVOLVEMENT	880	th IN Go	e QA programme. DUSTRIAL SAFETY od industrial safety practic	0 es must	MOA be enforce	1.17 ed by the	NOVOVORONE senior mar	1.5.(1) magement.
IV	MANAGEMENT	INVOLVEMENT	882	Рг RA Ra	iority should be given to th DIATION PROTECTION PRACTICE diological work protection p	e remov O mactice	val of safet MOA es should be	ty hazaro 1.23 e enforce	ls. NOVOVORONE ed by senior	1.5.(3) plant
IV	MANAGEMENT	INVOLVEMENT	944	MA Su of	nagement. NAGEMENT SUPERVISION pervisors and management sho the plant to ensure the ach fary	0 uld car ievemer	OPS ry out regu at of the hi	1.17 Jar and Ighest st	NOVOVORONE frequent ir andards of	3.5.(3) hspections nuclear
IV	MANAGEMENT	INVOLVEMENT	965	PE Us	RFORMANCE INDICATOR e management tools and techn	0 iques s	MAINT such as peri	1.25 formance	NOVOVORONE indicators	4.1.(2) to monitor
IV	MANAGEMENT	INVOLVEMENT	974	CO Re	e departments of the mainten NDUCT OF MAINTENANCE gular walk-downs through all	o o access	MAINT	1.17 of the r	NOVOVORONE regular cont	4.4.(2) trolled
[V	MANAGEMENT	INVOLVEMENT	988	ar OU Ta	eas should be made by all le TAGE ORGANIZATION ke minutes of the staff meet e outage.	o G ings of	MAINT the heads	1.26 of the i	NOVOVORONE Norkshops he	4.9.(2) eld during
١٧	MANAGEMENT	INVOLVEMENT	1201	AS Ma th ef	SESSMENT PROGRAMMES nagement should develop asse at will provide feedback on fective.	0 :ssment whether	MOA programmes, standards,	1.17 , includi , require	KOLA ing direct c ements and p	1.2.(2) observation, colicies are
ĩ۷	MANAGEMENT	INVOLVEMENT	1202	CO Ma st	NTRACTORS OVERSIGHT nagement should ensure that andards as required for stat	0 contrac	MOA tor personr	1.17 nel work	KOLA at least to	1.2.(3) o the same
۲V	MANAGEMENT	INVOLVEMENT	1205	PE Pe an	RFORMANCE INDICATORS rformance indicators should d immorove plant safety.	0 be deve	NOA atoped and p	1.17 provided	KOLA to managers	1.2.(6) s to monitor
IV	NANAGEMENT	INVOLVEMENT	1206	MA Er	NAGEMENT GOALS sure that management goals a yels. Post goals and progres	0 Indiprog is in va	MOA gress status arious local	1.17 sare con tions in	KOLA municated t the plant.	1.2.(7) to working
IV	MANAGEMENT	INVOLVEMENT	1209	IN In ma	DUSTRIAL SAFETY dustrial safety rules need t	0 to be co	MOA xmmunicated	1.18 and enfo	KOLA prced by all	1.5.(1) l levels of
IV	MANAGEMENT	INVOLVEMENT	1240	DA Co an	ILY MORNING MEETINGS nsiderations should be given d follow up the decisions mo	0 to for pre stri	OPS malize the ickly.	1.17 daity pł	KOLA none meeting	3.1.(5) gs minutes
IV	MANAGEMENT	INVOLVEMENT	1241	CO Co	RRECTIVE ACTIONS	0 nent cor	OPS htrol on ide	1.17 entified	KOLA shift activ	3.1.(6) /ities
14	MANAGEMENT	INVOLVEMENT	1258	de FO A Ra	itticiencies should be improv RMAL MORNING MEETING formal morning meeting shoul diation Protection and Indus	ved. O Id be he strial S	OPS eld with all Safety.	1.19 I departr	KOLA ments heads,	3.5.(1) , încluding

ISSUE TITLE: Management Development

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Actions are necessary to improve top management middle management and supervisory skills. Training assistance visits and international exchanges represent ways of implementing such actions.

RELATED ITEMS:

224, 225, 402, 405, 407, 926, 1200, 1203, 1231

JUSTIFICATION OF RANKING:

Management exerts a direct influence on nuclear power plant safety performance. Improving the skills of supervisory, middle, and upper level managers through formal training and exposure to international standards will result in an overall enhancement to safety.

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
III MANAGEME	NT DEVELOPMENT	224	TRA	INING OF MANAGERS	0 at and o	TQ	1.20	BOHUNICE	2.7.(1)
			rea	uiring it. Pla may require	e off-si	te training	training L	, to all gra	ues
III MANAGEME	NT DEVELOPMENT	225	MAN	AGEMENT DEVELOPMENT	0	TQ	1.17	BOHUNICE	2.7.(2)
			The dev	company, in conjunction w elopment programme.	with the	station, s	hould in	mplement a m	anagement
III MANAGEME	NT DEVELOPMENT	402	INP	ROVE MANAGENT	0	MAO	1.17	KOZLODUY	1.1.(1)
			Tak man	e full advantage of WANO a age a power plant in a fre	associat ee marke	ion to get t economy.	advice 1	to managers -	on how to
III MANAGEME	NT DEVELOPMENT	405	MAN	AGEMENT TRAINING	0	MAO	1.17	KOZLODUY	1.2.(3)
			As	a part of association with	h WANO a	nd EdF, obt	ain advi	ice and trai	ning in such
			top	ics as stablishing objecti	ives, se	tting goals	and dev	veloping per	formance
			ind	icators.	-				
III MANAGEME	NT DEVELOPMENT	407	MAN	AGEMENT TRAINING ELEMENTS	0	MAO Afabu Cultu	1.17	KOZLODUY	1.2.(5)
			lea	dership, communication, mo	onitorin	g, accounta	bility,	assessment	of staff
	T DEVELOPMENT	074	сар	ACERS AND SUDEDVISORS	•	10	1 17		2 10 (1)
		920	Dev	elope a management trainin	ng progr	amme to upg	grade the	skills of	the plant
			mar	agement.					
111 MANAGEME	NT DEVELOPMENT	1200	TRA	INING OF MANAGERS	0	MOA	1.20	KOLA	1.2.(1)
			Pro	wide training to management management.	nt at al	l levels or	n stander	rds and spec	tations of
III MANAGENE	NT DEVELOPMENT	1203	INT	ERNATIONAL EXCHANGES	0	MOA	1.20	KOLA	1.2.(4)
			Mar	agement should expand the	ir progr	amme of vis	sits to o	other plants	and hosting
		1021	ехр	EFTS FFOM OTHER COUNTFIES.	•	TO	1 20		2.0 (1)
	NI VETELUTIENI	1231	Cor	sideration should be given	n to inc	reasing the	number	of developm	ental
			cou	rses in managerial skills.					

ISSUE TITLE: Safety Culture

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

Safety culture embodies a top to bottom approach to plant operation from a safety perspective as detailed in INSAG-4. These principles should be effectively communicated by management to all station personnel including the role of procedure usage in accomplishing safety goals. Established policies on fines should not be inappropriately applied so as to detract from the identification and resolution of safety problems.

RELATED ITEMS:

191, 245, 406, 417, 418, 419, 456, 489, 932, 1204, 1211, 1255, 1295

JUSTIFICATION OF RANKING:

Safety culture as defined in INSAG-4 addresses the appropriate individual and collective attitude to create and maintain for ensuring required safety levels in all circumstances of operation. It is therefore a high safety concern.

CAT	. ISSUE	ITEM	n. Ti	TTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
IV	SAFETY CULTURE	191	SAFETY Consid	' AWARENESS Her starting a progra	0 Imme to prom	MOA Hote safety	1.19 awarene:	BOHUNICE ss among pla	1.2.(3) ant
IV	SAFETY CULTURE	245	USE OF Proces	PROCEDURES Jures should be used	0 during norm	OPS Nal operatio	1.19 on and i	BOHUNICE n transient	3.4.(2) conditions.
IV	SAFETY CULTURE	406	SAFETY A true	CULTURE Safety Culture shou	0 Ild be devel	MAO oped.	1.17	KOZLODUY	1.2.(4)
IV	SAFETY CULTURE	417	SALARI Re-eva traine	ES Iluate salary and wag mes.	0 Je structure	MAO in order 1	1.17 to atrac	KOZLODUY t qualified	1.7.(2) new
٢v	SAFETY CULTURE	418	IMPROV The ma	VING LIVING CONDITION magement and the Gove	IS O ernment shou	MAO Ild discuss	1.17 ways of	KOZLODUY making Koz	1.7.(3) Loduy a more
IV	SAFETY CULTURE	419	FINES Manege	POLICY ment should re-evalue Discipline should	0 Nate its pol	MAO icy relatin	1.17 ng to fi	KOZLODUY nes for com	1.7.(4) miting
1V	SAFETY CULTURE	456	MANAGE Full s	MENT SUPPORT Support from manageme ary number of operat	0 ent is neces	OPS sary to ens	1.17 sure the	KOZLODUY recritment	3.1.(5) of
IV	SAFETY CULTURE	489	PLANT Standa Shift identi	CONDITIONS STANDARDS inds for acceptable of personnel should be fying defficiencies.	ondition of trained in	OPS plant equi their under	1.19 ipment sl rstandin	KOZLODUY hould be es g and in te	3.4.(9) tablished. chniques for
IV	SAFETY CULTURE	932	USE OF The bu	PROCEDURES Inden placed on opera	O ntors to rec	OPS all procede	1.17 ures fro	NOVOVORONE m memory sh	3.3.(1) ould be
IV	SAFETY CULTURE	1204	SAFETY	'CULTURE Her formally implement Ince of Safty Series 7	O nting and co 5-INSAG-4 "	MOA mmunicatin Safety Cult	1.17 g to all	KOLA plant pers	1.2.(5) onnel the
14	SAFETY CULTURE	1211	USAGE Manage availa	OF PROCEDURES ment should develope bility and usage of	0 and implem procedures.	MOA Went a long	1.19 range p	KOLA lan to incr	1.6.(2) ease the
1V	SAFETY CULTURE	1255	USE OF Writte situat	PROCEDURES en emergency operatir ions. Management sho	0 19 procedure puld reinfor	OPS s should be ce their u	1.19 e folloe se.	KOLA wdduring t	3.4.(1) ransient
ĩ۷	SAFETY CULTURE	1295	USE OF Worker	MAINTENANCE PROCEDU s should always refe	RES O er to and us	MAINT se procedure	1.19 es when	KOLA they are av	4.4.(2) ailable.

ISSUE TITLE: Housekeeping

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Improved housekeeping conditions are necessary to reduce industrial safety hazards to personnel, to better maintain equipment, to diminish fire hazards and to establish improved working conditions.

RELATED ITEMS:

250, 968, 969, 1257, 1291

JUSTIFICATION OF RANKING:

Poor housekeeping can contribute to poor material conditions of the plant, higher fire risks, and industrial safety hazards.

CAT.	. ISSUE	ITEN	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	HOUSEKEEPING	250	HOL	SEKEEPING	o	OPS	1.19	BOHUNICE	3.4.(7)
			A ¢	rogramme to improve house	keeping	should be	establish	ed.	
11	HOUSEKEEPING	488	REF	ORTING DEFICIENT CONDITIO	NS O	OPS	1.19	KOZLODUY	3.4.(8)
			Reç	orting of defficiencies i	n materi	al condit	ions of eq	uipment or	housekeeping
			sho	uld be emphasized. Manage	rs shoul	d conduct	plant tou	irs to ensur	e that
			cor	ditions are reported and	correcte	d.			
11	HOUSEKEEPING	968	CLE	ANING PROGRAMME	0	MAINT	1.25	NOVOVORONE	4.2.(3)
			Reg	ular cleaning for all ope	rational	areas in	both the	controlled	and
			nor	-controlled zones should	develope	d and imp	lemented.		
11	HOUSEKEEPING	969	CLE	ANING PROGRAMME	0	MAINT	1.25	NOVOVORONE	4.2.(4)
			Reg	ular claening for working	places	to preven	it unnecess	ary contami	nation of
			too	ls and materials should b	e implem	ented.			
11	HOUSEKEEPING	1257	HOL	SEKEEPING	0	OPS	1.19	KOLA	3.4.(3)
			Αp	rogramme for improving ho	usekeepi	ng and cl	enliness s	hould be es	tablished.
			Mar	agers should pay more att	ention t	o this is	sue.		
11	HOUSEKEEPING	1291	HOL	SEKEEPING AND MAINTENANCE	0	MAINT	1.19	KOLA	4.2.(4)
			Mai	ntenance personnel and su	ıb contra	ctors sho	uld be res	ponsible fo	or cleaning
			the	workplace and removing a	ll debri	s at the	complition	of the job	» .

•
ISSUE TITLE: Organization

RANK OF ISSUE: III

ISSUE CLARIFICATION:

An adequate organization provides for clear responsibilities, lines of communication, and enhances the plant's ability to accomplish common goals. The structure of the organization should insure that important areas for nuclear safety report to the plant manager. Within organizational units (e.g. maintenance, operations, etc) the responsibilities and lines of communication should also be well defined. Significant new work responsibilities will be undertaken by many groups of the plants (training, outages, maintenance). The organizational plans must ensure that adequate staff is available to accomplish those tasks and still allow for other initiatives external to the station such as Owner's Groups. Division of responsibilities between the local plant management and the central management of the operating organizations needs to be defined in a clear manner, emphasizing the decision making at the local level.

RELATED ITEMS:

189, 190, 208, 209, 277, 283, 403, 404, 422, 453, 455, 517, 524, 544, 512, 871, 872, 877, 891, 927, 929, 964, 1198, 1199, 1215, 1259, 1285, 1297

JUSTIFICATION OF RANKING:

The effectiveness of the organization structure is a safety concern. It has to reflect the important elements of the safety culture: responsibilities, communications, experience feedback, and proper staffing.

CAT.	I SSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
111	ORGANIZATION	189	MA Ma	INTENANCE SECTION COVERAGE intenance section should co	0 ver all	MOA aspects of	1.25 mainten	BOHUNICE ance, inclu	1.2.(1) ding routine
111	ORGANIZATION	190	RE	rk being performed by shift ORGANIZATION	person: 0	MOA	1.25	BOHUNICE	1.2.(2)
			Th	e support activities should	be orga	anized arou	nd funct	ional lines	of
		209	re	Sponsibilities. Operational	activit	ties snould	be orga		plant basis.
111	ORGANIZATION	200	164	antar chaid coord its		ite Internetional on	1.20	BONUNICE	2.1.(3)
111	OPCANTZATION	200	CE	TOALTTEN TRAINING		TO TO BOTT TO BOTT TO BOTT TO BOTT TO BOTT TO BOTT	1 20	RONUNTCE	2 1 (6)
	UKGRATZATION	207	Th	a niant chould establish a	v central	ive ized traini	na funct	ion	2.1.(0)
111	ORGANIZATION	277	co	TROL OF MODIFICATIONS	0	TS	1.19	BOHUNICE	5.4.(1)
			An	independent team should be	organia	zed and dev	oted to	the complit	ion of the
			la wo	rge number of modifications	, withou	ut being in	volved i	n the daily	operation
111	ORGANIZATION	283	EM	ERGENCY PLAN COORDINATOR	0	EP	1.17	BOHUNICE	6.1.(1)
			A	person with clearly stated	respons	ibility to	coordina	te emergenc	y planning
			sh	build be included in the org	anizati	on.			
111	ORGANIZATION	403	RE	DUCE STAFF	0	MAO	1.17	KOZLODUY	1.2.(1)
			Re	duce the staff of Operation	and Ma	intenance i	n order	to improve	
	OPGANTZATION	404	P	DOCENTRY.	0	NAO	1 17		12(2)
	UKGANIZA ION	404	Su	divide organization in two	operati	ing units	one for	Units 1 and	2 and other
			on	e for Units 3 and 4.	operat	ing an co,			
111	ORGANIZATION	422	CE	NTRALIZED TRAINING	0	TQ	1.20	KOZLODUY	2.1.(1)
			Es	tablish a strong centralize	d train	ing functio	n.		
111	ORGANIZATION	453	RE	ORGANIZATION OF OPERATIONS	0	OPS	1.17	KOZLODUY	3.1.(2)
			Re	organiza the Operational Di	vision	to reduce t	he numbe	r of operat	ional
			de	partments by consolidating	some re	sponsibilit	ies for	equipment.	7 4
111	ORGANIZATION	455	SI 0-	AFFING PLAN	0	UPS	1.10	KOZLODUY	3.1.(4)
			Up 	erational division should d	evelope	a long ran	ge staff ⊿	ing plan co	nsidering
	OPGANEZATION	512	DE DE	OPGANIZATION OF MAINTENANCE		MATNT	1.17	KOZI ODLIV	4.1.(1)
•••	or an of the second s	512	Co	nsider dividing maintenace	activit	ies in 2 se	parate o	rganization	normal
			ma	intenace and major overhaul	s.			•	
ш	ORGANIZATION	517	RE	ORGANIZATION OF WORKSHOPS	0	MAINT	1.17	KOZLODUY	4.2.(5)
			Wo	rkshop should be regrouped	by spec	ialities un	der same	leadership	
ш	ORGANIZATION	524	00	TAGE MANAGER	0	MAINT	1.17	KOZLODUY	4.6.(1)
			Co	nsider creating a position	of Outa	ge Manager	reportin	g to the Ch	ief Engineer
			to	co-ordinate all outage act	ivities	•			
111	ORGANIZATION	544	EM	ERGENCY PRPAREDNESS WORKLOA	DO	EP	1.17	KOZLODUY	6.1.(1)
			Th ma	e emergency preparedness wo de available to carry out a	orkload Il task	should be r s.	eassesse	d and reso	ources be
	ORGANIZATION	871	RF	SPONSIBILITIES	n	MOA	1.17	NOVOVORONE	1.1.(1)
•••	UNGARTERITION .	0.1	Di	vision of responsibilities	betwen	the central	ized aut	horities ar	d the local
			DL	ant management should be ta	ken in	considerati	on by MN	P1.	
111	ORGANIZATION	872	Ŵ	ER-440 M179/230 OWNER'S CLU	18 C	MOA	1.17	NOVOVORONE	1.1.(2)
			An	ownwer's group of operator	s of WW	ER-440 mode	L 179/23	0 reactors	should be
			es	tablished in order that com	mon app	roaches can	be take	n (safety a	analyses,
			pr	eparation of technical spec	ificati	ons, etc.).			
111	ORGANIZATION	877	QA	SECTION REPORTING	0	MOA	1.26	NOVOVORONE	1.3.(3)
			Th	e QA section should report	to the	Site Direct	or, it w	ill be sepa	arated from
			th	e operating department and	be able	to functio	n indepe	ndently.	
111	ORGANIZATION	891	TR	AINING DEPARTMENT VACANCIES	; o	TQ	1.17	NOVOVORONE	2.1.(1)
			Fi	ll the high number of vacar	nt Train	ing Departm	ent posi	tions as qu	uickly as
			ро	spible.					
ш	ORGANIZATION	927	OP	ÉRATION REORGANIZATION	0	OPS	1.17	NOVOVORONE	3.1.(1)
			Al	L operations staff who may	be invo	lved in saf	ety rela	ted activit	ties should

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	NCE
III ORGANIZAT	101	929	have INTE Reco toge plac	e one clear line of control ERCOM CONFERENCE RECORDING ord the list of actions agr ether with the name of posi ced.	and c O eed at tion o	ommunicatio OPS 8.30 hours f the perso	n. 1.17 officei n on whic	NOVOVORONE intercom cor ch the actic	3.1.(3) Inference In has been
III ORGANIZAT	ION	964	MAI) Dire shou	NTENANCE ORGANIZATION ect lines of responsability uld be defined.	0 throu	MAINT ghout the d	1.17 epartment	NOVOVORONE ts and the s	4.1.(1) subdivisions
III ORGANIZAT	ION	1198	ORG/ Revi Expa	ANIZATION CHART REVISION ise organization chart and and Safety Supervisor and S	0 job de: afety	MOA scription to Engineer co	1.25 o reflect ncept for	KOLA t actual sit r the entire	1.1.(1) wation.
III ORGANIZAT	101	1199	DECE Cont key	ENTRILIZED ORGANIZATION tinue to decentrilize and s managers and clarify respo	0 treaml nsabil	MOA ine organiz ities.	1.25 ation to	KOLA reduce cont	1.1.(2) rol span of
III ORGANIZAT	ION	1215	TRA	INING STAFF	0 ased 1	TQ n order to	1.20 achieve i	KOLA	2.1.(1)
III ORGANIZAT	ION	1259	ASSI The assi	IGNMENT OF PRIORITIES shift supervisor should ha	0 ve auti e anv	OPS hority over item related	1.19 all main d to safe	KOLA ntenance eng	3.5.(2) ineers to
III ORGANIZAT	ION	1285	REOF Mair and	RGANIZATION OF MAINTENANCE ntenance should be improved by grouping activities and	0 by es facil	MAINT tablishing itles.	1.17 direct li	KOLA Ine of respo	4.1.(1) onsabilities
III ORGANIZAT	ION	1297	PREN More proc	VENTIVE MAINTENANCE e resources should be alloc cedures.	0 ated t	MAINT o developem	1.19 ent of pi	KOLA reventive ma	4.5.(1) aintenance

ISSUE TITLE: Modification Control

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Modification control includes the process of performing safety evaluations, issuing appropriate drawings, modifying procedures, and assessing the performance of permanent and temporary modifications to the plant. An important aspect in the modification process is the independent safety oversight function provided by the Nuclear Safety Review Committee. The committee's activities should help to ensure that the modification is consistent with overall plant safety.

RELATED ITEMS:

231, 278, 420, 421, 508-511, 889, 1214, 1266

JUSTIFICATION OF RANKING:

Permanent and temporary modifications must be effectively controlled and reviewed to ensure the plants' design basis, defense in depth, and safety system functions are improved and are not inadvertently degraded.

CAT.	I SSUE	ITEM n. TITTLE/Description	ASPECT	AREA	CLASS	REFER	RENCE
[]]	NOTFICATION CONTROL	231 PROCEDURES MODIFICATIONS Procedures modifications sh	0 ould be co	OPS mpleted b	1.19 efore mod	BOHUNICE lified syste	3.1.(5) m/equipment
111 M	NOTIFICATION CONTROL	15 approved for use. Text 5 278 EVALUATION OF MODIFICATIONS A systematic programme to r	ould be a O eview the	mrked in TS results o	nodified 1.19 f modific	BOHUNICE ations shou	5.4.(2) Ild be
111 1	ODIFICATION CONTROL	420 SAFETY REVIEW COMMITTEE Establish a Nuclear Safety	0 Review Con	MAO mittee as	1.17 soon as	KOZLODUY possible.	1.8.(1)
111 1	HODIFICATION CONTROL	421 EVALUATION OF MODIFICATIONS In order to properly evalua should develope the capabil	0 te modific ity to per	MAO ations, t	1.11 he Techni	KOZLODUY cal Support	1.8.(2) Division
111 1	NDIFICATION CONTROL	508 REVIEW OF MODIFICATIONS Safety/technical review sho	0 uld be per	OPS formed fo	1.11 r all saf	KOZLODUY ety related	3.8.(1) d temporary
111 1	NODIFICATION CONTROL	509 INSTRUCTION FOR REVIEWS Instructions for review of purpose and include details	0 temporary , extend,	OPS modificat documenta	1.11 ions shou tion, tes	KOZLODUY uld be revis sting, redic	3.8.(2) sed to define blogical
111 (KOIFICATION CONTROL	aspects, etc. 510 TRAINING OF REVIEWERS Personnel performing review	0 softempo	OPS Frary modi	1.11 fications	KOZLODUY need to be	3.8.(3) e trained in
111 1	NOIFICATION CONTROL	511 PACKAGE OF MODIFICATIONS Associated revision of inst modifications should be iss	0 ructions a ued simula	OPS Ind drawin Caneously	1.11 gs relate with, or	KOZLODUY ed to tempoi slightly in	3.8.(4) rary n advance of,
[]]	NODIFICATION CONTROL	A nuclear safety COMMITTEE A nuclear safety Committee not only proposed modificat	0 should be tions but a	MOA implement ilso all s	1.17 ed at Nov afety rel	NOVOVORONI vovoronezh I lated events	E 1.8.(1) NPP to review s and other
111	ADDIFICATION CONTROL	1214 MODIFICATION REVIEW The Nuclear Safety Departme for further service of all n	0 ent should	MOA be respor	1.11 Isible for	KOLA r determinin	1.8.(1) ng the need
111	MODIFICATION CONTROL	1266 TEMPORARY MODIFICATIONS Temporary modification proc lift leads and jumpers. Con	0 edure sho itrols sho	OPS Ild be moo	1.19 lified to ablished.	KOLA enable auti	3.5.(9) horization of

ISSUE TITLE: Document Management

RANK OF ISSUE: I

ISSUE CLARIFICATION:

A programme and the facilities necessary for the centralized storage, and distribution, of documents is necessary.

RELATED ITEMS:

201-203, 247, 271, 289, 414, 415, 478, 548, 885, 887, 972, 1248

JUSTIFICATION OF RANKING:

A document management programme is necessary in order to achieve effective management of operations.

CAT	•	ISSUE	ITEN	n. TITTLE/Desci	ription /	ASPECT	AREA	CLASS	REFERE	INCE
1	DOCUMENT	MANAGEMENT	201	STORAGE OF QUAL! Quality records	ITY RECORDS should be kept	o in fi	MOA reproofc	1.19 abinets a	BOHUNICE nd in rooms	1.6.(2) equiped
1	DOCUMENT	MANAGEMENT	202	with smoke deter COPY OF QUALITY	ctors. RECORDS	0	MOA	1.19	BOHUNICE	1.6.(3)
I	DOCUMENT	MANAGEMENT	203	VENDORS DRAWING	s S	0 0	MOA MOA	parate ro 1.19	BOHUNICE	1.6.(4)
				A reproducible of reproduce them :	copy of vendor o should be availa	drawing able.	gs should i	be made,	and equipmer	nt to
I	DOCUMENT	MANAGEMENT	247	DETERIORATED DOG Deteriorated dog	CUMENTS cuments and proc	0 cedures	OPS s in the c	1.19 ontrol ro	BOHUNICE om should be	3.4.(4) e replaced
I	DOCUMENT	MANAGEMENT	271	by new ones. WORK ORDER KEEP:	ING	0	MAINT	1.19	BOHUNICE	4.3.(3)
				Complete work or fire.	rders should be	kept i	in a centr	al locati	on protected	1 agains
I	DOCUMENT	MANAGEMENT	289	EMERGENCY PROCED Consideration st	OURES nould be given 1	0 to have	EP e all emer	5.2 gency pro	BOHUNICE cedures and	6.3.(3)
				instructions in Commission.	separate collec	ction 1	for easy u	se by sta	ff and the /	Accident
1	DOCUMENT	MANAGEMENT	414	COPYING MACHINES	S ty conving machi	0 ines st	MAO pould be p	1.19 unchased	KOZLODUY	1.6.(2)
I	DOCUMENT	MANAGEMENT	415	RECORDS MANAGEM	ENT SYSTEM	0	MAO	1.19	KOZLODUY	1.6.(3)
I	DOCUMENT	MANAGEMENT	478	DETERIOATED DOCI	JMENTS	0	ope a reco OPS	no manage 1.19	KOZLODUY	3.3.(11)
1	DOCUMENT	MANAGEMENT	548	EMERGENCY PLAN (COPIES	0 bould b	EP EP	1.19	KOZLODUY	6.1.(5)
				at on and off s	ite locations .	loata i			rgency contr	or center
I	DOCUMENT	MANAGEMENT	885	DOCUMENT REVISIO Use revision nur relyion on date	DN mbers to indicat s colv	0 te the	MOA current r	1.19 evision l	NOVOVORONE evel rather	1.6.(2) than
I	DOCUMENT	MANAGEMENT	887	DETECTORS IN STO	DRAGES	0 instal	MOA Led in at	1.17	NOVOVORONE and document	1.6.(4)
				areas.				4.05		/ 7 /0
1	DOCUMENT	MANAGEMEN	972	A coding and ref	trieval system t	o for the	e document	s in the	centralized	4.3.(2) file should
1	DOCUMENT	MANAGEMENT	1248	PROCEDURE BINDIN A loose leaf bi	NG nding format fo	0 r proce	OPS edures and	1.19 plant in	KOLA formation sl	3.3.(7) nould be

implemented.

ISSUE TITLE: Configuration Management

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Effective control, revision update and availability of key documents reflecting current plant conditions is deficient.

RELATED ITEMS:

413, 884, 1210

JUSTIFICATION OF RANKING:

Accurate plant drawings and up-to-date procedures are of high safety importance and need to be available to the plant and to those involved in plant safety evaluations. Lack of reliable documentation can lead to serious safety problems.

CAT.	I SSUE	ITEM r	. TITTLE/Descript	ion ASPEC	T AREA	CLASS	REFERI	ENCE
111	CONFIGURATION MANAGEMENT	413 (ENTRALIZED RECORD	SYSTEN O	MAO	1.19	KOZLODUY	1.6.(1)
		1 (here should be a re entralized system a distribution.	ecords system un controling revis	der contro ion, verif	l of one un ication, ap	nit, i.e., a oproval, sto	a orage and
111	CONFIGURATION MANAGEMENT	884 0	OCUMENT REVISION	0	MOA	1.19	NOVOVORONE	1.6.(1)
		A	Il pages in docume	nts should conta	in an indic	ation of I	atest revis	sion status.
111	CONFIGURATION MANAGEMENT	1210 D	OCUMENT CONTROL SY	STEM O	MOA	1.19	KOLA	1.6.(1)
		C	onsideration should	d be given to ce	ntralizing	the docume	mt control	system to

provide consistent distribution filing and storage.

ISSUE TITLE: Experience Feedback

RANK OF ISSUE: III

ISSUE CLARIFICATION:

The scope, evaluation, tending, resolution, and feedback of operating experience should be properly defined and implemented.

RELATED ITEMS:

276, 459-467, 931

JUSTIFICATION OF RANKING:

Operating experience feedback is necessary to prevent the recurrence of events and to learn from the experiences of other nuclear power plants. The issue was also found relevant in the findings of the ASSET missions.

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
III EXPERIEN	CE FEEDBACK	276	OPE Emc	ERATING EXPERIENCE	0 is of fr	TS ailure even	2.5 ts.	BOHUNICE	5.3.(1)
III EXPERIEN	CE FEEDBACK	459	EVE	ENT CLASSIFICATION CRITERIA e criteria for determining pagement review should be d	0 which e	OPS vents are s and formali	2.5 ignifican	KOZLODUY ht enough t	3.2.(1) o receive
III EXPERIEN	CE FEEDBACK	460	EVE	ENTS REVIEW Intinue to improve event rev mber of personnel involved	0 iewing.	OPS Conduct ro	2.5 ot cause	KOZLODUY training a	3.2.(2) nd increase
III EXPERIEN	CE FEEDBACK	461	COR	RRECTIVE ACTIONS sponsibility for tracking of	0 orrectiv	OPS ve actions	2.5 should be	KOZLODUY centraliz	3.2.(3) ed. Event
III EXPERIEN	CE FEEDBACK	462	PE	RIODICAL REVIEWS rent reports should be periodical ending	0 dically	OPS reviewed t	2.5 o deterministry	KOZLODUY ine generic senior man	3.2.(4) or common
III EXPERIEN	CE FEEDBACK	463	LES	SS IMPORTANT EVENTS review of events that dom ould continue to be improve	0 ot have d.	OPS a potentia	2.5 l nuclear	KOZLODUY safety si	3.2.(5) gnificance
III EXPERIEN	CE FEEDBACK	464	ST/ Cei	ATIONWIDE EXPERIENCE Intralized stationwide opera	0 ting ex	OPS perience re	2.5 view proj	KOZLODUY gramme shou	3.2.(6) Id be
III EXPERIEN	CE FEEDBACK	465	SCO The	COPE OF REVIEW le scope of the operating ex	0 perienc	OPS e review sh	2.5 ould inc	KOZLODUY lude all st	3.2.(7) ation and
III EXPERIEN	CE FEEDBACK	466	TR/ The	AINING OF REVIEWERS the personnel involved in ope	0 rating	OPS experience	2.5 review sl	KOZLODUY hould be tr	3.2.(8) ained in the
III EXPERIEN	CE FEEDBACK	467	TR/ Th/ COI til	ACKING IMPLEMENTATION the responsibility for tracking prrective actions should be imely implementation.	0 ng the central	OPS implementat ized or cer	2.5 ion of l traly co	KOZLODUY essons lear ordinated	3.2.(9) ned and to ensure
III EXPERIEN	CE FEEDBACK	931	EXI Re un	PERIENCE FEEDBACK TRAINING sinforce the part of the exp nderstanding of the report c	0 erience ontent.	OPS feedback p	2.5 procedure	NOVOVORONE which ensu	3.2.(1) Fres a prompt

ISSUE TITLE: Quality Assurance

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Overall quality assurance programs are needed to ensure consistent and verifiable support of nuclear plant operation and safety. In some instances, these programs must first be developed including an allowance for sufficient staff to implement the program. After the implementation stage, an independent assessment of program effectiveness should be considered.

RELATED ITEMS (AND PRIORITIES):

194-198, 273, 408, 527, 529, 528, 547, 875, 878, 971, 1207, 1208, 1300

JUSTIFICATION OF RANKING:

Quality assurance is a basic element to safe plant operations and accident prevention.

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFE	RENCE
111	QUALITY ASSURANCE	194	INC Cal	EPENDENT CHECK OF REPAIR ibration of instruments of	0 Health	MOA Physics	1.17 Department	BOHUNICE should be	1.3.(2) done by a
111	QUALITY ASSURANCE	195	AUC	ITING independent auditing group	0 should	MOA be forme	d.which sh	BOHUNICE	1.3.(3)
			ass	essing quality of safety a	ctivitie	es.			
ш	QUALITY ASSURANCE	196	QC	PROCEDURES	0	MOA	1.17	BOHUNICE	1.3.(4)
			Pro usi	cedures should be develope ng different employees.	d to coi	ntrol QC	functions	in the line	e departments
111	QUALITY ASSURANCE	197	QUA	LITY INDICATORS	0	MOA	1.17	BOHUNICE	1.3.(5)
			A C	A programme should be deve	loped u	sing qual	ity indica	tors.	
ш	QUALITY ASSURANCE	198	RE\	IEW OF QA PROGRAMME	0	MOA	1.17	BOHUN I CE	1.3.(6)
			Per	iodic review should be con	ducted	on each o	f the plan	t quality p	programmes.
111	QUALITY ASSURANCE	273	RE\	IEW OF TEST RESULTS	0	MAINT	1.17	BOHUNICE	4.5.(2)
		(22	Tes	t results should be independent	ndently	reviewed	by a seco	nd part.	
111	QUALITY ASSURANCE	408	QUA	LITY ASSURANCE PROGRAMME	0	MAC	1.17	KOZLODUY	1.3.(1)
		537	A 4	A programme should be imple	emented	as soon	as possible		1 7 (2)
111	QUALITY ASSUKANCE	221	All	spares of reasonable size he boxes.	u should	be label	ied. Small	items may	4.7.(2) be labelled
111	QUALITY ASSURANCE	528	QU/	LITY CONTROL OF SPARES	0	MAINT	1.17	KOZLODUY	4.7.(3)
			Per	form systematic quality co	ntrol o	f spares	on receipt	•	
111	QUALITY ASSURANCE	529	SAF	ETY RELATED SPARES	0	MAINT	1.17	KOZLODUY	4.7.(4)
			Spa and	res for safety related equ preferably kept in separa	ipment : te loca	should be tion.	identifie	d with spea	cial labels
ш	QUALITY ASSURANCE	547	QA	OF EMERGENCY PLAN	0	EP	1.17	KOZLODUY	6.1.(4)
			The	emergency plan should be	subject	to quali	ty assuran	ce.	
ш	QUALITY ASSURANCE	875	QA	PROGRAMME	0	MCA	1.17	NOVOVORONI	E 1.3.(1)
			Ste as	ps should be taken to full soon as possible.	y imple	ment the	QA program	me at Novo	voronezh NPP
111	QUALITY ASSURANCE	878	INC	EPENDENT REVIEW OF QA	0	MOA	1.17	NOVOVORONI	E 1.3.(4)
			Aft	er the QA programme has be	en impl	emented,	invîte an	independent	t review of
			the	programme and the effecti	veness.				
111	QUALITY ASSURANCE	971	QC	PROCEDURES	0	MAINT	1.14	NOVOVORONI	E 4.3.(1)
			AC	uality assurance programme	should	be set u	ip tor prod	ucing organ	nizational
		1207	anx	administrative procedures	•		4 17		1 7 /1
111	QUALITY ASSURANCE	1207	- QA - ALM	AUDIT AND INSPECTIONS lite and increations should	be cer	mua formed to	I.IT Accore of	fectivenes	i.J.(i) e of Ouslity
			400	urance programme This sho	n be per uld be	done by a	n independ	ent group	reporting
			di	ectly to senior management				circ group	reporting.
ш	QUALITY ASSURANCE	1208	INS	PECTION STAFF	0	MOA	1.17	KOLA	1.3.(2)
•••		1200	Eve	luate the adequacy of staf	fing le	vel to co	over areas	currently	requiring
			in	pection.					
111	QUALITY ASSURANCE	1300	SA	ETY RELATED SPARES	0	MAINT	1.17	KOLA	4.8.(1)
- •			Spa	res for equipment importan wel.	it to sa	fety shou	uld be iden	tified wit	h a special

ISSUE TITLE: Radiation Protection Practices

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Radiation protection measures should be properly implemented and followed by all personnel. Since radiation protection was not explicitly a part of the safety review mission, a systematic radiation protection review needs to be performed.

RELATED ITEMS:

251, 412, 883, 1279

JUSTIFICATION OF RANKING:

Effective implementation of radiation protection practices is necessary as part of the management policy.

CAT	•	ISSUE		ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	RADIATION	PROTECTION	PRACTICES	251	RAD	IATION PROTECTION	0	OPS	1.23	BOHUNICE	3.4.(8)
					Rad pro	iation protection measures perly posted.	should	be strict	ly implem:	emted. Area	s should be
11	RADIATION	PROTECTION	PRACTICES	412	RAD	IOLOGICAL PROTECTION	0	MAO	1.23	KOZLODUY	1.5.(2)
					Rad	iological Protection pract	ices ne	ed to be e	enforced.	Staff, incl	uding
					гаі рго	ation protection tecnician tection.	s requi	re refresh	er traini	ng in radia	tion
11	RADIATION	PROTECTION	PRACTICES	883	ASS	ESSEMENT	0	MOA	1.23	NOVOVORONE	1.5.(4)
					Ind con	ependent assessement of raducted by the IAEA under t	diation he OSAR	protectic [programm	on at Novo Ne.	voronezh NP	P could be
п	RADIATION	PROTECTION	PRACTICES	1279	RAD	IOLOGICAL PROTECTION	0	OPS	1.23	KOLA	3.8.(7)
					Per a p	form a radiological protec lan for upgrading this are	tion re [.] a.	view follo	wing OSAR	T Guideline	s. Develope

ISSUE TITLE: Industrial Safety Practices

RANK OF ISSUE: II

ISSUE CLARIFICATION:

Plant industrial safety practices and equipment for personnel protection are necessary.

RELATED ITEMS:

199, 226, 451, 881, 939, 975, 1001

JUSTIFICATION OF RANKING:

Poor industrial safety practices indicate a lack of safety culture and quality management.

CAT.	. Issue	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERI	ENCE
11	INDUSTRIAL SAFETY PRACTICES	199	PRO	TECTION OF WORKERS	0 nstall	MOA ed around a	1.18	BOHUNICE	1.5.(1) da numos
11	INDUSTRIAL SAFETY PRACTICES	226	TRA Ass saf	INING ON INDUSTRIAL SAFETY ess the trainee after recei-	0 ving i	TQ nitial gene	1.18 ral train	BOHUNICE ning on inde	2.8.(1) ustrial
11	INDUSTRIAL SAFETY PRACTICES	451	LAC A r pri pla	K OF INDUSTRIAL SAFETY oot cause analysis should b nciples, although aparently nt.	0 e conde covere	TQ ucted to de ed in train	1.18 termine (ing, are	KOZLODUY why industr not applied	2.4.(3) ial safety d in the
11	INDUSTRIAL SAFETY PRACTICES	881	PRO Pro	TECTION OF WORKERS wide protective covers or w	0 arning	MOA signs for	1.18 the gener	NOVOVORONE rator slipr	1.5.(2) ings.
11	INDUSTRIAL SAFETY PRACTICES	939	OPE The the	RATOR AIDS use of portable ladders an inmediate areas of control	0 d step: and s:	OPS s should be afety equip	1.19 minimize ment.	NOVOVORONE and exclu	3.4.(2) uded from
11	INDUSTRIAL SAFETY PRACTICES	975	NOI War ear	SE PROTECTION nings should be placed when protection should be issue	0 e the s d to a	MAINT noise level ll personne	1.19 s exeed t l in that	NOVOVORONE the permiss t area.	4.4.(3) ible limits,
11	INDUSTRIAL SAFETY PRACTICES	1001	EME The eva	RGENCY LIGHIS emergency light should be cuation routes in the react	0 instal or bui	FIRE led adjacen lding.	1.6 It to the	NOVOVORONE indication	5.4.(13) of

ISSUE TITLE: Computer Utilization

RANK OF ISSUE: I

ISSUE CLARIFICATION:

Computers should be utilized in order to better control station planning, record keeping, to manage work, etc.

RELATED ITEMS:

193, 205, 280, 282, 521, 525, 886, 908, 987

JUSTIFICATION OF RANKING:

Computer utilization may assist in the easier resolution of higher priority issues, but is not essential.

CAT	. 155	SUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	NCE
I	COMPUTER UTIL	LIZATION	193	QC D Star	OCUMENT CONTROL t a computer-aided system	0 for ce	MOA ntralized a	1.19 control of	BOHUNICE	1.3.(1) suments.
I	COMPUTER UTIL	LIZATION	205	ADMI Cons if a	NISTRATION COMPUTER ideration should be given new system is introduced	0 to cha in the	TQ nging the s plant.	1.20 administra	BOHUNICE Ition persor	2.1.(2) mal computer
1	COMPUTER UTIL	LIZATION	280	REFU The auto	ELLING MACHINE refuelling machine should matic functions.	0 beupg	TS raded with	1.8 computer	BOHUNICE aided instr	5.6.(1) ructions and
1	COMPUTER UTIL	LIZATION	282	COMP Exte	UTER UTILIZATION nded utilization of comput	0 er sha	TS uld be dev	2.3 eloped.	BOHUNICE	5.7.(3)
I	COMPUTER UTIL	LIZATION	521	WORK Cons	ORDER CONTROL ider developing a computer	0 ized w	MAINT ork order (1.19 control sy	KOZLODUY /stem.	4.4.(1)
1	COMPUTER UTIL	LIZATION	525	COMP Cons	UTERIZED OUTAGE CONTROL ider computerizing prepara	0 ition a	MAINT nd execution	1.17 onof outes	KOZLODUY je activitie	4.6.(2) s.
I	COMPUTER UTIN	LIZATION	886	RECC Use	RDING AND DATA HANDLING computers for records and	0 data m	MOA anagement.	1.19	NOVOVORONE	1.6.(3)
I	COMPUTER UTIL	LIZATION	908	TRAC Aqui modi	KING PLANT MODIFICATIONS re computer hardware and d fications and procedure ch	0 latabas langes.	TQ e software	1.20 to aid ir	NOVOVORONE tracking (2.2.(9) the plant
I	COMPUTER UTIL	LIZATION	987	OUTA Expl an c	GE PLANNING ore the benefits of a comp utage.	0 outer p	MAINT rogram for	1.26 the planm	NOVOVORONE	4.9.(1) eparation of

ISSUE TITLE: Procedures. Program

RANK OF ISSUE: II

ISSUE CLARIFICATION:

The procedure programme should provide clear instruction on the preparation, format, content, review, updating, and approval of station procedures for all groups (maintenance, operations, etc). This programme should ensure that human factors considerations and feedback from those who utilize the procedures are used to produce the highest quality document.

RELATED ITEMS:

192, 200, 474-477, 237, 269, 518, 935, 937, 1246, 1247, 1292

JUSTIFICATION OF RANKING:

Procedures constitute the real interface between plant operators and the process. A procedure programme is needed to ensure the required consistency and quality in operation and to prevent human errors.

CAT	-	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERI	ENCE
П	PROCEDURES	- PROGRAMME	192	UPD	ATING PROCEDURES	0	MOA	1.19	BOHUNICE	1.2.(4)
				Imp occ	wortant administrative proce wurs, not every 3 years.	dures :	should be re	evised ev	very time a	change
п	PROCEDURES	- PROGRAMME	200	LIS	T OF VALID PROCEDURES	0	MOA	1.19	BOHUNICE	1.6.(1)
				A l	ist of valid procedures sho	uld be	developed,	kept wit	th user and	specially
				in	the control room.					
п	PROCEDURES	- PROGRAMME	237	PRO	CEDURES WRITTING	0	OPS	1.19	BOHUNICE	3.3.(6)
				Ins	cructions for writting admi-	nistra	cive, normal	. and em	ergency ope	rating
п	PROCEDURES	- PROGRAMME	269	MAL	NTENANCE PROCEDURES	0	MAINT	1.25	BOHUNICE	4.3.(1)
••				Рго	wide an index of all mainte	- nance i	procedures.	regardle	ess which d	epartment
				use	them.		•	•		
11	PROCEDURES	- PROGRAMME	474	PRO	CEDURES WRITTING	0	OPS	1.19	KOZLODUY	3.3.(7)
				Ins	truction for writting opera	ting p	rocedures st	nould be	prepared a	nd personnel
				sho	uld be trained in the metho	dology	-			
11	PROCEDURES	- PROGRAMME	475	PRO	CEDURES PERIODICAL REVIEW	0	OPS	1.19	KOZLODUY	3.3.(8)
				A s pro	systematic process should be cedures.	estab	lished for p	periodica	al review o	f operating
11	PROCEDURES	- PROGRAMME	476	REI	SSUE OF PROCEDURES	0	OPS	1.19	KOZLODUY	3.3.(9)
				The	existing requirement to re	-issue	a procedure	e whenevo	er more tha	n 3
				rev	visions have been made shoul	d be e	nforced.			
П	PROCEDURES	- PROGRAMME	477	CHA	NGES IN PROCEDURES	0.	OPS	1.19	KOZLODUY	3.3.(10)
				Cha hav	inges in procedures should b ve been made.	e mark	ed to indica	ate to op	perators the	at changes
П	PROCEDURES	- PROGRAMME	518	MAI	NTENANCE PROCEDURES	0	MAINT	1.25	KOZLODUY	4.3.(1)
				Adm	inistrative instruction on	prepar	ation of mai	intenanco	e procedure:	s should be
				dev	eloped, specifying format,	conten	ts, review,	updating	g and appro	val.
п	PROCEDURES	- PROGRAMME	935	PRO	CEDURE FORMAT	0	OPS	1.22	NOVOVORONE	3.3.(4)
				The	readability and content of	the c	urrent oper	ating pro	ocedure sho	uld be
	DDOCEDUBEC	DOCDANKE	077	sho	Could be restructured to impr	ove the	e human faci	1 33	NOVOVODONE	77 (1)
11	PROCEDURES	S PROGRAMME	951	Fxt	end the use of coloured bin	u ders fi	or the purp	nse of i	dentificati	J.J.() on of the
				dif	ferent categories of proced	ures.				
					•					
п	PROCEDURES	- PROGRAMME	1246	OPE	RATING PROCEDURES REVIEW	0	OPS	1.19	KOLA	3.3.(5)
				Оре	erating procedures should be	forma	lly reviewed	d by shi	ft supervis	ors, shift
				sup	pervisors of reactor departm	ent, r	ecator opera	ators an	d turbine o	perators.
11	PROCEDURES	5 - PROGRAMME	1247	OPE	RATOR SUGGESTIONS	0	OPS	1.19	KOLA	3.3.(6)
				Ope	erator Suggestion Sheets for	opera	ting proced	ures mod	ifications	should be
				dev	veloped. They should be fill	ed wit	h the origin	nal proc	edure and b	e reviewed
				in	the next procedure revision	•				
п	PROCEDURES	S - PROGRAMME	1292	MAI	INTENANCE PROCEDURES	0	MAINT	1.19	KOLA	4.3.(1)
				Αŧ	administrative procedure des	cribin	g format, c	ontents	and review	and aproval
				pro	cess of maintenance procedu	res sh	ould be dev	eloped.		-

ISSUE TITLE: Emergency Operating Procedures

RANK OF ISSUE: IV

ISSUE CLARIFICATION:

Adequate emergency procedures should be developed for all events, including ATWS, steamline break, large break LOCA, fire, remote shutdown, station blackout and other accidents. The emergency operating procedures should be developed to include human factor considerations and, to the extent practical, should be symptom-based. Prompt action is necessary to develop additional procedures and improve the quality of existing procedures. A step-by-step format should be used.

Note: This issue fully applies to Kozloduy even though no recommendations were made by the SRM Mission due to some on-going cooperative efforts in this area.

RELATED ITEMS:

239, 240, 241, 242, 243, 267, 612, 806, 812, 865, 933, 1044, 1064, 1252, 1253, 1254, 1270

JUSTIFICATION OF RANKING:

A number of procedures have not been developed for postulated events (i.e. ATWS, large break LOCA, fire, remote shutdown, etc) and the quality of the emergency procedures is very poor.

Adequate emergency procedures are necessary for the diagnosis and mitigation of plant events. It is recognized that full development of symptom-based procedures is a longterm effort.

CAT	•	ISSUE	ITEM	n. TITTL	E/Description	ASPECT	AREA	CLASS	REFER	ENCE
IV	EMERGENCY	OPERATING PROCEDURES	239	EMERGENCY A general to check	OPERATING PROCEDURE emergency operating function of safety s	: O procedu systems,	OPS Ire should identify 1	3.9 be writt the emerg	BOHUNICE ten to enabl gency situat	3.3.(8) e operator ion and
IV	EMERGENCY	OPERATING PROCEDURES	240	FIRE EMER Emergency	GENCY OPERATION	0 es for si	OPS tuation of	3.9 f plant 1	BOHUNICE fires should	3.3.(9) be
IV	EMERGENCY	OPERATING PROCEDURES	241	developed PARTITION Emergency Include o	I. OF PROCEDURES / operating procedure mly opeartors action	0 Is should Is in a s	OPS 1 be divident teo by sto	3.9 ed into p eo format	BOHUNICE parts for ea	3.3.(10) sy handling.
IV	EMERGENCY	OPERATING PROCEDURES	242	SYMPION E Sympton t emergency	ASED PROCEDURES wased procedures to r r situations should b	0 recover f be develo	OPS from beyon pped.	3.9 d design	BOHUNICE basis accid	3.3.(11) ent
14	EMERGENCY	OPERATING PROCEDURES	243	EMERGENCY Procedure developed	CABLES INSTALLATION s and charts for ins L	I O stallatio	OPS on of emerg	3.9 gency pow	BOHUNICE Wer cables s	3.3.(12) hould be
1V	EMERGENCY	OPERATING PROCEDURES	267	PROCEDURE Procedure developed	S FOR REMOTE SHUTDOW s for remote shutdow 1.	N O m from c	OPS otside th e	3.9 control	BOHUNICE room should	3.6.(12) be
11	EMERGENCY	OPERATING PROCEDURES	612	EMERGENCY Detailed requireme	COOLING PROCEDURE operational and emer ents to interconnect	D gency pr feedwate	SYSTEMS Tocedures i Prisystem l	1.19 must refi between u	KOZLODUY lect operato units.	8.3.(1) r action
1V	EMERGENCY	OPERATING PROCEDURES	806	EVACUATIO An interi the remot	W INTERIM PLAN m plan should be dev e shutdown capabilit	D veloped t :y is ava	I&C to address ailable.	2.4 control	NOVOVORONE	10.7.(9) tion before
IV	EMERGENCY	OPERATING PROCEDURES	812	EVACUATIO A procedu evacuatio	N PROCEDURE ire should be develop xn.	D xed to de	1&C cal with t	2.4 he main d	NOVOVORONE control room	10.7.(15)
١V	EMERGENCY	OPERATING PROCEDURES	865	SGTR RECO Emergency such as S generator	WERY INSTRUCTIONS v recovery instructions GGTR coincident with v	D xns shoul a failur	ACCIDENT ld be revi re to isoli	4.4 sed to co ate the i	NOVOVORONE over multipl ruptured ste	12.5.(3) e events cam
IV	EMERGENCY	OPERATING PROCEDURES	933	SYMPTOM E Complete	ASED PROCEDURE	0 xost trip	OPS symptom-	3.9 based em	NOVOVORONE	3.3.(2) edures.
IV	EMERGENCY	OPERATING PROCEDURES	1044	FEED AND A feed ar feedwater	BLEED PROCEDURE ad bleed procedure sh	D nould be	SYSTEMS developed	3.9 to cope	KOLA with total	8.1.(2) loss of
IV	EMERGENCY	OPERATING PROCEDURES	1064	FEEDWATER Review th rupture.	t PIPE RUPTURE ne emergency operatir	D ng proced	SYSTENS dure relat	3.9 editoma	KOLA in feedwater	8.5.(3) pipe
IV	EMERGENCY	OPERATING PROCEDURES	1252	EMERGENCY Emergency divided i should be	OPERATING PROCEDURE operating procedure into parts for easy h included, without t	ES_O es should handling the need	OPS d be rewri . All oper to use ot	3.9 tten in s ating ac her proce	KOLA step by step tions and pr edures.	3.3.(11) o format and recautions
IV	EMERGENCY	OPERATING PROCEDURES	1253	SYMPTOM E Symptom E	BASED PROCEDURES based procedures show	0 Jldibede	OPS eveloped.	3.9	KOLA	3.3.(12)
IV	EMERGENCY	OPERATING PROCEDURES	1254	GENERAL E A general correct e	MEREGENCY PROCEDURE l emergency operating emergency procedure.	0 9 proced	OPS ure should	3.9 be deve	KOLA loped to sel	3.3.(13) ect the
IV	EMERGENCY	OPERATING PROCEDURES	1270	EMERGENC) Procedure emergency	r CABLES INSTALLATION es and drawings for i y situations should b	N O installa be locato	OPS tion of em ed in the	3.9 ergency cable st	KOLA power supply orage areas.	3.7.(1) (in

ISSUE TITLE: Limits and Conditions

RANK OF ISSUE: III

ISSUE CLARIFICATION:

Limits and conditions should clearly define plant operations within the design and safety envelope. Design limits, although used in the development of WWER designs, have not been formally established as a complete set of plant technical specifications or regulatory requirements.

RELATED ITEMS:

232, 233, 301, 302, 303, 468-472, 500, 583, 584, 592, 593, 715, 716, 729, 845, 936, 1020, 1021, 1024, 1034, 1042, 1249, 1250, 1251

JUSTIFICATION OF RANKING:

The establishment of a formal document which contains the essential limits and conditions for operation, the surveillance test requirements to verify them and fallback actions in case of identification of off-limit conditions is a safety priority. The limits and conditions for plant operations should be up to date and combined in a single book to help ensure the operation of the plant within its design basis.

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	NCE
III IIMITS AN		232	- 114	IT LIMITS AND CONDITIONS	0	OPS	1 21	BOHINICE	3.3.(1)
		LJL	L1	mits and conditions for ope	rations	should be w	ritten i	n separate	books for
			ea	ch unit.					
III LIMITS AND	CONDITIONS	233	LI	MITS AND CONDITIONS	0	OPS	1.21	BORUNICE	3.3.(2)
			Lı	mits and conditions should	be refor	mulated and	lsupport	ed by graph	s as
			ne	eded. Time limit for shutdo	wn shoul	d be specif	1ed.		
III LIMITS AND	CONDITIONS	301	MA	XIMUM LINEAR HEAT RATE	D	CORE	2.1	BOHUNICE	7.1.(2)
			A	limit should be specified f	or maxin	nium linear	heat rat	e in fuel r	ods. And
		~~~	th	is parameter should be cont	roled.				
III LIMITS AN	D CONDITIONS	302	SH	UIDOWN MARGIN	D an sha i	CORE	2.2	BOHUNICE	7.1.(3)
TTT I TWITS AN		202	- MA	VININ BUDSHO	n n	nutoown mar Code	18.	RONINTCE	7 1 (4)
TTT CINTIS AN	5 CONDITIONS	202	De	finite limits should be est	ablished	for maxim	n burnur	of fuel as	semblies
			an	d rods.					
III LIMITS AN	D CONDITIONS	468	TE	CHNICAL SPECIFICATIONS	0	OPS	1.21	KOZLODUY	3.3.(1)
			Co	nsider the benefits of prep	aring to	echnical spe	cificati	ons for ope	rations
			co	ntaining limits and conditi	ons for	operation,	surveill	ance test r	equirements
			an	d fallback actions.					
III LIMITS AND	CONDITIONS	469	TR	AINING ON NEW SPECIFICATION	S 0	OPS	1.20	KOZLODUY	3.3.(2)
			If	new technical specificatio	ns are a	adopted, tra	ining fo	or all appli	cable shift
			pe	rsonnel should be carried o	ut.				
III LIMITS AN	CONDITIONS	470	AP	PROVAL OF SPECIFICATIONS	0	OPS	1 21	KOZLODUY	3.3.(3)
			11	new technical specification	nsare a 	adopeted the	ey should	be submitt	ed tor
			ap co	PROVAL OF THE REGULATORY DO	ay. 0	005	1 21	KOZLODUX	33(4)
III LINIIS AN	CORDITIONS	47.1	Co	ecification should be given	to rem	ors svina techni	ical spec	ifications	5.5.(+)
			00	perating procedures.		stilling teelinit	out oper		
III LIMITS AN	D CONDITIONS	472	RE	VIEW OF INSTRUCTIONS	0	OPS	1 21	KOZLODUY	3.3.(5)
			Ap	propriate administrative in	structio	ons should t	e revise	ed if new te	chnical
			sp	ecifications are adopted.					
III LIMITS AN	D CONDITIONS	500	) UP	DATED SURVEILLANCE TEST	0	OPS	1.25	KOZLODUY	3.7.(1)
			Re	equirements for periodic sur	veillan	ce tests sho	ould be u	updated and	included in
			a	controlled Technical Specif	ication	document.			
III LIMITS AN	D CONDITIONS	583	S SH	UTDOWN MARGIN	D	CORE	2.2	KOZLODUY	7.1.(4)
	D CONDITIONS	59/	L1	MITS Should be established		CODE	vnimargir 1 ∠	1. KOZLODUV	7 1 (5)
III CIMITS AN	D CONDITIONS	304	11	mits should be stablished f	or the i	naximum coni	trol rod	worth	1.1.(3)
III LIMITS AN	D CONDITIONS	592	2 TH	ERMONYDRAULIC LIMITS	D	CORE	1.4	KOZLODUY	7.6.(3)
			Th	ermohydraulic limits , incl	uding D	NBR, pin and	d clad te	emperatures	and heat
			f١	ux, should be established.					
III LIMITS AN	D CONDITIONS	593	s su	BCRITICALITY AT REFUELLING	D	CORE	22	KOZLODUY	7.8.(1)
			Su	boriticality limit at refue	ling sh	ould be cal	culated a	and correspo	onding Boron
			co	ncentration specified.					
III LIMITS AN	D CONDITIONS	715	5 SH	UTDOWN MARGIN	D	CORE	2.2	NOVOVORONE	7.1.(1)
			A	minimum fixed amount of neg	ative r	eactivity sl	nould be	available a	at HZP
111	D. CONDITIONS	744	00	onditions.		0005		NOVODONE	7 1 (3)
III LIMIIS AN	D CONDITIONS	/ 10	э ке 1 -	ACTIVITY INSERTION RATE	U ADCART	LUKE	c c nuld ha	NUVUVURUNE	7.1.(2)
TTE LIMITS AN		729	211	INITS TO NEXTIGN FEACTIVILY	D	CORF	2.1		7.8.(2)
		,	Es	stablish a limit on power ti	ltino	rder to war	rant that	t the uncert	tainties
			ar	plied on the calculations a	are vala	d.			
III LIMITS AN	D CONDITIONS	845	5 LC	DSS OF FLOW EVENTS	D	ACCIDENT	1.11	NOVOVORONE	12.2.(6)
			Tł	ne resulting number permissi	ble pla	nt operating	g condit:	ions is larg	ge and the
			p	ossibility of error exist. F	teduce b	oth administ	tratively	y and techni	ically the
			n	umber of permissible conditi	ons.				
III LIMITS AN	D CONDITIONS	936	5 TE	ECHNICAL SPECIFICATIONS	0	OPS	1.22	NOVOVORONE	3.3.(5)
			Pi	repared separately bound do	uments	to contain	the plan	t technical	
	5 CONDITIONS	1000	sp 	DECITICATIONS.	•	CODE	2 2		7 1 (2)
III LIMIIS AN	U CONDITIONS	1020	mt י עע	ABUREMENT UNDERTAINTIES	uld he	defined and	used in	defining or	ermissible
				wer level if neaking factor	- 15 lia	ble to be e	xceeded	Terring b	
			p	and the second second					
III LIMITS AN	D CONDITIONS	1021	1 A(	CTIONS FOR PEAKING FACTORS	D	CORE	2.2	KOLA	7.1.(3)
			St	teps to be taken if peaking	factor	1s exceeded	should	be defined	Continued
			o	peration should be based on	a safet	y evaluatio	n.		
III LIMITS AN	D CONDITIONS	1024	6 PE	EAKING FACTOR UNCERTAINTIES	D	CORE	1.8	KOLA	7.1.(6)
			Co	omponents of peaking factor	uncerta	inties shou	ld be de	fined indiv	idually to
			er	nsure that all unceratinties	s are in	cluded.		-	
III LIMITS AN	ID CONDITIONS	1034	• RE	ELOADING SUBCRITICALITY	0 \$10105 -		2.2 Nuld be i	KULA	(.(.(2) X
			- 17	IC ICULINELISUUCITICALITY (	ոս ստել ք		uata De 1	เอเอตน เบ วิเ	

214

CAT.	ISSUE	ITEM	n.	TI	TTLE	/Des	scri	ptio	'n		A	SPEC	T.	AREA		CLASS		REFE	RENCE
III LIMITS AND	CONDITIONS	1042	LIM Eva fai dís	llT C luat led trib	DN F/ tion deto sutio	AILE sho ecto on.	D D uld ors	ETEC be but	TORS made with	for inc	E r co crea	) ontir ased	CC NUEC UNIC	DRE 1 operat certaint	a ior yi	2.1 with n meas	KOLA a lar sured	ge nur power	7.8.(4) nber of
III LIMITS AND	CONDITIONS	1249	LIM A n int mod	ITS ew L erna les.	AND imit ation	CON ting nal	DIT Co pra	IONS ndit ctic	800 ions es.	K for The	( r Op boo	) perat pk st	OF ior houl	PS 1 book s ld be or	1 hou gar	.21 Ild be nized l	KOLA devel by sys	oped a tem ar	3.3.(8) according to nd operating
III LIMITS AND	CONDITIONS	1250	LIM All Lim	ITS inf its	AND forma and	CON atio Con	DIT ni dit	IONS mpor ions	CON tant for	to De	TS ( pla erat	o ants tions	0i safe s bo	≥s ≥ operat xok.	1 ior	.21 shou	KOLA Id be	insert	3.3.(9) ted in the
III LIMITS AND	CONDITIONS	1251	SYS The bee	TEM shi nir	STA ift s	TUS supe med	CHA rvi of	NGES sors any	of chan	each Iges	( hbl	o lock safe	OF sho ety	os Suld be system	1 rec sta	.21 Juired	KOLA to si	gn tha	3.3.(10) at they have

**ISSUE TITLE:** Procedures. Operation

RANK OF ISSUE: II

### **ISSUE CLARIFICATION:**

Operating personnel should be provided with detailed instructions to control locked valves, operate systems, coordinated plant startup/shutdown, conduct shift turnovers and respond to alarms and off-normal conditions. When appropriate, properly dated signatures or initials should be utilized to establish responsibility and traceability of important changes to safety system configurations.

#### **RELATED ITEMS:**

234, 235, 236, 238, 248, 479, 482, 483, 484, 485, 487, 596, 930, 934, 1059, 1242-1245, 1256

### **JUSTIFICATION OF RANKING:**

In normal and off-normal conditions, human errors in plant operation may endanger the defense in depth and the lines of defense. Adequate operating procedures and systematic turnover checklists are of high importance.

CAT	. ISSUE	ITEM	n. TITTLE/Description	ASPECT AREA	CLASS	REFERENCE	
11	PROCEDURES - OPERATION	234	UNIT PROCEDURES	O OPS	1.19	30HUNICE 3.3.(3)	
			Operational procedures should	be written as	separate pro	edures for each un	nit.
11	PROCEDURES - OPERATION	255	PROCEDURE FORMAT	O OPS	1.19 Th	30HUNICE 3.5.(4)	
			operators actions as wellas fi	eld operators.	Step by ste	ey should include b actions should be	•
			defined.	eru operators.	step by ste	V BELLIGIAS SHOULD DE	;
11	PROCEDURES - OPERATION	236	CHECK LIST	O OPS	1.19	BOHUNICE 3.3.(5)	
			Check lists should be develope	d for start up	, shut down,	surveillance tests	;,
			systems line-ups, etc.				
11	PROCEDURES - OPERATION	238	SHIFT TURNOVER	O OPS	1.19	BOHUNICE 3.3.(7)	
			Check lists should be develope	d and used to	transfer inf	ormation between	
		2/9	STITTS.	0 000	1 10		
11	PROCEDORES - OPERATION	240	Field instruments monitored sh	ould have limi	ts marked on	instruments or	
			limiting values should be in t	he log sheets.	ta marked on	This en callentes of	
11	PROCEDURES - OPERATION	479	ALARM PROCEDURES	O OPS	1.19	OZLODUY 3.3.(12)	,
			Alarm procedures, including ca	use and action	s, should be	developed for each	1
			annunciator panel.				
11	PROCEDURES - OPERATION	482	LOCK OF VALVES AND BREAKERS	O OPS	2.3	KOZLODUY 3.4.(2)	
			The accident analysis should b	e used to revi	ew and selec	t the valves to be	
		( 07	kept locked and the breakers t	o be frequentl	y inspected.		
11	PROCEDURES - OPERATION	483	LIST OF LOCKED VALVES	0 OPS	1.19 Lookad inte	(OZLODUY 3.4.(3)	
			a consolidated list of values	and everifield	for control	position during	
			operators.		for control		
- 11	PROCEDURES - OPERATION	484	CHECK OF LOCKED VALVES	O OPS	1.19	KOZLODUY 3.4.(4)	
			Locked valve list should be ch	ecked at least	before star	tup. Periodical	
			checking should also be consid	lered.			
11	PROCEDURES ~ OPERATION	485	METHOD FOR LOCKING VALVES	O OPS	1.19	KOZLODUY 3.4.(5)	
			Modification should be introdu	iced on valve h	andwheels or	adjacent structure	25
		/ 07	to allow proper locking of val	ves.	1 10	KOZLODUK 7 / /7	
••	PROCEDURES - OPERATION	407	Operators logsheet should be r	evised to list	each circui	t breaker that he i	ie
			expected to check and its posi	tion.			
11	PROCEDURES - OPERATION	596	LEAK IDENTIFICATION	D SYSTEMS	1.10	KOZLODUY 8.1.(1)	
			Until leak detection system sy	stem is instal	led, relevan	t operating procedu	ıres
			should be emphasized. Prepare	additional pro	cedures cove	ring sequence of	
			events, monitoring of airborne	e activity, mak	eup water sy	stem perfprmance, M	117
		070	closure, etc.	0 000	4 17		
11	PROCEDURES - OPERATION	930	Include the date time and sin	U UPS	illi ons when cha	NOVOVOKONE 3.1.(4)	
			metude the date, this and sig	mature or pera	iona when end	inges are indeer	
11	PROCEDURES - OPERATION	934	ALARM RESPONSE	O OPS	1.22	NOVOVORONE 3.3.(3)	
			Alarm response procedures shou	uld be develope	d which assi	st the operator to	
			anticipate and avoid the need	for emergency	actions.		
11	PROCEDURES - OPERATION	1059	COOLDOWN THROUGH BRU-K	D SYSTEMS	3.9	KOLA 8.4.(1)	
			Procedures to cool the reactor	through the t	urbine by-pa	ss (BRU-K) down to	
		12/2	COLD STUTION CONDITIONS SHOUL	d be developed	1. 10	XOLA 33(1)	
11	PROCEDURES - OPERATION	1242	The list of manual valve posit	ions should be	included in	the operating	
			procedures and aproved as an i	integral part o	of the proced	ure.	
11	PROCEDURES - OPERATION	1243	SIGNATURE IN THE PROCEDURES	O OPS	1.19	KOLA 3.3.(2)	
			Space for operator's signature	e should be inc	luded in bot	h general and syste	em
			operating procedures.				
11	PROCEDURES - OPERATION	1244	STEP BY STEP PROCEDURES	0 OPS	1.19	KOLA 3.3.(3)	
			to reduce chance of operator e	error, procedur	es should be	written in a singe	le
**	PROCEDURES - ODEPATION	12/5	ALARM PROCEDURES	290 0	1 10	KOLA 33741	
11	INVEVOLO - VERNIJUN	1243	Alarm response procedures show	uld be develop	d to cover a	Il alarms in contro	ol
			room and auxiliary panels.	p			•
II	PROCEDURES - OPERATION	1256	FIELD OPERATOR LOG SHEETS	O OPS	1.19	KOLA 3.4.(2)	
			Field operator log sheets should	uld contain nor	mal paramete	rs and limiting	
			values.				

**ISSUE NUMBER:** Plant Operations 1

**ISSUE TITLE:** Surveillance Program

RANK OF ISSUE: II

#### **ISSUE CLARIFICATION:**

The surveillance program provides the guidance on how surveillance tests are tracked, trended, and scheduled.

#### **RELATED ITEMS:**

275, 502-505, 962, 963, 1280, 1283

# JUSTIFICATION OF RANKING:

This issue is strongly linked to Procedures. Surveillance. The surveillance program is to be enhanced for better usage of the test results, which would help to prevent defense in depth degradation. Nevertheless, surveillance procedures are judged more urgent and were given higher priority.

CAT.	1 SSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	NCE
11	SURVEILLANCE PROGRAMME	275	SUR	VEILLANCE PROGRAMME	0	TS	1.25	BOHUNICE	5.2.(2)
			Imp	prove surveillance test prog	iramme t	oy analysis	of trend	ls of test r	esults, and
			re\	view of results by Failure (	committe	e.			
11	SURVEILLANCE PROGRAMME	502	TRA	CKING TEST SCHEDULE	0	OPS	1.25	KOZLODUY	3.7.(3)
			Est	ablish tracking system for	tests i	hich are no	t execu	ed on schee	kule.
[]	SURVEILLANCE PROGRAMME	503	PER	MISSIBLE TEST DELAY	0	OPS	1.25	KOZLODUY	3.7.(4)
			Est	ablish time criteria for sl	ippage	of test sch	edule.		
11	SURVEILLANCE PROGRAMME	504	DIS	SPLAY OF OUTSTANDING TESTS	0	OPS	1.25	KOZLODUY	3.7.(5)
			Cor	nsideration should be given	to vis	ually displa	ying ou	standing su	irveillance
			tes	its to operators.					
11	SURVEILLANCE PROGRAMME	505	TES	T RECORDS	0	OPS	1.19	KOZLODUY	3.7.(6)
			1 mp	prove test record keeping. R	lecord i	results toge	ther wit	th acceptanc	e criteria.
			Kee	ep second copy separated.					
11	SURVEILLANCE PROGRAMME	962	PAR	RAMETER TRENDING	0	OPS	3.3	NOVOVORONE	3.8.(2)
			Par	ameter trend analysis should	d be r	outinely car	ried ou	t to identii	iy any
			deç	gradation.					
п	SURVEILLANCE PROGRAMME	963	SUR	RVEILLANCE TESTS	0	OPS	1.25	NOVOVORONE	3.8.(3)
			Cor	nduct regular checks of log	ooks o	r reports of	surve i	llance tests	j.
11	SURVEILLANCE PROGRAMME	1280	SUR	RVEILLANCE TEST SHEETS	0	OPS	1.15	KOLA	3.9.(1)
			Sur	veillance test data sheets	should	be filed, i	nstead (	of transfer	ing the data
			to	logbooks.					
11	SURVEILLANCE PROGRAMME	1283	PER	RNISSIBLE TES DELAY	0	OPS	1.25	KOLA	3.9.(4)
			Ind	clude time deviation tolerar	nce (%)	to facilita	te surv	eillance tea	st
			pro	ogramme.					
			•	-					

**ISSUE NUMBER:** Plant Operations 2

**ISSUE TITLE:** Procedures. Surveillance

RANK OF ISSUE: III

### **ISSUE CLARIFICATION:**

Personnel should be provided with detailed instructions and acceptance criteria for tests that verify important safety parameters and functionalities of systems and trains. These procedures should encompass all data necessary to determine the performance of plant equipment.

### **RELATED ITEMS:**

274, 501, 800, 801, 961, 1281, 1282, 1284

### **JUSTIFICATION OF RANKING:**

Adequate surveillance procedures are necessary to ensure safety system operability as designed. Since the WWER 440-230 plants have safety margins difficult to assess now, surveillance of component integrity and functionalities is of paramount importance to ensure adequate defense in depth.

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
111 PROCEDURE	S - SURVEILLANCE	274	SUR Tes	RVEILLANCE TEST PROCEDURES st procedures for each surve	0 illance	TS e test shoul	1.25 d be de	BOHUNICE veloped, wi	5.2.(1) th cross
III PROCEDURE	S - SURVEILLANCE	501	TES	ST ACCEPTANCE CRITERIA e acceptance criteria for su	0 Irveilla	OPS ance tests m	1.25 Just be	KOZLODUY defined and	3.7.(2) should be
III PROCEDURE	S - SURVEILLANCE	800	FAI Ope	ILED LAMP CHECKING erating procedures should be mps.	D revis	1&C ed to requir	1.25 e frequ	NOVOVORONE ent checkin	10.7.(3) g for failed
III PROCEDURE	S - SURVEILLANCE	801	FAI Ope	ILED LAMP REPLACEMENT erating procedures should be	D revis	I&C ed to requir	1.25 e that	NOVOVORONE failed lamp	10.7.(4) s be
III PROCEDURE	S - SURVEILLANCE	961	DAT	TA RECORDING L data necessary to determin	0 e the p	OPS performance iteria.	1.25 of plan	NOVOVORONE t equipment	3.8.(1) should be
III PROCEDUR	ES - SURVEILLANCE	1281	TES	ST ACCEPTANCE CRITERIA	0 riteri	OPS should be	1.25 include	KOLA d in the pr	3.9.(2) ocedures.
III PROCEDURE	S - SURVEILLANCE	1282		AITS AND CONDITION REFERENCE clude Limiting Condition for pocedures.	0 Opera	OPS tion referer	1.25 .ce in s	KOLA urveillance	3.9.(3) test
III PROCEDURE	S - SURVEILLANCE	1284	LEA Sur WE	AK RATE MEASUREMENT rveillance procedure for mea itten.	0 Isuring	OPS primary sys	1.25 item lea	KOLA k rate shou	<b>3.9.(5)</b> ld be

**ISSUE NUMBER:** Plant Operations 3

**ISSUE TITLE:** Work Control

**RANK OF ISSUE: III** 

### **ISSUE CLARIFICATION:**

Adequate programmes should exist to control the identification and scheduling of maintenance activities, and for the isolation, release for work, and return to service of equipment.

### **RELATED ITEMS:**

252-255, 941, 942, 943, 946, 973 493, 494, 495, 1260-1263, 1265

### JUSTIFICATION OF RANKING:

Inadequate control of work can lead to high personnel risks and risks to the plant if safety systems are inadvertently left out of service.

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	INCE
III WORK (	ONTROL	252	TAG	GING SYSTEM	0	OPS	1.19	BOHUNICE	3.5.(1)
			Tag con	ging of isolated equipment trol room.	should	be implemen	ted in 1	the plant ar	nd in the
III WORK (	CONTROL	253	WOR	KORDER	0	OPS	1.19	BOHUNICE	3.5.(2)
			Wor	k request should be numbere	d conse	cutively an	d have o	copies for u	use in
			dif	ferent places. They should wed.	be clea	arly marked	for which	ch unit they	/ were
	ONTROL	254	002	K REQUEST	0	085	1 10	BOHINICE	3.5.(3)
			Vor	k request should be possibl	e to be	initiated	by any a	one who find	is a defect
III WORK (	CONTROL	255	REV	IEW OF WORK ORDER	0	OPS	1.19	BOHUNICE	3.5.(6)
			An	independent safety enginee	nost st	ould be cre	ated to	review plan	at a second
			mod	ifications and and work or	lers rei	ated to saf	etv eve	tems.	
THE MORE &	104780I	493	DEF	FICIENCY TAGGING SYSTEM	n	085	1 10	KOZI ODILY	35(1)
		475	Con	sideration should be given	to the	use of a de	fficien	v tadding (	Sistem co
			tha	t operators can readly dete	rmine i	if the deffi	ciency I	las heen rer	orted
	ONTROL	404	cno	POTNATION OF UOPK			1 10	KOZLODUA	3 5 (2)
111 WORK 6		474	The	cohedule of maintenance u	ok ohou	urs Id be soond	instad (	ith curveil	
			tas	ting in order to evoid the	need to		+	aren surver	
	ONTRO	4.05	150		0	nepear res	1 10		35 (3)
		475	adh	arance to requirements for	icolati	ion of equin	mont ch	wild be stra	postbood to
			ens	ure personal safety during	nerfor	non of the	uent sa		engrined to
TET LINEK	ONTROL	941	TAG	GING SYSTEM	0		1 10	NOVOVORONE	3 4 (4)
TTT BORK		,41	Enf	orce tagging and/or locking	i for al	l uork uher	a there	is dancer 1	5.4.(4)
			per	sonnel.	, ioi a.		e there	ra danger	
III WORK	CONTROL	942	WOR	K PLANNING	0	OPS	1.19	NOVOVORONE	3.5.(1)
			Cor dep	struct a short term plan ea artments and sections for a	ach day each 24	which colla hours perio	tes the d.	work progra	ammes of all
III WORK	CONTROL	943	WOF	K PRIORIZATION	C	OPS	1.19	NOVOVORONE	3.5.(2)
			A f	ormal priority rating syste	em for l	ooth operati	onal an	d maintenand	ce work
TTT NORK	ONTROL	946	CON	TROL SYSTEM	0	OPS	1 10	NOVOVORONE	3 5 (5)
		,,,,,	An	wre flexible control system	n is rea	quired to se	cure pl	ant componer	nts against
		073	- 100	Y OPDER	0	MAINT	1 25	NOVOVORONE	4 4 (1)
III WORK		,,,,	Sin	n onder nijfy the work order/nermij	t forme	to coduce r	recorat	ion time of	
TTT LOOP		1240	unc		0	one terrore t	1 10	KOLA	3 5 / 7 \
III WORK		1200	Wor	k authorization should be s	signed t	by plant shi	ft supe	rvisor befor	re work
			sta	rts and after its complitio	on.	•••	•		
111 WORK	CONTROL	1261	WOF	K AUTHORIZATION FORM	0	OPS	1.19	KOLA	3.5.(4)
			One	form only should be used	for all	work (I&C,	Electri	cal, Mechan	ic, etc)
			aut	horization.					
III WORK	CONTROL	1262	TAC	GING SYSTEM	0	OPS	1.19	KOLA	3.5.(5)
			A a	wore effective tagging system	em shou	ld be implem	ented.	Tags should	be numbered
			and	l listed in the work author	ization	•			
III WORK	CONTROL	1263	RAC	IATION WORK AUTHORIZATION	0	OPS	1.23	KOLA	3.5.(6)
			Rad	liation work authorizations	should	be filled (	not des	tryed in 30	days) and
			the	eir data kept for statistic	at purp	oses.			
III WORK	CONTROL	1265	POS	T MAINTENANCE TESTING	0	OPS	1.19	KOLA	3.5.(8)
			Pos	t maintenance testing requ	irement	s should be	clearly	identified	in work
			aut	horizations and results sh	ould be	recorded an	d appro	ved.	

**ISSUE NUMBER:** Plant Operations 4

**ISSUE TITLE:** Organization of Shifts

RANK OF ISSUE: III

# **ISSUE CLARIFICATION:**

Shift organization structure should provide for clear responsibilities, lines of communication, and enhance the shift's ability to accomplish common goals. Due to the poor control room design, increased emphasis should be given to the adequacy of the number of control room personnel present at all times. Shift supervisory personnel should maintain a qualification level consistent with the personnel they are required to supervise.

# **RELATED ITEMS:**

227, 228, 244, 452, 454, 928, 940, 1236-1239

### **JUSTIFICATION OF RANKING:**

Taking into account the poor control room design and the necessity to operate in emergency situations both from the control room and the back panels, operators constitute the ultimate line of defense and therefore proper staffing and qualification are a high safety concern. It not fulfilled, immediate corrective action is required.

CAT.	1 SSUE		ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
111 0	RGANIZATION OF	SHIFTS	227	SHI Shii Sube	FT ORGANIZATION fts should be reorganized. ervisors.	0 Field (	OPS operators s	1.17 should rej	BOHUNICE port to uni	3.1.(1) t
111 0	RGANIZATION OF	SHIFTS	228	SHII	FT GROUPS sideration should be given	0 to hav	OPS ing field o	1.17 operators	BOHUNICE and contro	3.1.(2) L room
111 0	RGANIZATION OF	SHIFTS	244	CONT	TROL ROOM PERSONNEL ber of shift personnel in t	0 the con	OPS trol room s	1.17 should be	BOHUNICE	3.4.(1)
111 0	RGANIZATION OF	SHIFTS	452	SHII Reon for svs1	FT REORGANIZATION rganize shift teams such th system and equipment in ea tem and equipment not assoc	0 lat cont sch unit ciated t	OPS trol room a t report t to a single	1.17 and field to USS and a unit re	KOZLODUY oparators d those res port to SSS	3.1.(1) responsible ponsible for
111 0	RGANIZATION OF	SHIFTS	454	TRA) Afte	INING AFTER REORGANIZATION er reorganization, afected job responsibilities.	0 operate	OPS ors should	1.20 be retra	KOZLODUY ined to und	3.1.(3) erstand the
111 0	RGANIZATION OF	SHIFTS	928	SHII Ana all	FT REORGANIZATION ew shift pattern should be six shift teams.	0 introd	OPS uced which	1.17 includes	NOVOVORONE the workin	3.1.(2) g periods of
[11 0	RGANIZATION OF	SHIFTS	940	SHII The to r	FT REORGANIZATION plant tour routines and du encourage and develop a ser	0 uties of a	OPS f the shift ownership.	1.19 t staff sl	NGVOVORONE hould be re	3.4.(3) structured
111 0	RGANIZATION OF	SHIFTS	1236	CON Two all of 1	TROL ROOM STAFFING qualified reactor operator times. One of them should both blocks.	0 rs shou be qua	OPS ld be requi lified and	1.17 ired in b responsi	KOLA oth control ble for the	3.1.(1) rooms at supervision
111 0	RGANIZATION OF	SHIFTS	1237	SHII Esti Supi roomi	FT ORGANIZATION ablish a Deputy plant Shift ervisor position that would m.	0 t Suprv d super	OPS isor positi vise the op	1.17 ion or a peration	KOLA 1st. Stage of both blo	3.1.(2) Shift ck control
111 0	RGANIZATION OF	SHIFTS	1238	DEPL As a main	UTY PLANT SUPERVISOR a minimum, the recommended ntain a reactor operator qu	0 Deputy Walific	OPS Plant Shir ation.	1.17 ft Superv	KOLA isor should	3.1.(3) required to
111 0	RGANIZATION OF	SHIFTS	1239	IMPI Shi roor	ROVED SHIFT ORGANIZATION ft organization should be m operators and block field	0 simplif d opera	OPS ied to imp tors should	1.17 rove comu d report	KOLA nication. A to the reac	3.1.(4) Il control tor operator

supervising the block operations.
**ISSUE NUMBER:** Plant Operations 5

**ISSUE TITLE:** Labels and Operation Aids

RANK OF ISSUE: II

# **ISSUE CLARIFICATION:**

Measures should be taken to properly identify plant equipment and color code station systems for use by station personnel. Operator aids should be kept up to date.

Means should be provided in order to ensure operator aids (such as system flowcharts and operating instructions) posted in the plant for personnel use are kept up to date.

### **RELATED ITEMS:**

249, 266, 481, 492, 953, 954, 955, 1268

# JUSTIFICATION OF RANKING:

Proper identification of plant equipment and proper use of operator aids are necessary to reduce the risk of human error.

CAT.		ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	INCE
11	LABELS AND	OPERATION AIDS	249	LAB	ELLING	0	OPS	1.19	BOHUNICE	3.4.(6)
				Lab	elling of plant componets s	hould b	pe significa	antly upg	graded.	
11	LABELS AND	OPERATION AIDS	266	AUX	ILIARY CONTROL ROOMS	0	OPS	2.3	BOHUNICE	3.6.(11)
				Sys: white	tem and components in auxil ch unit they belong.	lary co	ontrol room	s should	be better i	narked to
11	LABELS AND	OPERATION AIDS	481	OPE	RATOR INFORMATION UPDATE	0	OPS	1.19	KOZLODUY	3.4.(1)
				A fo	ormal system should be eata rators through drawings and	blished I other	d to ensure means are l	that in: cept upda	formation pu ated.	ovided to
11	LABELS AND	OPERATION AIDS	492	LAB	ELLING	0	OPS	1.19	KOZLODUY	3.4.(12)
				Lab	els should be installed in	all pla	ant componer	nts.		
11	LABELS AND	OPERATION AIDS	953	COLO	OUR CODING PLANT ITEM	0	OPS .	1.19	NOVOVORONE	3.6.(7)
				Chai	nge the policy of colour co	ding p	ant items	to one wi	nich provid	es improved
				ide	ntification of differing du	ties a	nd/or system	ns.	•	·
11	LABELS AND	OPERATION AIDS	954	LAB	ELLING	0	OPS	1.19	NOVOVORONE	3.6.(8)
				Enha	ance the standard (abelling	to acc	comodate va	lves of a	all sizes,	
11	LARELS AND	OPERATION AIDS	955	LARI	FILING	0	OPS	1 10	NOVOVORONE	3.6.(9)
••				ALL	valves and/or ninelines of	- instr	ments shou	ld be clu	early label	ed (valve
				num	her. instrument name or num	ber.a	ny special	function	).	
11	LABELS AND	OPERATION ALDS	1268	LAB	ELLING	0	OPS	1.19	KOLA	3.6.(2)
••	2			Mor	e efficient system for Labe	llina	and colour :	codina s	hould be de	veloped.
					e criticite oystem for the	second of		country a	toura de de	

**ISSUE NUMBER:** Plant Operations 6

**ISSUE TITLE:** Chemistry

RANK OF ISSUE: I

### **ISSUE CLARIFICATION:**

Measures identified to improve condenser leak detector testing, quality of secondary makeup water, on-line monitoring equipment, control of chemicals used on primary system, and maintenance of historical chemistry data.

### **RELATED ITEMS:**

769, 1273, 1274, 1275, 1276, 1278

# JUSTIFICATION OF RANKING:

These are mostly secondary chemistry concerns that address lack of modern instrumentation and methods. Control of chemicals used on the primary system, or that could enter the plant system, also needs some improvement. The chemistry area was not reviewed in depth by the team.

					····		men	CENJJ	NCI CR	
I (	CHEMISTRY	7	769 :	STRESS	CORROSION MONITORING	D	COMPONENTS 1	.10	NOVOVORONE	9.1.(2)
			1	Water ( impuri	chemistry of the primary ties will not lead to st	circui ress co	t requires u rrosion crac	atmost a king.	attention. /	Aggressive
I (	CHEMISTRY	12	273 (	CONDUC	TIVITY MEASUREMENT	0	OPS 2	2.3	KOLA	3.8.(1)
			0	On-lin	e feedwater conductivity	measur	ing equipmer	nt shou	ld be insta	lled.
L (	CHEMISTRY	12	274 1	DEMINE	RALIZED WATER QUALITY	0	OPS 2	2.3	KOLA	3.8.(2)
			(	Qualit demine	y of demineralized water ralizers should be exped	should	be improved	l. Planı	ned mixed b	ed
<b>I</b> (	CHEMISTRY	12	275 (	CONDEN	SER LEAK DETECTION	0	OPS 2	2.3	KOLA	3.8.(3)
			1	More m detect	odern condenser tube lea ors).	k detec	tion system	should	be used (	e.g., helium
<b>t</b> (	CHEMISTRY	12	276 1	MAKEUP	WATER 02 CONTENT	0	ops a	2.3	KOLA	3.8.(4)
			1	Water : for co	storage tanks should be ndenser should be suppli	upgrade ed from	d to prevent tanks.	the al	bsortion ox	ygen. Water
1 +	CHEMISTRY	12	278 1	HISTOR	ICAL CHEMISTRY DATA	0	OPS 2	2.3	KOLA	3.8.(6)
			(	Graphs should	of historical data of m be maintained.	ain che	mical parame	ters o	f primary a	nd secondary

X

**ISSUE NUMBER:** Maintenance 1

**ISSUE TITLE:** Maintenance Program

**RANK OF ISSUE: II** 

## **ISSUE CLARIFICATION:**

This issue encompasses recommendations for the maintenance program to improve maintenance standards, equipment history, procurement and storage of spare parts; corrective, preventive, and predictive maintenance.

#### **RELATED ITEMS:**

268, 496, 515, 520, 523, 526, 600, 890, 970, 977-981, 986, 1264, 1286, 1287, 1290, 1293, 1294, 1301

## JUSTIFICATION OF RANKING:

A proper maintenance programme is necessary for equipment to perform as designed.

CAT.	•	ISSUE		ITEM	ก.	TITTLE/Description	ASPECT	AREA	CLASS	REFERE	INCE
11	MAINTENANC	E PROGRA	MME	268	CLEA A fo	NINESS OF MAINTENANCE ARE preign material exclusion	AO I programm	MAINT e should be	1.19 develop	BOHUNICE ed and impl	4.2.(1) emented
11	MAINTENANC	E PROGRA	AMME	496	durı MAIN Deta	ng maintanance work. ITENANCE DOCUMENTATION Its of maintenace work, a	0 (	OPS on safety re	1 19 elated e	KOZLODUY quipment, s	3.5.(4) should be
11	MAINTENANC	e progra	AMME	515	docu MAIN Star	mented for future plannin ITENANCE STANDARDS Idards for maintenance sho	g and fo 0 i ruld be e	r trending ( MAINT stablished,	equipmen 1.25 address	t performan KOZLODUY ang: activi	nce. 4.2.(3) Ities,
11	MAINTENANC	e progrø	AMME	520	PFOC MAIN	edures, quality control, ITENANCE RECORDS	requal 1 f	AINT	ts. 1.19	KOZLODUY	4.3.(3)
11	MAINTENANC	E PROGRA	AMME	523	ALL PRED	equipment passaports and ICTIVE MAINTENANCE		s should be MAINT	stored	IN a docume	4.5.(2)
11	MAINTENANC	e progr <i>i</i>	AMME	526	PROC Proc	UREMENT OF SPARE PARTS Curement of spare parts pr	ocess sh	gramme. MAINT ould be sim	1.17 plified,	KOZLODUY allowing c	4.7.(1) direct
11	MAINTENANC	E PROGRA	AMME	600	cont MAIN Mair	act between plant and sup I VALVE MAINTENANCE Itenance of main isolation	D D valves	SYSTEMS should be en	1,25 nforced	KOZLODUY and additio	8.1.(5) onal
11	MAINTENANC	E PROGRA	AMME	890	insp PROC Dire	ection should be performe CUREMENTS OF SPARE PARTS Ect contacts betwen the po	d to avo O I wer plan	1d degradat MOA ts and the	ion. 1.17 fabricat	NOVOVORONE ors of nucl	1.8.(2) lear
11	MAINTENANC	e progr/	AMME	970	comp ELEC Work	conents should be taken f TRIC MOTORS carea for electric motor	or deliv O I overhaul	ering of co MAINT and repair	mponents 1.25 should	NOVOVORONE be expanded	4.2.(5) t and made
11	MAINTENANC	e progr <i>i</i>	AMME	977	suit REPC Eval	able for the disassembly RTS PREVENTIVE MAINTENANC Luate all preventive maint	of motor E O Tenance r	s of all si MAINT eports in o	zes. 1.25 rder to	NOVOVORONE enhance the	4.5.(2) e preventive
11	MAINTENANC	e progr/	AMME	978	matr PREC Vibr	ntenance programme. DICTIVE MAINTENANCE sation monitoring of rotat	0 1ng equi	MAINT pment should	1.25 d be dev	NOVOVORONE reloped into	4.5.(3) Da
11	MAINTENANC	E PROGRI	AMME	979	prec MONI Moni	TORING TECHNIQUES	0 be emplo	MAINT yed to asse	1.25 ss the c	NOVOVORONE	4.5.(4) f rotating
11	MAINTENANC	e progr <i>i</i>	AMME	980	and CORF Spec	static plant items. RECTIVE MAINTENANCE cial effect record form sh	0 Iould be	MAINT developed f	1.25 or the 1	NOVOVORONE nitiation a	4.6.(1) and
11	MAINTENANC	E PROGR/	AMME	981	reco MAIN Make	ording of the repair proce ITENANCE PROGRAMME e defect database availabl	dure of O e for th	the failure MAINT e maintenan	1.25 ce depar	NOVOVORONE tment. Use	4.6.(2) the special
11	MAINTENANC	e progr	AMME	986	SPAR	nd form as recommended in RE PARTS	0	MAINT	1 25	NOVOVORONE	4.8.(4)
11	MAINTENANC	E PROGRI	AMME	1264	WORI Bool	AUTHORIZATION FILES	0 horizati	OPS on compliti	appropri 1.19 on shoul	KOLA d be subst	3.5.(7) ituted by
11	MAINTENANC	e progr	ANNE	1286	MAIN	ITENANCE OF BOP EQUIPMENT ance of Plant equipment sh	0 Iould be	MAINT maintained	1.19 to the s	KOLA iame standai	4.1.(2) rds as
11	MAINTENANC	e progr	AMME	1287	MAIN	IDMENT IMPORTANT TO SAFETY ITENANCE OF SERVICE WATER vice water system should b	or plan O Xe mainte	MAINT ned as a sa	1.25 fety rel	KOLA ated system	4.1.(3) n, using
11	MAINTENANC	E PROGR	AMME	1290	MAII Maii pro	WTENANCE STANDARDS Intenance standards should cedures, motivating worker	0 be estab s to use	MAINT Ished. Thi procedures	1.25 s involv , increa	KOLA ves: develo osing the a	4.2.(3) ping quality
11	MAINTENANC	e progr	AMME	1293	MAII Con:	NTENANCE RECORDS Sideration should be given pue documentation center	0 n to stor	MAINT ing all equ	1.19 apment c	KOLA locumentati	4.3.(2) on in a
11	MAINTENANC	e progr/	AMME	1294	MAIN	TENANCE RECORDS ACCESS ss to computerized work c	0 i ontrol s	MAINT ystem should	1.19 d not re	KOLA quire the u	4.4.(1) use of a
11	MAINTENANC	E PROGRI	AMME	1301	ROTA A pr deve	TING SPARE MOTORS ogramme for rotating peri loped.	0 I odically	MAINT spare moto:	1.6 r in the	KOLA warehouses	4.8.(2) s should be

**ISSUE NUMBER:** Maintenance 2

**ISSUE TITLE:** Procedures. Maintenance

RANK OF ISSUE: II

## **ISSUE CLARIFICATION:**

Maintenance personnel should be provided with appropriate instructions, specifications, and drawings to perform repairs and preventive maintenance activities.

#### **RELATED ITEMS:**

270, 272, 519, 522, 945, 976, 1296

### **JUSTIFICATION OF RANKING:**

Reliable performance of plant equipment and components is a prerequisite for ensuring defense in depth and safety system function. Furthermore, human errors in maintenance may be hidden until the equipment or component is actuated. Appropriate procedures are required for all safety-related maintenance activities.

CAT	. ISSUE	ITEM	n. '	TITTLE/Description	ASPECT	AREA	CLASS	REFERENCE
11	PROCEDURES - MAINTENANCE	270	DETA	ILS OF PROCEDURES	o	MAINT	1.25	BOHUNICE 4.3.(2)
			Incl	ude related drawings ar	d vendors	instructio	ns in ma	intenance procedures.
п	PROCEDURES - MAINTENANCE	272	TOLE	RANCES IN TEST SHEETS	o	MAINT	1.25	BOHUNICE 4.5.(1)
			Prov the	ide acceptable tolerand test sheets.	es for se	t points of	relays	and control devices on
п	PROCEDURES - MAINTENANCE	519	DETA	ILS OF PROCEDURES	0	MAINT	1.25	KOZLODUY 4.3.(2)
			Incl main	ude related drawings, w itenance procedures.	endors in:	structions	and cont	rol hold points in
11	PROCEDURES - MAINTENANCE	522	PREV	ENTIVE MAINTENANCE	0	MAINT	1.25	KOZLODUY 4.5.(1)
			Reso prev	urces should be committ entive maintenance acti	ed to development	elope proce	dures fo	r different types of
п	PROCEDURES - MAINTENANCE	945	PROC	EDURE FORMAT	0	OPS	1.17	NOVOVORONE 3.5.(4)
			The 🗸	operations procedures a	and work of	rders shoul	d be res	tructured to separate
			the avai	actions taken to ensure lability.	e personne	l safety fr	om those	which control plant
П	PROCEDURES - MAINTENANCE	976	PREV	ENTIVE MAINTENANCE	0	MAINT	1.25	NOVOVORONE 4.5.(1)
			Deta shou	iled working procedures ald be developed.	for the	preventive	maintena	nce of components
11	PROCEDURES - MAINTENANCE	1296	REAC	TOR MAINTENANCE PROCEDU	JRE O	MAINT	1.19	KOLA 4.4.(3)
			Proc equi	edures should describe pment used during the f	actions to mandling o	o be taken f reactor c	in case component	of failure of diferent S.

.

**ISSUE NUMBER:** Maintenance 3

**ISSUE TITLE:** Equipment Material Conditions

RANK OF ISSUE: IV

## **ISSUE CLARIFICATION:**

Equipment should be maintained in a state of readiness so that it can reliably operate. Immediate action is required to restore safety equipment to their design conditions.

### **RELATED ITEMS:**

491, 513, 514, 799, 833, 966, 1153, 1154, 1288, 1289,

# JUSTIFICATION OF RANKING:

The condition of the systems important to safety must be maintained in a highly reliable state and in accordance with design to ensure operability. Failure of safety systems in accident conditions can result in unacceptable consequences. The issue was identified mostly due to the conditions prevailing at Kozloduy at the time of the mission. Conditions at other plants were significantly better.

CAT	•	ISSUE		ITEM	n. TITTLE/Description
IV	EQUIPMENT	MATERIAL	CONDITIONS	491	REMOVED VALVE HANDWHEELS Removed valve handwheels s position shopuld be locked
IV	EQUIPMENT	MATERIAL	CONDITIONS	513	POOR PLANT CONDITIONS Imediate actions should be standards. Including instr
14	EQUIPMENT	MATERIAL	CONDITIONS	514	EQUIPMENT RESTORATION PLAN A plan should be developed The plan should be impleme
IV	EQUIPMENT	MATERIAL	CONDITIONS	799	CONTROL ROOM INDICATOR LAN All Lamos should be inspec
IV	EQUIPMENT	MATERIAL	CONDITIONS	833	CABLE CONNECTIONS Repair all cable connectio
IV	EQUIPMENT	MATERIAL	CONDITIONS	966	CABLE TERMINATIONS Resolve the generic defici-
IV	EQUIPMENT	MATERIAL	CONDITIONS	1153	WATER IN ELECTRICAL ROOMS A solution should be found
IV	EQUIPMENT	MATERIAL	CONDITIONS	1154	ELECTRICAL CABLE SUPPORTS
1V	EQUIPMENT	MATERIAL	CONDITIONS	1288	RESTORATION OF SERVICE WAT Actions should be taken to includes restoration of in
1V	EQUIPMENT	MATERIAL	CONDITIONS	1289	EQUIPMENT RESTORATION PLAN

- 91 REMOVED VALVE HANDWHEELS O OPS 1.19 KOZLODUY 3.4.(11) Removed valve handwheels should be replaced. Valves to be kept in a fixed position shopuld be locked.
- 13 POOR PLANT CONDITIONS O MAINT 1.25 KOZLODUY 4.2.(1) Imediate actions should be taken to restore safety equipment to their design standards. Including instrumentation and power systems.
- 514 EQUIPMENT RESTORATION PLAN O MAINT 1.25 KOZLODUY 4.2.(2) A plan should be developed to restore all equipment to its design standards. The plan should be implemented promptly. 799 CONTROL ROOM INDICATOR LANPS D I&C 2.3 NOVOVORONE 10.7.(2)
- 799 CONTROL ROOM INDICATOR LAMPS D I&C 2.3 NOVOVORONE 10.7.(2) All lamps should be inspected and replaced if necessary.
- B33 CABLE CONNECTIONS D ELECTRICAL 1.25 NOVOVORONE 11.6.(1) Repair all cable connections which are not in their professional state.
- 966 CABLE TERMINATIONS O MAINT 1.25 NOVOVORONE 4.2.(1) Resolve the generic deficiencies of electric cable terminations in order to return the safety and environmental qualifications to the required standard.
- 153 WATER IN ELECTRICAL ROOMS D ELECTRICAL 1.25 KOLA 11.3.(1) A solution should be found to prevent water infiltration into the electrical rooms.
- 154 ELECTRICAL CABLE SUPPORTS D ELECTRICAL 1.25 KOLA 11.3.(2) Possible sliding of electrical cables from the supports should be prevented.
- 1288 RESTORATION OF SERVICE WATER O MAINT 1.25 KOLA 4.2.(1) Actions should be taken to restore service water to its design standars. This includes restoration of integrity of its power supply.
- 1289 EQUIPMENT RESTORATION PLAN O MAINT 1.25 KOLA 4.2.(2) Develope a plan to restore degraded equipment to design standards. Identify priorities and establish schedule.

**ISSUE NUMBER:** Maintenance 4

**ISSUE TITLE:** Warehouse

RANK OF ISSUE: I

## **ISSUE CLARIFICATION:**

Warehouse should be upgraded in order to provide a good storage place and to protect the spare parts from dust and dirt.

# **RELATED ITEMS:**

530, 983, 984, 985

.

# JUSTIFICATION OF RANKING:

Bad conditions of storage of spare parts which are safety related may later create functional or quality problems.

CAT	•	ISSUE	ITEM	n.	TITTLE/Description	ASPEC	T AREA	CLASS	REFERE	NCE
1	WAREHOUSES	:	530	IMP	ROVE WAREHOUSES	0	MAINT	1.19	KOZLODUY	4.7.(5)
				The win	existing warehouses should dowsand installing ventilat	be i ion.	mproved by	improving	door seals	and
I	WAREHOUSES	5	983	SPA	RE PARTS CLEANNESS	0	MAINT	1.19	NOVOVORONE	4.8.(1)
				The	centralized warehouse and	the s	pare parts	should be	kept clean.	
I	WAREHOUSES	i	984	STA	INLESS STEEL	0	MAINT	1.19	NOVOVORONE	4.8.(2)
				As	pecial store should be used	for	stainless s	teel.		
I	WAREHOUSES	:	985	HOL	D STORE	0	MAINT	1.19	NOVOVORONE	4.8.(3)
				As con	eparate "hold" store should strol checks.	be s	set up for s	pare parts	that await	: quality

.

**ISSUE TITLE:** Training program

**RANK OF ISSUE: III** 

### **ISSUE CLARIFICATION:**

The training programs must systematically assess the training needs of all station personnel and provide effective instruction to them in order to enhance their performance. The basic element of an effective training program are explained in NUSS. The training program should not only provide instruction to operators, but also to maintenance, chemistry, technical staff, the general employee and other appropriate members of the plant. The most effective method to ensure basic training needs are met is to perform a systematic analysis of what the individual needs to know to perform their job. After these initial training needs are addressed, the skills should be reinforced through appropriate periodic retraining. The training program should also contain elements to objectively assess the trainee and instructor's performance.

#### **RELATED ITEMS:**

204, 206, 210, 212, 215, 220, 221, 222, 229, 416, 423-435, 445-450, 457, 480, 486, 499, 516, 656, 892, 893-898, 909, 912-924, 1216-1218, 1225-1227, 1228, 1229, 1230, 1232-1235

#### **JUSTIFICATION OF RANKING:**

All station personnel must be adequately trained and qualified to ensure they can effectively operate and maintain the plant, and reduce the risk of occurrence of events and their consequences. A more effectively structured training program will result in an overall enhancement in defense in depth.

CAT.		I SSUE	ITEM	n	TITTLE/Description	ASPECT	AREA	CLASS	REFE	RENCE
111	TRAINING	PROGRAMME	204	1N Pa	STRUCTION TO INSTRUCTORS	0 d be provi	TO ded with a	1.20 appropria	BOHUNICE te instruc	2.1.(1) tional
			20/	te	chniques training.	_				
111	TRAINING	PROGRAMME	206	Co	MPUTER TRAINING RESOURCES Insiderations should be gi	ven to the	resource:	1.20 s required	BORUNICE	2.1.(3) ntroduce
111	TRAINING	PROGRAMME	210	TR	AINING ON SHIFT	o	TQ	1.20	BOHUN I CE	2.1.(7)
				Ma	ke shift engineer respons	able for t	raining a	ctivities	of staff	on his shift.
111	TRAINING	PROGRAMME	212	TR	AINING REQUIREMENTS	0	TQ	1.20	BOHUNICE	2.1.(9)
				tr	epare a document which pu aining profile for each p	it together position.		ning requ	rements a	nd detines
ш	TRAINING	PROGRAMME	215	TR	AINING NEEDS	0	το	1.20	BOHUNICE	2.1.(12)
				Co	nsider reviewing training	needs for	each pos	twhile p	roducing t	raining
	TRAINING	PROGRAMME	220	PF ON	OTILES. THE JOB TRAINING ASSESSM	ENT O	то	1 20	BORUNTCE	2.4.(1)
				An	independent person shoul	d assess	the trained	e after c	ompletion	of on the job
				tr	aining by an operator.					
111	TRAINING	PROGRAMME	221	TR	AINING ON MODIFICATIONS	0	TQ	1.20	BOHUNICE	2.4.(2)
				mo	ere systematic approach sh difications and procedure	s changes	sed to ensi	ure train	ing on pla	int
111	TRAINING	PROGRAMME	222	RA	DIATION PROTECTION TRAINI	NG O	τα	1.20	BOHUNICE	2.6 (1)
				In	troduce standard training	profiles	for posts	based on	skill rec	ured
111	TRAINING	PROGRAMME	229	TE	AM TRAINING	0	OPS	1.20	BOHUNICE	3.1.(3)
				op	erators.	rive recta	nnng toge		CONTROL	UUM)
111	TRAINING	PROGRAMME	416	HI	RING OF NEW PERSONNEL	0	MAO	1.20	KOZLODUY	1.7.(1)
				Es	tablish minimum qualifica	ation sata	ndards for	hiring o	f new pers	onnel
111	TRAINING	PROGRAMME	423	TR	ANDUCT APTITUDE TESTS.	٥	το	1.20		2.1 (2)
				Th	e document describing tra	ining resp	onsibilit	ies should	d be revis	ed to
				re	felect changes in the org	anization.				
111	TRAINING	PROGRAMME	424	IN Th	ISTRUCTION TO INSTRUCTORS	0 Miturore i	TQ	1 20 • • • • • • • • • •	KOZLODUY	2 1.(3)
				te	chniques should be formal	ized.			g on math	uccrosac
111	TRAINING	PROGRAMME	425	E٧	ALUATION OF INSTRUCTORS	0	TQ	1 20	KOZLODUY	2.1.(4)
	TRAINING		(26	A	process to evaluate instr	uctor per	formance sl	hould be	establishe	ed.
	INALATAG	PROGRAMME	420	Le	earning objectives which s	specify the	expected	level of	knowledge	should be
				pr	epared for all training p	programme.	•		-	
111	TRAINING	PROGRAMME	427	PR	ACTICAL TRAINING	0	TQ	1 20	KOZLODUY	2.1.(6)
111	TRAINING	PROGRAMME	428	PE	REPRESENCE OBJECTIVES	e training O	jprogramm το	es snoula 1 20	KOZLODUY	2.1.(7)
				Pe	erformance objectives for	the pract	ical part	of the tr	aining pro	grammes
				st	ould be developed.	-				
111	TRAINING	PROGRAMME	429	ST A	RUCTURED EXAMINATION	0 /stem_eboui	TQ d be deve	1.20 Longd for	KOZLODUY	2.1.(8)
				ne re	equalification exams.			Coped 101	arr quari	
111	TRAINING	PROGRAMME	430	QL	JESTIONS BANK	0	TQ	1.20	KOZLODUY	2.1.(9)
				Fo	or each job position, bank	(s of quest	tion and a	nswers sh	ould be de	eveloped
111	TRAINING	PROGRAMME	431	00	WITENTS OF EXAMINATIONS	ο	TQ	1.20	KOZLODUY	2.1.(10)
				Tł	e contents of all qualifi	ication and	d requalıf	ication e	xams shoul	d be
	-	DDOCDANK	(75	do	ocumented.					
	IKAINING	PRUGRAMME	432	A	pass/fail CRITERIA	U I be establ	14 Ished for	all cuai	KUZLODUT	2.1.(11) and
				re	equalification exams.			att quat	in cocron	
ш	TRAINING	PROGRAMME	433	TF	RAINING ON EXAMINATION	0	TQ	1.20	KOZLODUY	2.1.(12)
				Th	e need for training on ex would be formalized	(amination	technique	s for the	examinati	on team
	TRAINING	PROGRAMME	434	TF	AINING OF EXAMINERS	0	τq	1.20	KOZLODUY	2 1.(13)
				T	aining on examination tec	hniques a	nd methods	should b	e organize	d for the
_				e)	(aminers	¢			K031	
111	TRAINING	PROGRAMME	435	- AS - A	SESSING SKILLS structured process should	0 ibe devel	IQ xoed for ⇒	1.20 ssessing	KUZLODUY whether th	2.2.(14) e candidate
				p	ossesses all skills requir	ed for qua	lificatio	n. This is	s particul	ar important
				fe	or operators and shift sup	ervisors.				
111	TRAINING	PROGRAMME	445	SL	JPERVISORS TRAINING PROGRA	WHME O	TQ should be	1.20	KOZLODUY	2.3.(3)
					accidat content of SKU,03	~ ulm 333	anouru pe	operation		••

CAT		ISSUE	ITEM	n.	TITTLE/	Description	ASP	ECT	AREA	CLASS	REFE	RENCE
111	TRAINING	PROGRAMME	446	SUPE Perf	RVISORS	PERFORMANCE objectives s	0 hould be	deve	TQ Loped for	1.20 the prac	KOZLODUY tıcal part	2.3.(4) of the SRO,
111	TRAINING	PROGRAMME	447	USS SUPE	and SSS RVISORS	training pro TASK ANALYSI	grammes. S O		TQ	1.20	KOZLODUY	2.3.(5)
111	TRAINING	PROGRAMME	448	An a trai SUPE	nlysis o ning neo RVISORS	of the tasks eds on plant REFRESHER TR	performed operating AINING D	and	SROs and emergenc TQ	SSSs shou y procedu 1 20	Id be made res. KOZLODUY	to identify 2.3.(6)
				Refr trai	esher ti ning neo	raining of SR eds.	Os and SS	ss s	hould be	developed	on the bas	is of their
111	TRAINING	PROGRAMME	449	TASK An a	ANALYS:	is of tasks per	0 formed fo	геа	τΩ ch field	1 20 operator	KOZLODUY position sh	2 4.(1) would be made
111	TRAINING	PROGRAMME	450	to 1 REFR	dentify ESHER TR	refresher tr RAINING	atning ne O	eds	for each TQ	position. 1.20	KOZLODUY	2.4.(2)
				Refr bası	esher co s of the	xurses should e task analys	be devel	oped	for each	field op	erator posi	tion on the
111	TRAINING	PROGRAMME	457	SCRE	ENING OI	F CANDIDATES for operator	0 training	shou	OPS Ild be scr	1.20 eened to	ensure they	3.1 (6) / have the
111	TRAINING	PROGRAMME	480	EMER	GENCY PI	ROCEDURES TRA	INING O Iergency O	pera	OPS ting Proc	1.20 edures sh	KOZLODUY ould be emp	3 3.(13) phasized and
111	TRAINING	PROGRAMME	486	ensu VALV	red. Th E LOCKII	IS Should be	checked d O	urin	g examina OPS	tions. 1.20	KOZLODUY	3.4.(6)
				Oper of a	ators si pplying	locking devi	ned to un ces.	ders	tand the	locking r	equirements	and methods
	TRAINING	PROGRAMME	499	Oper	ators si	OUCEDUKES TRA Nould use eme	rgency op	erat	UPS ING PROCE	dures dur	ting emerger	3.0.(3) hey drills.
	IRAINING	PROGRAMME		Main	itenance	training pro	gram shou v the per	ld b	e develop el atitut	ed includ	ing concept	s of nuclear
111	TRAINING	PROGRAMME	532	TRAI	NING OF	FIRE INSPECT	ors 0 e trained	i in	FIRE their dut	1.6 1es.	KOZLODUY	5.1.(2)
111	TRAINING	PROGRAMME	656	SG I In c	NSPECTIO	ON PROGRAMME avoid interr	D uption in	the	COMPONENT SG Inspe	s 1.10 ection pro	KOZLODUY gramme wher	9.8.(1) n equipment
111	TRAINING	PROGRAMME	892	is t EVAL Ensu	ransfer UATION ( Ire that	ed to plant, DF INSTRUCTOR the instruct	initiate SO ors are p	trai erio	ning of p TQ dically c	ersonnel 120 bserved a	as soon as NOVOVORONE nd coached	possible. 2.1.(2) on
111	TRAINING	PROGRAMME	893	iden REVI	EW OF EN	weaknesses. /ALUATION	0	<b>b</b> .	TQ	1.20	NOVOVORONE	2.1.(3)
	TRAINING	PROGRAMME	894	weak	inesses.			be	τΩ	1 20		= 2 1 (4)
				Simu	ilator in ning.	nstructors sh	ould rece	ıve	specializ	ed instru	ctional ski	lls
111	TRAINING	PROGRAMME	895	PR10 Comp	RITIES dete the	e development	0 of the	Trai	TQ ning Depa	1.17 rtment's	NOVOVORONE Instruction	: 2.1.(5) nal skills
				trai posi	ning pro tions.	ogramme prior	to filli	ng t	he majori	ty of the	vacant ins	structor
111	TRAINING	PROGRAMME	896	TRAI Each	NING MAT	IRIX nme's job tas	0 k list sh	ould	TQ   be expan	1.20 ded to pr	NOVOVORONE ovide a cro	2.1.(6) ss reference
111	TRAINING	PROGRAMME	897	to s ADEQ	UACY OF	training mat	erial cov O	erag	e for eac TQ	n task. 1.20	NOVOVORONE	2.1.(7)
111	TRAINING	PROGRAMME	898	of t EFFE	asks per CTIVENES	formed by ea SS	Job posit ch. O	ions	snoula d Tû	1.20		: 2.1.(8)
				Once 1nde	ndıvid pendentl	duals are tra ly, a post-tr	ined and aining ev	qual alua	ified and tion shou	authoriz	ed to work ducted	
111	TRAINING	PROGRAMME	909	EVAL Trai	UATING S nee know	SKILLS vledge should	0 be teste	d mo	TQ re freque	1.20 ntly and	NOVOVORONE should incl	2.3.(1) Jude
111	TRAINING	PROGRAMME	912	obje EXAN Add	ination	aluation meti	hods. O	1.07	TQ 20110at 100	1.20	NOVOVORONE	2.3.(4)
				non- demo	licensed stration	i operator pro- ns of practic	ogrammes alskills	cons	isting of	oral kno	wledge ques	tions and
111	TRAINING	PROGRAMME	913	ON T The	KE JOB 1 on-the-j	RAINING job training	0 programme	s sh	τα ould be m	120 ade perfo	NOVOVORONE rmance-base	2.3.(5) d in two
				step obse	s: the i rved and	individual is levaluated w	trained	ın h ormı	ow to per ng the ta	form the sk indepe	task; then ndently.	he is
111	TRAINING	PROGRAMME	914	LICE Prog	NSED OPE	RATOR TRAINING associated	NG O regulation	ons :	TQ should be	1.20 revised	NOVOVORONE to permit t	2 3 (6) he trainee
				10 0	perate t	ne plant con	LIOLS WILL	ie 1	n on-the-	<b>JOD TRAIN</b>	1119.	

CAT	•	ISSUE	ITEM	n. TITTLE/Description ASPECT AREA CLASS REFERENCE
111	TRAINING	PROGRAMME	915	LICENSED OPERATOR TRAINING O TO 1.20 NOVOVORONE 2.6.(1) The amount of retraining and the frequency of training sessions should be
111	TRAINING	PROGRAMME	916	Increased. TIME EXPENSE 0 TQ 1.20 NOVOVORONE 2.6.(2) The experts of the time opent in percentage by another should be approximately
111	TRAINING	PROGRAMME	917	ANNUAL TWO WEEK TRAINING O TQ 1.20 NOVOVORONE 2.6.(3) Reduce the frequency of review of these topics from annually to biennially.
111	TRAINING	PROGRAMME	918	EMERGENCY PROCEDURE TRAINING O TQ 1.20 NOVOVORONE 2.6.(4) Review the contents of all emergency procedures in the retraining programme at
111	TRAINING	PROGRAMME	919	INFORMATION EXCHANGE SKILLS O TO 1.20 NOVOVORONE 2.6.(5) A course on control room communications and team skills should be developed
111	TRAINING	PROGRAMME	920	and provided to each operating shift. NON LICENSED OPERATORS 0 TQ 1.20 NOVOVORONE 2.8.(1) Mainteniance technicians and supervisors should receive overview training on
111	TRAINING	PROGRAMME	921	the plant process systems. MAINTENANCE TRAINING O TQ 1.20 NOVOVORONE 2.8.(2) The on-the-job training programme should be made performance-based in two
111	TRAINING	PROGRAMME	922	steps (ref 2,3(5)).       TECHNICAL STAFF     0       TQ     1.20       NOVOVORONE 2.9.(1)       Provide the technical support staff with plant specific orientation to the
				plant systems, principles of operation, design bases and basic operating characteristics.
111	TRAINING	PROGRAMME	923	TECHNICAL STAFF 0 T0 1.20 NOVOVORONE 2.9.(2) The technical staff should also be trained in details of nuclear power plant safety concepts including: leak before break concept: INSAG-3, etc.
111	TRAINING	PROGRAMME	924	TECHNICAL STAFF 0 TQ 1.20 NOVOVORONE 2.9.(3) A continuing training programme should keep the staff aware of new international developments in nuclear power plant safety, the outcomes of
111	TRAINING	PROGRAMME	1216	large conferences, etc. TRAINING OF INSTRUCTORS 0 TQ 1.20 KOLA 2.1.(2) A formal programme of continuous training for instructors skills should be established
111	TRAINING	PROGRAMME	1217	EVALUATION OF INSTRUCTORS O TQ 1.20 KOLA 2.1.(3) A formal feedback programme should be established to enhance instruction performance, including evaluation of instructor technical and instruction
111	TRAINING	PROGRAMME	1218	skills. STUDENT FEEDBACK 0 TQ 1.20 KOLA 2.1.(4) Expand current student feedback process and request that they evaluate course
111	TRAINING	PROGRAMME	1225	And the instructor for all programmes. TASK ANALYSIS / LESSON PLANS 0 T0 1.20 KOLA 2.3.(1) Use performance based approach to training, including task analysis and standardized lesson plans
111	TRAINING	PROGRAMME	1226	OBJECTIVE TESTING O TO 1.20 KOLA 2.3.(2) Implement an objective testing methodology (written exames) based on a systematic approach to training in all programmes.
111	TRAINING	PROGRAMME	1227	OBJECTIVE EVALUATION 0 TQ 1.20 KOLA 2.3 (3) Implement objective evaluation process for people returning to duty after annual training programme. This includes written examination linked to the position task analysis
111	TRAINING	PROGRAMME	1228	CONTINUING TRAINING O TQ 1.20 KOLA 2.4.(3) Implementa formalized continuing training programme based on a systematic approach to training.
111	TRAINING	i programme	1229	MAINTENANCE TRAINING O TO 1.20 KOLA 2.5.(1) Maintenance on the job training programme should be based on systematic analysis at the task level. Each task should be evaluated separately.
111	TRAINING	PROGRAMME	1230	CHEMISTRY TRAINING D TQ 1 20 KOLA 2.7.(3) Implement a formalized continuous training programme for chemistry personnel based on systematic approach to training. Provide a chemistry instructor in
111	TRAINING	FROGRAMME	1232	the Training Department. 2 GENERAL EMPLOYEE TRAINING O TQ 1.20 KOLA 2.10.(1) Require that appropriately approved lesson plans be used in the general employee training
111	TRAINING	) PROGRAMME	1233	COMBINED GENERAL TRAINING O TO 1.20 KOLA 2.10.(2) Combine all general employee training into one (esson plan to be conducted by the training department
111	TRAINING	G PROGRAMME	1234	Review the subjects being taught during general employee training. Consider
111	TRAINING	PROGRAMME	1235	Conduct a short examinational the conclusion of gerenal employee training.

**ISSUE TITLE:** Training of plant operators

RANK OF ISSUE: III

# **ISSUE CLARIFICATION:**

Effective training is necessary to reinforce management policies, improve operator skills, improve supervisory command and control and build team skills.

For operator training, apart from full scope simulators other methods should be used to provide effective training on procedure usage, communications, and control room/field operator team skills and coordination.

# **RELATED ITEMS:**

216-219, 439, 440, 444, 902, 903, 910, 911, 925, 1222-1224

# JUSTIFICATION OF RANKING:

Industry experience has shown that effective simulator training improves the operator's abilities to diagnose and manage plant events. Sufficient defense in depth cannot be assured without adequate operator training.

CAT	. I SSUE		ITEM	n. 1	ITTLE	E/Description	ASPECT	AREA	CLASS	REFER	ENCE
111	TRAINING OF PLAN	NT OPERATORS	216	SIMUL	ATOR	TRAINING	0	TQ	1.20	BOHUNICE	2.2.(1)
				Defin	ie nei	a policy for operator	r train	ing with re	spect to	simulator.	Current
				plan	is ir	nadequate. New plan s	should	include con	trol room	m skills an	d team work.
111	TRAINING OF PLAN	NT OPERATORS	217	CONTI	NGENC	CY TRAINING PLAN	0	TQ	1.20	BOHUNICE	2.2.(2)
				Devel	ope o	contingency plan for	operate	or training	in case	video simu	lator is
			~ ~ ~	delay	ed. S	Submit plns to regula	atory b	xdy.			
111	TRAINING OF PLAN	NT OPERATORS	218	NUN P	LANT	SPECIFIC SIMULATOR		10	1.20	BOHUNICE	2.2.(3)
		UT ODERATORS	210	Kevie	W The	e decision of not us	ing V-2	simulator :	TOF V-1 (	operator tr	aining.
111	IRAINING OF PLAT	IT UPERATURS	219	Proce	duces	ain PROCEDURES	U n train	IN in ermi	I.IY Laton D	BUNUNICE	2.2.(4) autor
				reinf	occe	the use of procedure	00 LI 2111	ing in Simu		actives sn	outu
111	TRAINING OF PLAN	T OPERATORS	439	SIMM		TRAINING	ະຈ. ົ	то	1 20		2.2.(3)
•••				Make	immed	diate arrangements fo	or full	scope simu	lator tra	aining for	control room
				perso	nnel.						
ш	TRAINING OF PLAN	NT OPERATORS	440	FULL	SCOPE	E SIMULATOR	0	τQ	1.20	KOZLOOUY	2.2.(4)
				Serio	us co	onsiderations should	be give	en to aquir	e a full	scope simu	lator for
				the t	raini	ing center.					
ш	TRAINING OF PLAN	NT OPERATORS	444	INITI	AL SI	IMULATOR TRAINING	0	TQ	1.20	KOZLODUY	2.3.(2)
				Exter	ns i ve	simulator training	should i	be given to	control	room opera	tors before
				their	· init	tial qualification.					
111	TRAINING OF PLAN	NT OPERATORS	902	SIMUL	ATOR		٥	TQ	1.20	NOVOVORONE	2.2.(3)
				The L	MER-4	440 simulator should	be rep	laced by a	new simu	lator of mo	dern
		NT 005241000	007	capat		Ies.	•	70	1 20	Novovonali	2 2 4 2
111	TRAINING OF PLAT	NT OPERATORS	903	SINUL	A TUR	EQUIPMENT	U ntain t	tw ha como und	1.4U		2.2.(4)
				opera	tor a	aids and procedures	found i	n the plant			a lats,
111	TRAINING OF PLAY	NT OPERATORS	910	EXAMI	NAT10	DN	0	TQ	1.20	NOVOVORONE	2.3.(2)
			,	The S	simula	ator Examination Com	mission	compositio	n should	be adjuste	d to include
				a teo	hnica	ally qualified repre	sentati	ve from the	plant O	perations D	epartment.
111	TRAINING OF PLAN	NT OPERATORS	911	TRAIN	IEE PE	ERFORMANCE EVALUATIO	NO	TQ	1.20	NOVOVORONE	2.3.(3)
				Devel	ope a	a systematic method	to eval	uate traine	e perfor	mance durir	g simulator
				exami	natio	ons.					
			075	TECH	ITCAL	STAFF	0	то	1 20		29/1
	INALIALING OF PLA	IT OF CRATORS	723	Provi	ide ar	n opportunity for th	e plant	technical	staff to	receive na	rt task or
				full	scop	e simulator training			01011 10	receive po	
111	TRAINING OF PLAN	NT OPERATORS	1222	SINUL	ATOR	TRAINING	0	TQ	1.20	KOLA	2.2.(3)
				Aquir	e a i	full scope simulator	atowin	g full use	of plant	specific p	procedures.
				An al	lterna	ative would be to ha	ve a si	mulator a N	ovovoron	ezh but use	e Kola
				instr	ucto	rs and procedures.					
111	TRAINING OF PLAN	NT OPERATORS	1223	CONTI	NGEN	CY TRAINING PLAN	0	τq	1.20	KOLA	2.2.(4)
				Until	ful	l scope simulator is	availa	ble, traini	ng at No	vovoronezh	shoud be
				more	freq	uent or use of part-	task si	mulator sho	uld be e	xpanded.	
ш	TRAINING OF PLA	NT OPERATORS	1224	TRAIN	ING	ON PROCEDURES	0	TQ	1.20	KOLA	2.2.(5)
				Use o	of pro	ocedures inthe part-	task si	mulator may	be very	limited, r	none the less
				use o	of pro	ocedures should be e	mohasiz	ed.			

**ISSUE TITLE:** Training Facilities

RANK OF ISSUE: II

#### **ISSUE CLARIFICATION:**

The effectiveness of training could be improved with better facilities and equipment.

### **RELATED ITEMS:**

437, 438, 900, 901, 1220, 1221

## JUSTIFICATION OF RANKING:

Better facilities would enhance the effective delivery of training but are not essential. The actual safety benefit versus the cost, for the near term, must be considered.

CAT.		ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	TRAINING	- FACILITIES	437	TRA	INING CENTER	0	TQ	1.20	KOZLODUY	2.2.(1)
				i me cen	diate action should be tak ter.	en to c	omplete th	ne constru	ction of th	e training
11	TRAINING	- FACILITIES	438	TRA	INING CENTER EQUIPMENT	0	TQ	1.20	KOZLODUY	2.2.(2)
				Equ for	up the training center with training all categories o	h the a femplo	ll the wor yees.	-kshops an	d laborator	ies required
11	TRAINING	- FACILITIES	900	EQU	IPMENT	0	TQ	1.20	NOVOVORONE	2.2.(1)
				Н19 рго	her quality chalk boards, jectors, tranparency films	white-m and pr	arker boar ojection s	rds overhe screens sh	ad transpar ould be pro	ency vided at
				bot	h the plant Training Depar	tment a	nd the Nov	/ovoronezh	Training C	entre.
11 .	TRAINING	- FACILITIES	901	EQU	IPMENT	0	TQ	1.20	NOVOVORONE	2.2.(2)
				Ded	icated mainteniance traini	ng faci	lities and	t equipmen	it should be	developed.
11	TRAINING	- FACILITIES	1220	CLA	SS ROOM EQUIPMENT	0	TQ	1.20	KOLA	2.2.(1)
				Res	ources should be provided	to upgr	ade existi	ing class	room equipm	ent.
11	TRAINING	- FACILITIES	1221	COM	PUTER BASED TRAINING	0	TQ	1.20	KOLA	2.2.(2)
				Ехр рго	and number of computers to grammes.	optimi	ze the dev	veloping c	omputer bas	ed training

**ISSUE TITLE:** Training materials

RANK OF ISSUE: III

#### **ISSUE CLARIFICATION:**

Adequate and updated training materials are necessary for effective and consistent training of plant personnel and instructors. All substantial modifications in the plant and experience feedback should be incorporated in the training materials.

### **RELATED ITEMS:**

207, 213, 214, 223, 441, 442, 443, 904-907

# JUSTIFICATION OF RANKING:

Plant personnel should be systematically trained and retrained with effective training materials. Quality training materials are an essential building block of an effective training program that enhances overall defense in depth and risk reduction.

CAT.	I SSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11 <b>1 TRA</b>	INTING MATERIAL	207	TFA	CHING MATERIAL	0	то	1.20	BOHLINICE	2.1.(4)
		Eur	Imc	cove teaching material a	ccordina	to lessor	n plan form	at and keen	it undated
			wit	h respect to the plant.	loooranig		i prair rom		it updated
III TRA	INING MATERIAL	213	TRA	INING MATERIAL	0	TQ	1.20	BOHUNICE	2.1.(10)
			Dev	elope adequate training	material.				
III TRA	INING MATERIAL	214	UPD	ATED TRAINING MATERIAL	0	та	1.20	BOHUNICE	2.1.(11)
			Pro	visions should be made t	o ensure	updating	of trainin	g material.	
III TRA	INING MATERIAL	223	UPD	ATED RADIATION TRAINING	0	TQ	1.20	BORUNICE	2.6.(2)
			Ens	ure that radiation prote	ection tra	ining is	promptly u	pdated when	changes
			occ	urs.					
III TRA	INING MATERIAL	441	TRA	INING MATERIAL	0	TQ	1.20	KOZLODUY	2.2.(5)
			Тга	ining material should be	develope	d in acor	rdance with	pedagogica	t
			sta	ndards.					
111 TRA	INING MATERIAL	442	UPD	ATED TRAINING MATERIAL	o	TQ	1.20	KOZLODUY	2.2.(6)
			Int	roduce system to ensure	that trai	ning mate	erial is up	dated and r	eflect plant
			mod	lifications and changes i	in procedu	res.			
III TRA	INING MATERIAL	443	TRA	INING OF OPERATORS	0	TQ	1.20	KOZLODUY	2.3.(1)
			Ade	quate training material	should be	develope	ed for Seni	or reactor	operators,
			uni	t supervisors and shift	superviso	rs.			
III TRA	INING MATERIAL	904	DOC	UMENT QUALITY	0	TQ	1.20	NOVOVORONE	2.2.(5)
			Les	son plans and simulator	exercise	guides st	n <mark>ould be</mark> fo	rmaily type	written,
			app	roved and filed for use	by differ	ents inst	tructors.		
III TRA	AINING MATERIAL	905	TRA	INING OBJECTIVE	0	TQ	1.20	NOVOVORONE	2.2.(6)
			Les	son plans and simulator	exectse g	uides sho	build includ	e the learn	ing
			obj	ectives.	_		4 30		
III IRA	AINING MATERIAL	906	CON	PUTER HARD AND SOFTWARE		19	1.20	NOVOVORONE	2.2.(7)
			ACC	uire computer hardware a	and wordpr	ocessing	software t	o aid in th	e
			dev	elopment of lesson plans	and exer	cise guid	des.		
III TRA	UNING MATERIAL	907	UPD	ATED TRAINING MATERIAL	0	10	1.20	NUVOVORONE	2.2.(8)
			Est	ablishe a systematic met	nod to ma	intain tr	aining mat	erials up-t	o-date as
			pla	int modifications and pro	ocedures c	hanges of	cur.		

**ISSUE TITLE:** Training Records

RANK OF ISSUE: I

# **ISSUE CLARIFICATION:**

Measures should be taken to centralize control and management of training records.

# **RELATED ITEMS:**

211, 436, 899, 1219

# JUSTIFICATION OF RANKING:

Better management of training records would enhance their retrievability, quality and consistency.

CAT.		ISSUE	ITEM	n. TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
1	TRAINING	RECORDS	211	TRAINING RECORDS	o	TQ	1.19	BOHUNICE	2.1.(8)
				Install computerized centra	l training	records	s.		
I	TRAINING	RECORDS	436	TRAINING RECORDS	0	TQ	1.20	KOZLODUY	2.2.(15)
				Establish a central records	system of	f trainia	ng and qual	ification,	preferably
				on a computer.					
I	TRAINING	RECORDS	899	RECORDS	0	TQ	1.20	NOVOVORONE	2.1.(9)
				Maintain records of complet	ed trainin	ng and th	he results	of training	•
I	TRAINING	RECORDS	1219	TRAINING RECORDS	0	TQ	1.20	KOLA	2.1.(5)
				Centralize control of train	ing record	<i>i</i> s within	n training	department.	Maintain
				records for 10 years.					

.

**ISSUE TITLE:** Emergency Response Programme

RANK OF ISSUE: III

## **ISSUE CLARIFICATION:**

An effective Emergency Response Programme must address all essential aspects of accident assessment and classification, on-site planning, off-site planning and coordination.

## **RELATED ITEMS:**

284, 285, 286, 287, 545, 546, 549, 556, 559, 561, 577, 578, 579, 1003, 1004, 1006, 1007, 1008, 1010, 1015, 1018, 1315, 1316, 1319

# **JUSTIFICATION OF RANKING:**

Deficiencies in on-site preparations and off-site coordination plans increase the potential consequences to the public in the event of a plant emergency.

CAT.		ISSUE		ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
111	EMERGENCY	RESPONSE	PROGRAMME	284	ON Coi ab ar	SITE EMERGENCY PLAN mprehesive emergency plan sh normal conditions, assessmen rangements, recommending pro	0 i iould be i of pot- ptective	EP prepared, ential cons measures.	5.2 includin sequences It shoul	BOHUNICE g: actions ; activations d describe	6.2.(1) to correct ng emergency the
111	EMERGENCY	RESPONSE	PROGRAMME	285	or: ON Th	ganizational units, their fu OFF SITE INTERFACE e on site emergency plan sho	nctions 0 i	and tasks. EP Lipe off si	5.2	BOHUNICE	6.2.(2) d measures
111	EMERGENCY	RESPONSE	PROGRAMME	286	arı GR	d define coordination with t ADED EMERGENCY RESPONSE	hem. 0	EP	5.3	BOHUNICE	6.2.(3)
111	EMERGENCY	RESPONSE	PROGRAMME	287	An re: SA Pre	emergency classification sy sponse according to accident FETY STATUS ASSESSMENT ocedures to assess the safet	stem sh severi 0 : v statu	ould be dev ty. EP s of the pl	5.2	BOHUNICE	graded 6.3.(1)
""	ENERGENCY	RESPONSE	PROGRAMME	545	de LI/	velopment of accident should ASION WITH OTHER COUNTRIES asion with neighbouring cour	ibe imp O atry (Ro	lemented. EP mania) on e	5.2 emergency	KOZLODUY planning :	6.1.(2) should
111	EMERGENCY	RESPONSE	PROGRAMME	546	pr UPI Me	ovide similar protection to DATING EMERGENCY PLANNING thod and responsibility for	populat O updatin	ion of both EP g emergency	n countri 5.2 / plans a	es. KOZLODUY Innually she	6.1.(3) ould be
111	EMERGENCY	RESPONSE	PROGRAMME	549	de RE Th	scribed in station procedure VIEW OF EMERGENCY PLAN e review of the emergency pl	es. O an curr	EP ently in pr	5.2 rogress s	KOZLODUY should be ca	6.1.(6) ompleted and
111	EMERGENCY	RESPONSE	PROGRAMME	556	a Em A	new documented issued as soc ERGENCY PLAN BASIS probabilistic safety assessm	on as po 0 ment sho	ssible. EP uld be made	5.4 e to dete	KOZLODUY	6.2.(7) most severe
111	EMERGENCY	RESPONSE	PROGRAMME	559	ac ON Th	cident to be taken into acco SITE EMERGENCY PLAN e requirements for on site p	ount in 0 Dian sho	emergency p EP uld be anai	olanning. 5.2 lysed, ta	KOZLODUY asks identi	6.3.(1) fied and
111	EMERGENCY	RESPONSE	PROGRAMME	561	pr PR An	ocedures and means to implem OCEDURES UPDATING organization should be set	onent the 0 up char	m should be EP ged with re	e develop 5.2 eviewing	ed. KOZLODUY emergency	6.3.(3) plan
111	EMERGENCY	RESPONSE	PROGRAMME	577	pr IN Ar	ocedures periodically. Demos FORMATION TO MEDIA rangements for communication	stration O a to int	of procedu EP ernational	ures is r 5.2 media st	necessary. KOZLODUY Nould be re	6.6.(2) vi <del>ewe</del> d for
111	EMERGENCY	RESPONSE	PROGRAMME	578	ad PU Th	equacy. BLIC INFORMATION ARRANGEMENT e arrangements for public in	f O nformati	EP on should I	5.2 be descri	KOZLODUY ibed in the	6.6.(3) On-site and
111	EMERGENCY	RESPONSE	PROGRAMME	579	Ci PU Co	vil Defense emergency plans. BLIC INFORMATION OFFICER nsider nominating a member of	0 of stati	EP on staff as	5.2 salink	KOZLODUY with publi	6.6.(4) c and media
111	EMERGENCY	RESPONSE	PROGRAMME	1003	In En GR	formation persons at the Com ergy. ADED EMERGENCY RESPONSE	0	ION MINISTO	5.3	NOVOVORONE	e on Atomic 6.2.(1)
111	EMERGENCY	RESPONSE	PROGRAMME	1004	Th ON Pr	e emergency classification s SITE EMERGENCY PLAN oper dissemination of a cond	should b O cise ins	e reconside EP truction fo	ered and 5.2 or the ge	further de NOVOVORONE eneral work	veloped. 6.2.(2) ers,
ш	EMERGENCY	RESPONSE	PROGRAMME	1006	in sh CR	cluding workers on the const ould be implemented. ITERIA FOR EVACUATION	truction 0	site, in [.] EP	the event	t of an eme NOVOVORONE	6.2.(4)
111	EMERGENCY	RESPONSE	PROGRAMME	1007	Th of GR	e criteria to evacuate and s f-site plan. ADED OFF-SITE RESPONSE	o 0	the popula	tion show	uld be stat NOVOVORONE	ed in the
111	EMERGENCY	RESPONSE	PROGRAMME	1008	Cr PL Pr	iteria should be developed a ANT SAFETY STATUS rocedures to assess the safe	allowing O ty statu	a graded EP Is of the p	off-site 4.6 lant and	response. NOVOVORONE to evaluat	6.3.(1) e the
111	EMERGENCY	RESPONSE	PROGRAMME	1010	de ON A	evelopment of the accident si I-OFF SITE INTERFACE copy of the Civil Defence o	hould be O ff-site	e developed EP plan imple	5.2 menting (	NOVOVORONE procedures	6.3.(3) should be
111	EMERGENCY	RESPONSE	E PROGRAMME	1015	ine S S A	HELTERING INSTRUCTIONS specification should be dev	0 veloped	EP of the requ	- 5.2 Jirements	NOVOVORONI for shelt	E <b>6.4.(5</b> ) ering.
111	EMERGENCY	responsi	E PROGRAMME	1018	3 P T D	UBLIC INFORMATION he arrangements for public i lan.	0 informat	EP ion should	5.2 be cover	NOVOVORONI ed by the	E 6.6.(1) emergency
111	EMERGENCI	r Responsi	E PROGRAMME	131	50 T i	FF-SITE SUPPORT ORGANIZATION he station management should n the off site support struc	IS 0 1 ensure :ture.	EP that they	5.2 are kept	KOLA taware of a	6.1.(2) any changes

 CAT.
 ISSUE
 ITEM n. TITTLE/Description
 ASPECT AREA
 CLASS
 REFERENCE

 III EMERGENCY RESPONSE PROGRAMME
 1316 EMERGENCY CLASSIFICATION
 0
 EP
 5.2
 KOLA
 6.2.(1)

 III EMERGENCY RESPONSE PROGRAMME
 1316 EMERGENCY CLASSIFICATION
 0
 EP
 5.2
 KOLA
 6.2.(1)

 III EMERGENCY RESPONSE PROGRAMME
 1316 INITIAL RADIATION MONITORING
 0
 EP
 5.2
 KOLA
 6.3.(2)

 IIII EMERGENCY RESPONSE PROGRAMME
 1319 INITIAL RADIATION MONITORING
 0
 EP
 5.2
 KOLA
 6.3.(2)

 Consideration should be given to perform initial off-site radiation monitoring
 Consideration should be given to perform initial off-site radiation
 Consideration
 Consideration

regional authorities.

under the control of the station director. Later stages should be done by

**ISSUE TITLE:** Emergency Response Procedures

RANK OF ISSUE: III

### **ISSUE CLARIFICATION:**

Procedures that support the Emergency Response Programme should be properly developed. Additional procedures will also be necessary based on anticipated changes to the Programme.

### **RELATED ITEMS:**

295, 299, 550-555, 557, 558, 560, 573, 576, 1009, 1314, 1318, 1322

# JUSTIFICATION OF RANKING:

Deficiencies in emergency planning procedures increase the potential consequences to the public in the event of a plant emergency.

CAT.	ISSUE	I TEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
111 EMERGENCY	RESPONSE - PROCEDURES	295	EME	RGENCY EQUIPMENT LIST	0	EP .	5.2	BOHUNICE	6.4.(6)
			Sys	tems and equipment available seency plan (monitors, res	le tor (	emergencies	should i	be listed i	n the
111 EMERGENCY	RESPONSE - PROPERTIES	200	INF	OPMATION TO THE PUBLIC	nators	S, COMMUNICA	5 3	BORINTOF	6 6 (1)
	RESIGNOL TROCEDORES	2//	Con	sideration should be given	to dev	eione a nrov	reduce fo	or coordina	ting release
			of	information to the public of	furing a	an emergency	v.		
III EMERGENCY	RESPONSE - PROCEDURES	550	ON-	SITE EMERGENCY INITIATION	0	EP	5.2	KOZLODUY	6.2.(1)
			Tha	level of authority for sou	Inding	the on-site	siren st	nould be re	viewed. The
			sta	tion shift supervisor shoul	lof be e	mpowered to	do so.		
III EMERGENCY	RESPONSE - PROCEDURES	551	STA	NDBY TEAM MEMBERS	0	EP	5.2	KOZLODUY	6.2.(2)
			A f	ormal standby system should	d be in	troduced for	r key mer	mbers of em	ergency
			con	trol organization.					
111 EMERGENCY	RESPONSE - PROCEDURES	552	INS	TRUCTION FOR WORKERS	0	EP	5.2	KOZLODUY	6.2.(3)
			Act	ions required for non esser	ntial w	orkers and	the loca	tion of she	lters should
			be	displayed on notices at ent	crance (	of building:	sand thi	roughtares.	6 2 112
III EMEKGENUT	RESPONSE - PROLEDURES	222	SHE	LIEKING INSTRUCTIONS	U 	EF andod mada	J.Z	KUZLUUUT	0.2.(4)
			Sile	tion procedure	a de asin	encea, mace	ргасстса		teri as a
ILL EMERGENCY	RESPONSE - PROCEDURES	554	END	-OF-SHELTERING CRITERIA	0	FP	5.2		6.2.(5)
			Cri	teria for the decision to a	order w	orkers to l	eave the	shelters s	hould be
			sta	ted in the emergency plan.					
111 EMERGENCY	RESPONSE - PROCEDURES	555	CON	TROL OF PERSONNEL	0	EP	5.2	KOZLODUY	6.2.(6)
			Con	sider making a record all p	persons	on-site to	show that	at they hav	e taken Ki
			tab	lets and the time each one	was ev	acuated.			
III EMERGENCY	RESPONSE - PROCEDURES	557	CRI	TERIA FOR EVACUATION	0	EP	5.4	KOZLODUY	6.2.(8)
			The	criteria for public evacu	ation,	or resumpti	on of no	rmal life,	should be
			sta	ted in the civil defence p	lan and	appended t	o on site	e plan.	
III EMERGENCY	RESPONSE - PROCEDURES	558	SEL	ECTIVE EVACUATION URITERIA	0	EP	5.4	KUZLODUT	0.2.(9)
			Eva	data which distinguish be	Gevelo	pe using po condent cla	ch on an	u orr sile miting div	information
			irm.	zone for evacuation ourpose			5565, per		131011 01 50
III EMERGENCY	RESPONSE - PROCEDURES	560	ON	OFF SITE INTERFACE	0	EP	5.2	KOZLODUY	6.3.(2)
			Ac	opy of the Civil Defense p	rocedur	es concerne	d should	be held in	the station
			eme	rgency management center.					
111 EMERGENCY	RESPONSE - PROCEDURES	573	EME	RGENCY EQUIPMENT LIST	0	EP	5.2	KOZLODUY	6.4.(12)
			The	number and type of instrum	ments a	nd equipmen	t to be i	held in rea	dness for an
			eme	rgency should be listed in	the pl	an.			
III EMERGENCY	RESPONSE - PROCEDURES	576	INF	ORMATION TO THE PUBLIC	0	EP	5.2	KOZLODUY	6.6.(1)
			Dev	elope procedures for the re	elease	of informat	ion to t	he public a	t regular
		1000	101	ervals, tollowing an emerge	ency.	<b>C</b> D			4 7 (2)
III CHERGENUT	RESPONSE - PROCEDURES	1009	REU	OVERT AND RE-ENTRY	U 10.0000	Er sonav and s	4.0	NOVOVOKUNE	0.3.(2)
			ect	ivities should be developed	an emer d	yency and i	e-entry a		g pranc
111 EMERGENCY	RESPONSE - PROCEDURES	1314	EME	RGENCY PLAN AIDS	ີ. ກ	FP	5.2	KOLA	6.1.(1)
			Con	tinue developing reference	aids f	or key pers	onnel in	the emerge	ncy
			org	anization.				•	
III EMERGENCY	RESPONSE - PROCEDURES	1318	OFF	-SITE MONITORING ROUTES	0	EP	5.2	KOLA	6.3.(1)
			Off	-site radiation monitoring	routes	should be	describe	d in the pl	ant and
			Pol	yarny Zori plans.				-	
III EMERGENCY	RESPONSE - PROCEDURES	1322	EME	RGENCY INSTRUCTIONS	0	EP	5.2	KOLA	6.4.(3)
			Eme	rgency information should	be disp	layed in co	rridors,	stairways	and
			rec	eption areas.					

**ISSUE TITLE:** Emergency Response Facilities

RANK OF ISSUE: III

### **ISSUE CLARIFICATION:**

Facilities and equipment should be available to properly monitor, coordinate and respond to possible accident conditions. Emphasis should be provided to obtain the necessary equipment (meteorological monitoring, dosimeters, etc) for response to accident conditions.

### **RELATED ITEMS:**

290, 291, 292, 296, 562, 563, 565, 566-572, 1005, 1011, 1012, 1013, 1016, 1317, 1320, 1323, 1324, 1325, 1327, 1328, 1329, 1330

# **JUSTIFICATION OF RANKING:**

Proper emergency planning can reduce the risk to both site personnel and the public. Proper protection equipment and monitoring tools are necessary to reduce the overall risks.

CAT.	•	ISSUE		ITEM	n.	TITTLE.	/Description	ASPECT	AREA	CLASS	REFER	ENCE
111	EMERGENCY	RESPONSE -	FACILITIES	290	TEC	CHNICAL	SUPPORT CENTER	0	EP	1.24	BOHUNICE	6.4.(1)
	ENERGENON				A t	technica	l support center sh	ould be	installed	closed to	the control	ol room.
111	EMERGENCY	RESPONSE -	FACILITIES	291	LML	RGENCY	CONTROL CENTER	0	EP should be	5.5 notablia	BOHUNICE	6.4.(2)
					des	scribed	in the emergency control	an.	Should be	estabtis	ieu, equipp	eu anu
111	EMERGENCY	RESPONSE -	FACILITIES	292	EME	RGENCY	RESOURCES	0	EP	1.24	BOHUNICE	6.4.(3)
					The	e techni	cal support center a	and the	emergency	control (	enter shou	ld have
					mea	ans for a	accident management	such as	procedure	s,plant	layouts, sci	hematics,
		PERDONCE -	FACTUATIES	204	sta	atus boa	rd and adequate com	nunicati	on system.		Rougest or	4 4 475
	ENERGENCI	KESPUNSE -	PAGILITIES	270	Pia	aned an	vitoring instruments	s for th	er Le hermetic	4.0 Zone shi	bulle he ins	0.4.(/)
					pro	ocedures	to evaluate source	term sh	iould be de	veloped.		
111	EMERGENCY	RESPONSE -	FACILITIES	562	EME	RGENCY	CONTROL CENTER	0	EP	5.3	KOZLODUY	6.4.(1)
					A s	second e	mergency management	center	should be	povided,	located in	oposite
	EMEDICENCY	BEEDONEE -	CACULITIES	547	sid	ie of the	e site.		<b>C</b> D	E 7		( ( ())
	CHERGENUT	RESPONSE -	FACILITIES	202	Cos	struction	n of an emergency c	ontrol d	enter remo	o.o te from i	the rectors	should be
					giv	en prio	rity.					
111	EMERGENCY	RESPONSE -	FACILITIES	565	REA	RRANGIN	G CONTROL CENTER	0	EP	5.3	KOZLODUY	6.4.(4)
					Rev	view eme	rgency commission w	ork and	rearrange	working :	spaces, sea	ting
					acc	comodati	ons, etc.	-	~~		1/2 TI 2011/	
	EMERGENCY	RESPONSE -	FACILITIES	200	Acc	EOROLOG	ICAL DAIA te should be made te	U o provid	EP ie meteorol	5.2 onical d	KOZLODUY	0.4.())
					Com	maission	on demand.			ogical u	ata to the	Liner gency
111	EMERGENCY	RESPONSE -	FACILITIES	567	RAD	IOLOGIC	AL MONITORING	0	EP	5.4	KOZLODUY	6.4.(6)
					Ass	sessment	should be made of	the radi	iological h	azard ou	tside the E	mergency
					Cen	nter, an	d monitoring equipm	ent shou	uld be inst	alled.		
111	EMERGENCY	RESPONSE -	FACILITIES	568	SHE	ELTERING	SPECIFICATIONS	0	EP	5.4	KOZLODUY	6.4.(7)
					506	sting th	ions snould be draw	n tor sr should b	ettering f	acititie	s. Unly bas	ements
111	EMERGENCY	RESPONSE -	FACILITIES	569	EME	RGENCY	RESOURCES	0	EP	5.2	KOZLODUY	6.4.(8)
					Ass	sess num	per and types of mo	nitoring	, equipment	and pro	tective clo	thes needed
					in	an emerg	gency and obtain the	em.				
111	EMERGENCY	RESPONSE -	FACILITIES	570	PRI	LORITY I	TEMS FOR EMERGENCIES	S O	EP	5.2	KOZLODUY	6.4.(9)
					PFI	ority si	tould be given to o	otain fi	igh range d	osimeter:	s, a ir samp	lers,
111	EMERGENCY	RESPONSE -	FACILITIES	571	RES	SPIRATOR	S FILTERS	арраласс 0	EP	5.2	KOZLODUY	6.4.(10)
					Inv	vetigate	the possibility of	obtaini	ing respira	tor filt	ers given g	ood
					рго	otection	agains iodine, for	emerger	cies.			
111	EMERGENCY	RESPONSE -	FACILITIES	572	EME	RGENCY	rools	0	EP	5.2	KOZLODUY	6.4.(11)
					ASS	sess nee	ontrol center.	ipment	in an emerg	ecncy and	a store the	m in the
111	EMERGENCY	RESPONSE -	FACILITIES	1005	ON-	SITE OR	GANIZATION	0	EP	5.3	NOVOVORONE	6.2.(3)
					The	e paving	of the road connec	ting the	e station w	ith Daav	idovka shou	ld be
					сол	mpleted.						
111	EMERGENCY	RESPONSE -	FACILITIES	1011	EME	ERGENCY	CONTROL CENTRE	0	EP	5.3	NOVOVORONE	6.4.(1)
					The	e constr autor bo	uction and commissi-		t the new e	mergency	management	centre
111	ENERGENCY	RESPONSE -	FACILITIES	1012	EME	FRGENCY	CONTROL CENTRE	0	EP	5.3	NOVOVORONE	6.4.(2)
					The	e emerge	ncy management cent	re shou	ld be equip	ped with	displays o	f essential
					pla	ant safe	ty parameters.					
111	EMERGENCY	RESPONSE -	FACILITIES	1013	ENE	ERGENCY	CONTROL CENTRE	0	EP	5.3	NOVOVORONE	6.4.(3)
					The	e altern	ative location of t	he emerg	gency manag se	iement ce	ntre should	have the
111	ENERGENCY	RESPONSE -	FACILITIES	1016	FMF	REALTAN	FOUIPMENT	n n	FP	5.3	NOVOVORONE	6.4.(6)
•••	cherocher	KEO, ONOL	TAGET TEO	1010	The	e projec	t to install fixed	monitor	ing posts,	the mete	orological	facility and
					the	e relate	d computer system s	hould b	e pursued a	is a prio	rity.	
111	EMERGENCY	RESPONSE -	FACILITIES	1317	FI)	XED RADI	ATION MONITORS	0	EP	5.2	KOLA	6.2.(2)
					Ins	stallati	on of planned fixed	radiat	ion monitor	s should	be complet	ed. Data
	ENERGENCY		FACTUATIES	1320	SNO	FRGENCY	USED TO ASSIST ACCI CONTROL CENTER	O O	EP	5.2	KOLA	6.4.(1)
	LINCAUCHUI	NEGFORGE -	INGICITES		An	alterna	tive should be foun	d for ti	ne Emergenc	y Contro	l Center (o	r for the
					per	rsonnel	assembly located in	the same	me shelter)	•	•	
111	EMERGENCY	RESPONSE -	FACILITIES	1323	CO	NTROL CE	NTER REVIEW	D	EP	5.2	KOLA	6.4.(4)
					Rev	view the	equipment of the E	mergency	y Control C	enter, i	ncluding fu	rniture,
					doc	cuments,	communications, av	ailabil	ity of plan	τ parame	ters and me	tereological
	ENCOCENCY	DECOMICE -	FACTI ITTES	1324	III SHI	FITER VE	NTILATION	0	EP	5.2	KOLA	6.4.(5)
	CHERVENUT	ACOFUNIOE •	AULITICS		The	e ventil	ation of shelter n.	2 shou	ld be provi	ded with	iodine fil	tration.

CAT.	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFEI	RENCE
111 EMERGENCY	RESPONSE - FACILITIES	1325	1001	E TABLETS STORAGE	0	EP	5.2	KOLA	6.4.(6)
		1	lodi: type	ne tablets should be wrapp of tablets and expiration	ed in 1 a date.	foil and si	ored in	containers	indicating
III EMERGENCY	RESPONSE - FACILITIES	1327 (	EVACI	ATION ROUTES	0	EP	5.2	KOLA	6.4.(8)
		1	Indio shou	ation of shortes routes t d be visible in restricted	o emerg d light	jency asser t and smoke	nbly shou :.	ld be provi	ded. Signs
III EMERGENCY	RESPONSE - FACILITIES	1328 (	DFF-	TTE CONTROL CENTER	0	EP	5.2	KOLA	6.4.(9)
		l c	An ai Cento	rea should be identified e er for managing any type o	endiequ oficivit	iped as a d lemergency	off-site	emergency c	ontrol
111 EMERGENCY	RESPONSE - FACILITIES	1329 (	DFF-1	TTE EMERGENCY EQUIPMENT	0	EP	5.2	KOLA	6.4.(10)
		E	Estal emer:	olish an inventory of stat pencies including radiolog	ndby e ical a	quipment re cidents.	quired f	or managing	ı civil
<b>III EMERGENCY</b>	RESPONSE - FACILITIES	1330 1	IONI	ORING VEHICLES	0	EP	5.2	KOLA	6.4.(11)
		(	One ( radi	or more vehicles should be blogical monitoring in eme	e equip ergenci	ed and dedi es.	ceted so	lely to off	-site

**ISSUE TITLE:** Emergency Response. Training

RANK OF ISSUE: II

## **ISSUE CLARIFICATION:**

Emergency plans are infrequently used in practice. Training and drills should be used to ensure that the plant staff can adequately manage and coordinate on-site and off-site activities.

### **RELATED ITEMS:**

297, 298, 564, 574, 960, 1017, 1331, 1332

### **JUSTIFICATION OF RANKING:**

Emergency plan training drills and staff experience are necessary to ensure that plant emergencies can be properly managed.

CAT	•	ISSUE	ITEM	n.	TITTLE/Description	ASPECT	AREA	CLASS	REFER	ENCE
11	EMERGENCY	RESPONSE - TRAINING	297	ENE	RGENCY DRILL	0	EP	4.5	BOHUNICE	6.5.(1)
				Per	iodic drills should be deve	loped	and conduc	ted to as	sess and ma	intain
				eme	rgency preparedness.					
п	EMERGENCY	RESPONSE - TRAINING	298	EME	RGENCY SCENARIOS	0	EP	5.2	BOHUNICE	6.5.(2)
				Acc	ident management aspects (	evalua	tion of pl	ant statu	s, simulate	d corrective
				act exe	ions, flow of information) rcises.	should	be includ	ed in the	scenarios	of emergency
11	EMERGENCY	RESPONSE - TRAINING	564	EME	RGENCY COMMISSION EXERCISE	0	EP	5.3	KOZLODUY	6.4.(3)
				Whi exe	lst the present emrgency ce rcises should demonstrate t	nter co hey ca	ontinues in n manage en	n service mergecies	, Emergency without le	Commission aving the
11	EMERGENCY	RESPONSE - TRAINING	574	EMP	RGENCY DRILL	n	FP	52		6 5 (1)
••			211	4n	unified system of training	and dr	ills should	d he deve	loped demos	trating the
				eff	ectiveness of the emergency	nlan i	for essent	ial and n	on essentia	l workers.
11	EMERGENCY	RESPONSE - TRAINING	960	CON	PUTER SIMULATION	0	OPS	4.5	NOVOVORONE	3.7.(4)
				Use	simulator facility to exer ident situations.	cise ti	ne shift o	perations	staff in h	andling
11	EMERGENCY	RESPONSE - TRAINING	1017	DRI	LL AND EXERCISES	0	EP	5.1	NOVOVORONE	6.5.(1)
				A g in	eneral site sheltering/evac the programme.	uation	exercise	should be	planned an	d performed
п	EMERGENCY	RESPONSE - TRAINING	1331	FRE	QUENCY OF STATION EXERCISES	0	EP	5.2	KOLA	6.5.(1)
				Ful	l scale integrated Station	Emergei	ncy Planni	ng exerci	se should t	ake place
				eve	ry year including interface	s with	off-site	organizat	ion.	
II	EMERGENCY	RESPONSE - TRAINING	1332	EME	RGENCY EXERCISE FEEDBACK	0	EP	5.2	KOLA	6.5.(2)
				For sho	mal tracking of implementat uld be introduced.	ion of	recommend	ation fro	n emergancy	exercises

**ISSUE TITLE:** Post Accident Sampling

RANK OF ISSUE: II

#### **ISSUE CLARIFICATION:**

Plants should have a capability to assess core damage and post-accident radiological conditions through appropriate sampling systems.

#### **RELATED ITEMS:**

293, 294

## JUSTIFICATION OF RANKING:

A post-accident sampling system is necessary in order to properly assess radiological consequences of accidents to minimize the impact on plant staff and to the public.

CAT	•	185	UE	ITEM (	n. TITTLE	/Description	ASPE	CT AREA	CLASS	REFE	RENCE
11	POST	ACCIDENT	SAMPLING	293 :	SAMPLING D	URING ACCIDENT	0	EP	4.5	BOHUN1CE	6.4.(4)
				•	dose point	of view. Deve	lope adequ	ate proce	tures.	CONDICIONS	
11	POST	ACCIDENT	SAMPLING	294 1	HERMETICAL Procedures in acciden	ZONE SAMPLING should be dev t conditions.	0 eloped to	EP take samp	4.5 les of herm	BOHUNICE etical zone	6.4.(5) air samples
# REFERENCES

# **RD** - Reference Documents SC - Steering Committee (information/Review)

WWER RD 022	Bohunice Safety Review Mission (4-26 April 1991)
WWER RD 032	Evaluation of the Safety Status of the NPP Jaslovaske Bohunice V-I Report of the Austrian Expert Commission July 1991
WWER RD 033	Kozloduy Safety Review Mission (1-21 June 1991)
WWER SC 025	Novovoronezh Safety Review Mission (12-30 August 1991)
WWER SC 026	Kola Safety Review Mission (9-27 September 1991)

#### LIST OF PARTICIPANTS

#### Project Review Meeting Safety of WWER 440 Model 230 Plants 19-23 August 1991

#### **BULGARIA**

Mr. B. Dimitrov	Institute ENERGOPROEKT 1407 Sofia 51 anton Ivanov blvd
Mr. E. Balabanov	Institute ENERGOPROEKT 1407 Sofia 51 anton Ivanov blvd

#### **FINLAND**

Mr. J. Laaksonen	Finnish Centre of Radiation
(Chairman)	and Nuclear Safety (STUK)
. ,	P.O. Box 268
	SF-00101 Helsinki

#### **GERMANY**

Mr. J. P. Weber

Gesellschaft fur Reaktorsicherheit Forschungsgelaende 8046 Garching

#### **SPAIN**

Mr. A. Alvarez Menendez	Empresarios Agrupados
	Magallanes 3
	28015 Madrid

### <u>USA</u>

Mr. M. Case

U.S. Nuclear Regulartory Commission Office of Nuclear Reactor Regulation Washington D.C. 20555

Mr. G. Chipman US DOE Contractor Tenera 7272 Wisconsin Avenue Suite 300 Bethesda Maryland 20814

# **THE RUSSIAN FEDERATION**

Mr. V. Vaishnis	Kola Nuclear Power Plant
	184152 Poliazinje Zori
	Murmansk region

# **UNITED KINGDOM**

Mr. P. Tonks

Nuclear Electric plc Barnett Way Barnwood Gloucester 9L4 7RS

# THE COMMISSION OF EUROPEAN COMMUNITIES (CEC)

CEC
Rue de la Loi 200
B-1049 Bruxelles
Belgium

#### **IAEA PARTICIPANTS**

Mr. L. Lederman	- Scientific Secretary - NENS/SAS
Mr. C. Almeida	- Safety Assessment Section/NENS
Mr. B. Gachot	- Safety Assessment Section/NENS
Mr. R. Havel	- Safety Assessment Section/NENS
Mr. A. Erwin	- NPP Operational Safety Services/NOSS

#### Project Review Meeting Safety of WWER 440 Model 230 Plants 28 October to 1 November 1991

### **AUSTRIA**

Mr. G. Weimann	Austrian Research Centre
	Seibersdorf
	Vienna

#### **BULGARIA**

Mr.	B.	Dimitrov	

Institute Energoproekt 1407 Sofia 51 Anton Ivanov blvd

Mr. R. Ovtcharov

Bulgarian Atomic Committee 55 Chapaev str 1547 Sofia

#### **CZECHOSLOVAKIA**

Mr. Jiri Suchomel	Nuclear Power Plant Research Institute
	Okruzna 5, 91864 Trnava

#### **FINLAND**

Mr. J. Laaksonen	Finnish Centre of Radiation
(Chairman)	and Nuclear Safety (STUK)
. ,	P.O. Box 268
	SF-00101 Helsinki

#### **FRANCE**

Mr. F. Wald

Electricite de France 22/30 Avenue de Wagram 75382 Paris Cedex 08

### **GERMANY**

Mr. J. P. Weber

Gesellschaft fur Reaktorsicherheit Forschungsgelande, 8046 Garching

# <u>SPAIN</u>

Mr. A. Alvarez Menendez Empresarios Agrupados Magallanes 3 28015 Madrid

#### <u>USA</u>

Mr. M. Case	U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington D.C. 20555
	washington D.C. 20555

.

.

7

Mr. D. Morris	US Dept of Energy Contractor
	Tenera, LP
	7272 Wisconsin Ave
	Bethesda MD 20814

#### THE RUSSIAN FEDERATION

Mr. P. Vaishnis	Kola Nuclear Power Plant
	184151 Poliarniye Zori
	Murmansk region

#### **UNIDED KINGDOM**

Mr. P. Tonks

Nuclear Electric plc Barnett Way Barnwood Gloucester 9L4 7RS

# THE COMMISSION OF EUROPEAN COMMUNITIES (CEC)

Mr. Deffrennes

CEC DG XVII Rue de la Loi 200 B-1049 Bruxelles Belgium

#### **IAEA PARTICIPANTS**

- Mr. L. Lederman
- Mr. C. Almeida
- Mr. J. Hoehn
- Mr. B. Gachot
- Mr. R. Havel
- Mr. A. Erwin
- Ms. A. Carnino
- Mr. B. Moore
- Mr. J. Dular

- Scientific Secretary NENS/SAS
- Safety Assessment Section/NENS
- Safety Assessment Section/NENS
- Safety Assessment Section/NENS
- NENF
- NPP Operational Safety Services/NOSS
- Advisor, NENS
- NPP Operational Safety Services/NOSS
- NPP Operational Safety Services/NOSS

#### **Steering Committee Meeting** Safety of WWER 440 Model 230 Plants 9-13 December 1991

#### **BULGARIA**

Mr. B. Georgiev	Permanent Mission Schwindgasse 8 A-1040 Vienna
Mr. Janev	Bulgarian Committee on the Use of Atomic Energy for Peaceful Purposes 55A Chapaev str. 1547 Sofia
<b>CZECHOSLOVAKIA</b>	

Mr. Z. Kriz	State Nuclear Safety Inspectorate
	Slezska 9, 12029 Prague 2

### **FRANCE**

Mr. Y. Cornille

**IPSN-CEA** CEN de Fontenay-aux-roses B. P. no 6 F-92265 Fontenay-aux-roses Cedex

# **FINLAND**

Mr. J. Laaksonen

Finnish Centre of Radiation and Nuclear Safety (STUK) P.O. Box 268 S.F. 00101 Helsinki

#### **GERMANY**

Mr. F. W. Heuser

Gesellschaft Fur Reaktorsicherheit Schwertnergasse 1 D 5000 Koeln 1

Mr. P. Kelm

Gesellschaft Fur Reaktorsicherheit Schwertnergasse 1 D 5000 Koeln 1

# <u>SPAIN</u>

Mr. A. Alonso	Polytechnical University of Madrid Escuela de Ingenieros Industriales Jose Gutierrez Abascal, 2 28006 Madrid
<u>SWITZERLAND</u>	
Mr. A. Voumard	Swiss Federal Nuclear Safety Inspectorate CH-5232 Villigen HSK
Mr. E. Knoglinger	Paul Scherrer Institut Laboratory for Reactorphysics and Systems Engineering CH-5232 Villigen PSI
<u>USA</u>	

Mr. G. Chipman	Tenera, 7272
	Wisconsin Avenue, Suite 300
	Bethesda
	Maryland 20814

# **UNITED KINGDOM**

Mr. D. Goodison	Nuclear Installations Inspectorate
Chairman	St Peter's House
	Stanley Precinct
	Bootle, Merseyside L20 3LZ

# THE RUSSIAN FEDERATION

Mr. A. M. Kirichenko	Ministry of Atomic Power and Industry of the USSR Kitaisky Projezd 7 103074 Moscow USSR
Mr. V. A. Vikin	Novovoronezh NPP
Mr. J. V. Kolomtsev	Kola NPP
Mr. N. G. Pavlenko	Novovoronezh NPP

#### **COMMISSION OF THE EUROPEAN COMMUNITIES (CEC)**

Mr. Cibrian

CEC Rue de la Loi 200 B-1049 Bruxelles Belgium

Mr. J. C. Charrault

CEC Rue de la Loi 200 B-1049 Bruxelles Belgium

Mr. H. W. Kalfsbeek

CEC DG XII/D/1 Rue de la Loi 200 B-1049 Bruxelles Belgium

#### ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT NUCLEAR ENERGY AGENCY (OECD/NEA)

Mr. J. Royen

OECD/NEA 38 Boulevard Suchet 75016 Paris France

#### WORLD ASSOCIATION OF NUCLEAR OPERATORS (WANO)

Mr. L. Gilly

WANO - Paris 71 Rue de Miromesnil 75008 Paris

#### WORLD BANK

Mr. A. G. Adamantiades

1818 H Street N.W. Washington D.C. 20433 USA ł

#### **IAEA PARTICIPANTS**

Mr. M. Rosen - DIR/NENS - Scientific Secretary - NENS/SAS Mr. L. Lederman - Safety Assessment Section/NENS Mr. C. Almeida - Head, Safety Assessment Section/NENS Mr. F. Niehaus - Safety Assessment Section/NENS Mr. J. Hoehn - Advisor NENS Ms. A. Carnino - NENS Mr. B. Gachot - Acting Head, NOSS Mr. K. Hide Mr. J. P. Bemer - NOSS Mr. L. Kabanov - Head, ES