IAEA TECDOC SERIES

IAEA-TECDOC-1866

Use of Laser Carbon Dioxide Carbon Isotope Analysers in Agriculture

USE OF LASER CARBON DIOXIDE CARBON ISOTOPE ANALYSERS IN AGRICULTURE

The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".

IAEA-TECDOC-1866

USE OF LASER CARBON DIOXIDE CARBON ISOTOPE ANALYSERS IN AGRICULTURE

PREPARED BY THE JOINT FAO/IAEA DIVISION OF NUCLEAR TECHNIQUES IN FOOD AND AGRICULTURE

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2019

COPYRIGHT NOTICE

All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at:

Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 26007 22529 tel.: +43 1 2600 22417 email: sales.publications@iaea.org www.iaea.org/books

For further information on this publication, please contact:

Soil and Water Management and Crop Nutrition Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Email: Official.Mail@iaea.org

> © IAEA, 2019 Printed by the IAEA in Austria April 2019

IAEA Library Cataloguing in Publication Data

Names: International Atomic Energy Agency.

- Title: Use of laser carbon dioxide carbon isotope analysers in agriculture / International Atomic Energy Agency.
- Description: Vienna : International Atomic Energy Agency, 2019. | Series: IAEA TECDOC series, ISSN 1011–4289 ; no. 1866 | Includes bibliographical references.

Identifiers: IAEAL 19-01225 | ISBN 978-92-0-101419-1 (paperback : alk. paper)

Subjects: LCSH: Soils — Analysis. | Soils — Carbon content — Analysis. | Carbon dioxide lasers.

FOREWORD

The IAEA promotes nuclear and related technologies that help Member States improve food security and ensure sustainable agriculture. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture focuses on developing techniques that use nuclear and related technologies to increase the efficiency of resource use in agricultural soil, water and nutrient management practices.

Agricultural management practices that optimize soil organic carbon sequestration and water and nutrient use efficiency enhance food security and sustainable agriculture. These practices also promote climate-smart agriculture by making soils and plants more resilient to climate change and by reducing greenhouse gas emissions. Accurate measurements and data analysis are the first steps in ensuring proper evaluation and selection of such agricultural management practices. Information on how to perform such evaluations, however, often does not properly illustrate how to conduct each of the steps involved.

The present publication provides guidance for scientists, technicians and students in the use of laser CO_2 carbon isotope analysers to evaluate agricultural management practices and optimize soil organic carbon sequestration for sustainable and climate-smart agriculture. Laser CO_2 carbon isotope analysis is a relatively new technology that allows for real-time, in situ measurements of the concentration and carbon-13 signature of CO_2 . Because this type of analysis is relatively simple and can provide robust data, it is increasingly being used to monitor and track CO_2 emissions.

This publication presents four standard operating procedures (SOPs) that provide guidance on the use of laser isotope analysis to conduct reliable measurements of CO₂ gas from soil or plant materials in ambient air or closed chambers. Two of the four SOPs (Creating Reference Gases for Gas Isotope Analysis and Data Management of Laser CO₂ Carbon Isotope Analyser Collected Measurements) were developed by the Joint FAO/IAEA Division; the remaining SOPs (Measurements Using the Laser CO₂ Carbon Isotope Analyser in Continuous Free Flow Mode and Injection Mode) clarify and illustrate existing procedures and include additional steps to enhance the accuracy and precision of CO₂ measurements. Additionally, an example study is described that uses these four SOPs to evaluate carbon loss from soils using a laser CO₂ carbon isotope analyser.

The Joint FAO/IAEA Division wishes to thank all contributors to its Soil and Water Management and Crop Nutrition Subprogramme and those involved in the preparation of this publication. The IAEA officer responsible for this publication was J. Chen of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture.

EDITORIAL NOTE

This publication has been prepared from the original material as submitted by the contributors and has not been edited by the editorial staff of the IAEA. The views expressed remain the responsibility of the contributors and do not necessarily represent the views of the IAEA or its Member States.

Neither the IAEA nor its Member States assume any responsibility for consequences which may arise from the use of this publication. This publication does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this publication and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate.

CONTENTS

1. INTRODUCTION		
	1.1. 1.2. 1.3.	BACKGROUND
2.	CREAT	ING REFERENCE GASES FOR GAS ISOTOPE ANALYSIS2
	 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.7.1 2.7.2 2.7.3 	$\begin{array}{llllllllllllllllllllllllllllllllllll$
		MIX TO CREATE A CO ₂ GAS WITH A DESIRED δ^{13} C VALUE9
3.	MEASU ANALY	JREMENTS USING THE LASER CO ₂ CARBON ISOTOPE SER IN CONTINUOUS FREE FLOW MODE11
	3.1. 3.2. 3.3. 3.4. 3.5.	SCOPE AND FIELD OF APPLICATION11BACKGROUND INFORMATION AND CONSIDERATIONS11PRINCIPLE12EQUIPMENT12PROCEDURE12
4.	MEASU ANALY	UREMENTS USING THE LASER CO2 CARBON ISOTOPE SER IN INJECTION MODE15
	4.1. 4.2. 4.3. 4.4.	SCOPE AND FIELD OF APPLICATION15BACKGROUND INFORMATION AND CONSIDERATIONS16EQUIPMENT16PROCEDURE16
5.	DATA N COLLE	MANAGEMENT OF LASER CO2 CARBON ISOTOPE ANALYSER CTED MEASUREMENTS21
	5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.6.1.	BACKGROUND21ADVANTAGES AND POTENTIAL LIMITATIONS21PRINCIPLE21SOFTWARE22PROCEDURE22CALCULATIONS25CALCULATING THE SOIL SURFACE AREA AND VOLUME OF25MEASUREMENT CHAMBERS25

	5.6.2.	CALCULATING THE FLUX OF CO ₂ -C	
	5.6.3.	CALCULATING THE FLUX OF CO2-C PER AREA.	
	5.6.4.	CALCULATING THE KEELING PLOT INTERCEPT.	26
6.	CASE S	STUDY: MEASURING CARBON LOSS OF MAIZE CROP RESII ED IN INCUBATED FRESH, REVIVED AND STORED SOILS	OUES
	6.1.	BACKGROUND	
	6.2.	MEASURING SOIL AND MULCH CARBON LOSS	27
	6.3.	RESULTS AND DISCUSSION	29
CON	TRIBUT	FORS TO DRAFTING AND REVIEW	

1. INTRODUCTION

1.1. BACKGROUND

Laser CO₂ carbon isotope analysers are increasingly used to track CO₂ levels and trace the source of carbon emissions through isotope analysis. This relatively new technology provides many benefits for tracking and tracing changes in CO₂ emissions compared to older isotope technologies, such as continuous, robust measurements of changes in CO₂ concentration in real-time and the ¹³C isotopic signature in CO₂. However, instructions on how to perform such evaluations are often limited. Member States require this guidance to improve soil management practices for sustainable and climate-smart agriculture using nuclear techniques. Isotope technology, such as the laser CO₂ carbon isotope analyser can be used to evaluate and select agricultural management practices that reduce CO₂ emissions and optimize soil organic carbon sequestration and water and nutrient use efficiency for food security and sustainable agriculture.

1.2. OBJECTIVE

This publication was developed to guide scientists, technicians and students in the use of a laser CO_2 carbon isotope analyser to track and trace CO_2 that, for example, can be emitted by soils. It contains novel protocols on how to create reference gases for calibration and quality control and how to manage data as well as how to enhance accuracy and precision of CO_2 measurements.

1.3. STRUCTURE

Four illustrated, step-by-step standard operating procedures (SOPs) on how to obtain measurements using a laser laser CO_2 carbon isotope analyser describe: (1) creating reference gases, (2) calibrating the laser CO_2 carbon isotope analyser, (3) sample measurements and (4) data correction. A fifth case study demonstrates how these protocols can be used to measure soil CO_2 emissions.

The first SOP describes how to mix CO₂ gases to create reference gases that are essential for ensuring accurate and precise CO₂ measurements and allow for comparison of measurements across times and different instruments. The second SOP clarifies and illustrates an example calibration of a laser CO₂ carbon isotope analyser using a reference gas in continuous free flow mode and further clarifies use of the instrumentation to measure concentration and δ^{13} C of CO₂ in this mode. The third SOP clarifies and illustrates an example calibration of a laser CO₂ carbon isotope analyser using a reference gas in injection mode and demonstrates use of the instrumentation to measure concentration and δ^{13} C of CO₂ in this mode. The fourth component describes how collected data should be evaluated and corrected prior to reporting results to ensure precision and accuracy. The last component of this publication is a case study that demonstrates how the laser CO₂ carbon isotope analyser can be used to measure CO₂ emissions from a soil incubation experiment. This combines the four SOPs to show how they may be used in an experiment to evaluate soil CO₂ emissions.

2. CREATING REFERENCE GASES FOR GAS ISOTOPE ANALYSIS

2.1. SCOPE AND FIELD OF APPLICATION

Laser CO₂ carbon isotope analysers should always be properly calibrated to ensure accurate measurements. One of the first steps when calibrating is to acquire standard reference gases that are used to check for instrument accuracy and precision. Reference gases with predetermined CO₂ concentration and ¹³C-CO₂ isotopic signature within appropriate ranges (similar to that of sampled CO₂) are, however, not commercially available, requiring researchers to create alternatives. However, non-commercially made reference gases risk inaccuracies due to contamination with external CO₂ (such as CO₂ in the atmosphere or individual breath) that occurs during production or due to poor verification of the gas before use. One source of error can occur during the common use of gas bags to mix gases. This is likely due to weak seals that allow for CO₂ exchange with the atmosphere over time, prior to sampling on a laser CO₂ carbon isotope analyser. This risk can be reduced by making reference gases in larger batches that do not need to be made or verified often as well as by making and storing gases in a well-sealed steel line and tank. Atmospheric CO₂ also cannot be used as an alternative to stored CO₂ reference gases due to variation in the concentration and δ^{13} C of atmospheric CO₂ that can even vary by more than 100 ppm and several per mil δ^{13} C on a diurnal basis [1].

This section describes a sealed gas mixing line design in which steel gas tanks can be evacuated and filled with gases in order to mix and create a desired CO₂ reference gas (Figure 1. and Figure 2.). Example calculations are provided on how to determine how much of different gases to mix in order to create a reference gas with a desired CO₂ concentration and δ^{13} C value.

2.2. BACKGROUND INFORMATION AND CONSIDERATIONS

Laser isotope analysers are frequently used in greenhouses and the field. So, for ease of transportation, reference gas tanks should not be too heavy, 50 L gas tanks are ideal for use in the lab and 10 L gas tanks are more practical for use in the field.

Gas tanks containing pressurized gas must be stored in well-ventilated areas and securely mounted. For secure operations, including transport to the field, it is recommended that reference gas tanks only be filled to a maximum of 10 bar.

2.3. PRINCIPLE

The described sealed gas mixing line (Figure 1. and Figure 2.) can isolate gases from the atmosphere and can be used to create CO₂ reference gases with a desired CO₂ concentration and δ^{13} C value without contamination. By mixing gases with known CO₂ concentrations and δ^{13} C at the right proportion (calculations described in section 2.7), CO₂ concentration and δ^{13} C can be diluted to the desired amount.

Figure 1. Diagram of the described sealed gas mixing line developed to mix gases. Letters next to each point are associated with equipment described in 2.5.

Figure 2. Picture of a sealed gas mixing line produced based on the sealed gas mixing line diagram in Figure 1. A "tube cracker" chamber that can be used to introduce gases that are in glass vials to the mixing line is also attached to the injection port in case a gas is introduced to the line by a glass vial rather than syringe.

2.4. REQUIRED GASES

- Synthetic air (without CO₂) containing N₂ and O₂ (with pressure regulator from 0 to 15 bar).
- Pure CO₂ at natural ¹³C abundance (δ¹³C varies depending on source, δ¹³C of CO₂ must be determined).
- Pure CO₂ with high δ^{13} C (δ^{13} C varies depending on source).

2.5. EQUIPMENT

Letters a-h associated with each equipment piece are associated with Figure 1. Items i and j are not shown in Figure 1 as they are not attached to the sealed gas mixing line.

a) Rotary vacuum pump (pumping speed > 1 m³ h⁻¹, ultimate vacuum better than 10^{-3} mbar)

- b) Vacuum meter (10^{-3} to 1 mbar)
- c) Pressure meter (0 to15 bar)
- d) Synthetic air tank
- e) Injection port (for CO₂ introduction by gas syringe)
- f) Empty steel gas tanks (0.5 to 10 L bottles as desired, pressure regulator from 0 to 15 bar)
- g) Stainless steel fittings and gas lines (length and diameter will vary depending upon the fittings of the pump, meters, valves and tanks)
- h) Five-line valves
- i) Gas tight syringe (100 mL)
- j) Gas bag or gas vial with septum for needle gas exchange¹

2.6. PROCEDURE

Reference gases can be created with the goal of having a certain CO_2 concentration, and/or with the goal of having a specific $\delta^{13}C$ - CO_2 isotopic signature. In the first case, when the CO_2 concentration is of interest, a desired target CO_2 concentration is set. This value is obtained by diluting a pure CO_2 gas with CO_2 -free synthetic air. The procedure for this method is described step by step here below, and the calculation for the dilution ratios can be found in section 2.7.2.

If a reference gas with a desired δ^{13} C- CO₂ isotopic signature and a specific CO₂ concentration is needed, then the reference gas is created in two steps. First, CO₂ gas having a known, high δ^{13} C-CO₂ signature is diluted with CO₂ gas at natural abundance. The calculation for these dilution ratios can be found in section 2.7.3. To perform the mixing, the same step by step procedure below can be followed, with the following substitutions:

- Pure CO₂ gas at natural abundance will take the role of "synthetic air"
- A CO₂ tank with high δ^{13} C will replace the "CO₂ gas source"

In the second step of making this reference gas with a desired δ^{13} C- CO₂ isotopic signature and a specific CO₂ concentration, this pure CO₂ gas with the target δ^{13} C is diluted to the desired CO₂ concentration, again using the target CO₂ concentration procedure here below.

Step	Procedure	
Step 1 Evacuate reference gas tank	Connect the reference CO ₂ gas tank ^f (without pressure regulator) to the gas line. Open vacuum pump ^a , vacuum meter ^b and reference gas tank ^f line valves (in red). Also open reference gas tank ^f . Close valves to injection port ^e and synthetic air tank ^d .	d Synthetic air tank weter pump b b b c Synthetic air tank f Reference gas tank Injection port e

¹ Gas bags can be purchased from for example Restek Co., PA, USA, vials from Supelco, USA

	Turn on vacuum pump ^a and run until pressure (as read on the vacuum meter ^b) is lower than 5×10^{-2} mbar to evacuate the reference gas tank and line. Depending on the pump, running time may last 1-2 hours. Close all line valves and the reference gas tank ^f main valve, turn off the vacuum pump ^a .	
Step 2 Evacuate gas bag or vial	Attach a syringe needle to injection port ^e . Attach gas bag or vial ^j to needle.	
	Open gas line valves (in red) for the vacuum pump ^a and injection port ^e . Keep all other valves closed. Turn on the vacuum pump ^a and evacuate to 5×10^{-2} mbar. Then close all valves and remove the bag or vial ^j from the injection port ^e .	d Vacuum pump b C Vacuum pump b b C Pressure meter b c Synthetic air tank b f Vacuum pump b h c s s s s s c s s c s s c s s c s s c s s c s s c s c s s c s s c s c s c s c s c s c s c s c s c s c s s c s c s c s s c s s c s s c s s c s c s c s s c s c s s c s c s c s s c s s c s s c s s c s s c s s c s s s c s c s c s s s c s s s c s s s c s s s s s c s
Step 3 Fill gas bag or vial	Fill the evacuated gas bag or vial ^j with a pure CO ₂ gas source. Take gas syringe ⁱ and flush it by taking CO ₂ from bag or vial ^j and injecting it into open air 2-3 times then finally pull the desired volume of CO ₂ gas source into the syringe (see calculation in 2.7.2).	

Step 4 Adding CO ₂ to reference gas tank	Switch injection port ^e to a septum to receive CO ₂ gas injections.	
	Open line valves (in red) for injection port ^e and evacuated reference gas tank ^f . Also open main valve on the reference gas tank ^f . Inject the desired volume of source CO ₂ (see calculation in 2.7.2) into the injection port ^e with a gas tight syringe ⁱ . Remove needle ⁱ then close injection port ^e valve.	a b Vacuum pump b c Synthetic air tank h air tank h air tank h c Synthetic air tank h c s s c s c s c s c s c c s c c s c c s c c s c c c c c c c c c c c c c
Step 5 Adding synthetic air CO ₂ to mixed gas tank	Open the synthetic air gas tank and synthetic air gas tank line ^d valve (in red) and set outgoing pressure to 10 bar. Let gas line equilibrate with the mixed reference gas tank ^f for 15 minutes.	d Synthetic air tank meter Vacuum pump b b Vacuum e e Synthetic air tank Reference gas tank Injection port e
	Close the synthetic air tank ^d valve and check if the reading of the pressure meter ^c on the gas line drops. If so, open the synthetic air tank ^d valve and add more gas. When the reading remains constant at 10 bar, close all valves, including those on gas tanks.	

Step 6	Confirm mixed CO ₂ reference gas ^f CO ₂ concentration, δ^{13} C and δ^{18} O values by submitting	
CO ₂ gas verification	samples for analysis on separate instrumentation.	

2.7. CALCULATIONS

The following calculations are to determine the amounts of the different CO_2 gases to produce a reference gas with the desired CO_2 concentration and isotopic signature.

2.7.1 Calculating the volume of gas that can be held in a filled tank.

When injecting CO_2 from a gas bag with a syringe, the CO_2 is at atmospheric pressure in the syringe. Therefore, to obtain the volume ratios of CO_2 and synthetic air to be mixed, we need to know the equivalent volume of synthetic air at atmospheric pressure. The following calculation determines this equivalent volume.

Use Ideal Gas Law:

$$PV = nRT \tag{2.1}$$

Where: P = pressure; V = volume; n = number of gas moles; R = gas constant; T = absolute temperature

Assuming that T is kept constant (along with n and R), then:

$$P_1 V_1 = P_2 V_2 \tag{2.2}$$

Where: P_1 = pressure of compressed gas in tank (bar); V_1 = volume of tank (L); P_2 = atmospheric pressure (~1.0 bar); V_2 = Equivalent volume of gas at atmospheric pressure (L)

EXAMPLE to determine the equivalent volume V_2 of gas at atmospheric pressure:

If a tank has a volume of 10 L and is filled to a maximum pressure of 10 bar, then:

$$10 \ bar \times 10 \ L = 1.0 \ bar \times V_2$$

therefore $V_2 = 100 L$

Where: V_2 is the equivalent volume of gas that would be present at Standard Temperature and Pressure (STP)

2.7.2 Calculating the volume of CO₂ gas and synthetic air to add to the reference gas tank to reach a desired reference gas CO₂ concentration

1 ppm CO₂ is equivalent to 1 μ L L⁻¹ CO₂.

The volume of CO_2 gas to be added to the reference tank, can be calculated by using the equivalent volume of gas in ambient air pressure from section 2.7.1 and the desired CO_2 concentration of reference gas:

$$V_{add} = V_2 \times [CO_2]_{desired}$$
(2.3)

Where V_{add} the volume of pure CO₂ gas that should be added to the reference gas tank; V_2 the equivalent volume at atmospheric pressure as calculated in section 2.7.1 and [CO₂]_{desired} the target concentration of the reference gas in ppm (equal to $\mu L L^{-1}$).

EXAMPLE to determine how much pure CO₂ gas to add to a reference gas tank to create a reference gas with a CO₂ concentration of 1000 ppm (=1000 μ L L⁻¹):

If a 10 L volume tank holds 100 L of gas (at 10 bar with tank standing at STP) when filled and a pure (100%) CO_2 gas is added, then:

$$V_{add} = 100 L \times 1000 \mu L L^{-1} of CO_2 = 100,000 \mu L = 100 mL of CO_2$$

Where V_{add} the volume of pure CO₂ gas that should be added to the 10 L reference gas tank (filled to 100 L at 10 bar); in this example 100 mL of pure CO₂ gas should be added to a 10L reference gas tank filled with 100 L at 10 bar of (CO₂ free) synthetic air in order to bring the total reference gas CO₂ concentration to 1000 ppm.

2.7.3 Calculating the volume of CO₂ with high δ^{13} C and the volume of CO₂ at natural abundance levels to mix to create a CO₂ gas with a desired δ^{13} C value.

Use the mixing model equations:

$$C_{AB} = C_A \times f_A + C_B \times f_B \tag{2.4}$$

$$f_A + f_B = 1 \tag{2.5}$$

$$C_{AB} = C_A \times f_A + C_B \times (1 - f_A) \tag{2.6}$$

$$f_A = \frac{c_{AB} - c_B}{c_A - c_B} \tag{2.7}$$

Where: $C_{AB} = \operatorname{atom}^{\%} {}^{13}C$ of desired CO₂ gas; $C_A = \operatorname{atom}^{\%}$ of CO₂ gas_A for mixing (such as anatural abundance CO₂ gas source); $C_B = \operatorname{atom}^{\%} {}^{13}C$ of CO₂ gas_B for mixing (such as 99 atom% {}^{13}C); f_A is the fraction of CO₂ gas_A that should be mixed into gas_{AB}; and f_B is the fraction of CO₂ gas_B that should be mixed into gas_{AB}

Note: use the following equation to convert $\delta^{13}C$ values to atom% ^{13}C (as there is no linear relationship between $\delta^{13}C$ and atom%, all isotopic calculations must be done in atom%).

$${}^{13}C \ atom\% = \frac{100 \times 0.01118 \times (\frac{\delta^{13}C}{1000} + 1)}{1 + 0.01118 \times (\frac{\delta^{13}C}{1000} + 1)}$$
(2.8)

EXAMPLE to determine how much labelled ¹³CO₂ gas (99 atom% ¹³C) to add to an unenriched CO₂ gas at natural abundance to create a CO₂ gas with a desired δ^{13} C value of 200‰:

If the desired CO₂ gas (gas_{AB}) should have a 1.324 atom% ¹³C (or 200‰ δ^{13} C) and a 99 atom% ¹³CO₂ gas (gas_B) and a natural abundance CO₂ gas (gas_A) with 1.097 atom% ¹³C (or -8‰ δ^{13} C) are available for mixing, then the fraction of gas_A (*f*_A) and gas_B (*f*_B) that should be mixed together for gas_{AB} can be calculated with the following:

$$f_A = \frac{C_{AB} - C_B}{C_A - C_B} = \frac{1.324 - 99}{1.097 - 99} = 0.9977$$
$$f_B = 1 - f_A = 0.0023$$

with 0.9977 as the fraction of gas_A and 0.0023 as the fraction of gas_B to mix into gas_{AB} .

Using the fractions to calculate the required volumes, for a CO_2 gas tank with a volume of 0.5 L at 10 bar that holds 5 L gas at STP (as calculated using 2.7.1.):

 $f_A \times 5 L = 0.9977 \times 5 L = 4.989 L$ of natural abundance CO₂ gas (gas_A)

 $f_B \times 5 L = 0.0023 \times 5 L = 0.012 L$ of 99 atom% ¹³C CO₂ gas (gas_B)

Use these calculated volumes to prepare your reference gas, following the procedure in 2.6. replacing " CO_2 gas source" with gas_A and "synthetic air" with gas_B.

3. MEASUREMENTS USING THE LASER CO₂ CARBON ISOTOPE ANALYSER IN CONTINUOUS FREE FLOW MODE

3.1. SCOPE AND FIELD OF APPLICATION

Changes in CO₂ levels and isotope composition are often dynamic and are due to both biotic and abiotic processes. To understand these dynamics, CO₂ fluxes must be monitored regularly. Laser CO₂ carbon isotope analysers that can continuously monitor the concentration and δ^{13} C of CO₂ are useful for providing high resolution data that are necessary for understanding CO₂ dynamics. With a simple inlet that can be set to sample and flow continuously, one can measure second to second changes in CO₂ concentration and δ^{13} C of whatever area the inlet is directed at [2]. With an accompanying outlet, one can measure second to second changes in CO₂ concentration and δ^{13} C of a closed-loop system (a closed system in which gas is sampled and returned to the sampled area without exchange with gas outside the sealed system, see Figure 3.). This closed-loop system can be used, for example, to measure rates of CO₂ build up and the δ^{13} C of CO₂ gas sources [3].

This section describes how to use the laser CO_2 carbon isotope analyser to measure CO_2 in continuous free flow mode and acquire accumulated data. The same methods would be used whether measuring in an open system (only measuring CO_2 concentration at point of inlet) or closed-loop system (measuring the buildup or loss of CO_2 in a closed system with the inlet sampling CO_2 and the outlet returning CO_2 to avoid artificial changes to CO_2 concentration in the system). Only calculations of data output will differ.

3.2. BACKGROUND INFORMATION AND CONSIDERATIONS

Laser isotope analysers frequently measure gas samples that contain moisture. A nafion drier should be placed upstream the analyser, on the sampling line in between where a sample is taken in and where the sample enters the analyser, in order to remove water from sampled gas before measurement. This is done because removal of water vapor is essential to ensure high precision of measurements.

Depending on the resolution, amount of data desired and measurement time, data can be recorded in the instrument regularly over a range of temporal intervals, such as every second to 100 seconds. This tradeoff is dependent upon the user's needs.

Also depending on the type of data desired, the inlet can continuously measure an open area to measure general changes in CO_2 composition over time in an open air system, or the inlet and outlet can be connected to a closed-loop area to measure build up of CO_2 and changes in CO_2 composition over time (Figure 3.). However, caution should be applied if using an open air system, as factors within the proximity, such as wind, the number of people present, and the presence of exhaust from machinery, can cause minor to significant changes in CO_2 that interfere with sample measurements.

Data correction should always be applied after data is collected. Additionally, attention should be given if CO₂ concentration or δ^{13} CO₂ is close to the limits of the guaranteed specification range of the spectroscope. This specification range differs for instrumentation. However, as an example based on testing maximum CO₂ concentrations on a Los Gatos laser CO₂ carbon isotope analyser, in a serial dilution of CO₂ concentrations ranging from 1500 to 400 ppm, the laser spectroscope correctly kept a constant δ^{13} CO₂ value of 470 ‰. Appropriate CO₂ reference gases should be used to capture the range of CO_2 in which samples are measured at. Creating reference gases and performing data correction are discussed in Chapter 1 of this TECDOC.

Figure 3. Diagram of an open (left) versus closed-loop (right) measurement system.

3.3. PRINCIPLE

Measurements of CO_2 in continuous free flow mode by a laser CO_2 carbon isotope analyser can provide uninterrupted high resolution data, recorded up to every second. Depending on the set up of the analyser inlet and outlet, the analyser can take measurements in an open or closedloop system. Only calculations of data output will differ. To ensure accurate and precise measurements that can be compared between times of measurement and between measurements on different instrumentation, it is important to calibrate the instrument with a CO_2 reference gas before taking measurements and to re-measure a reference gas every hour to check for and correct drift (further discussed in data management SOP).

3.4. EQUIPMENT

- Carbon dioxide carbon isotope analyser
- Nafion drier
- Teflon tubing $(1/8" \times 1/4")$
- CO₂ reference gas(es)
- Gas flow meter

3.5. PROCEDURE

The following procedure is to measure CO₂ concentration and δ^{13} CO₂ with a laser CO₂ carbon isotope analyser in continuous free flow mode. This will continually measure air pulled into the inlet until the instrument is stopped. A Los Gatos laser CO₂ carbon isotope analyser has been selected as an example for illustration, though the procedure is relevant to additional models of any provider.

Step	Procedure	
Step 1: Instrumentation warm-up	Turn on and warm-up instrumentation (<i>for the Los</i> <i>Gatos analyser, allow for at</i> <i>least 2 hours</i>). Drift in CO ₂ measurements will occur if instrument is calibrated before warm-up.	
Step 2: Confirm instrumentation warm-up	Check the laser adjustment (for the Los Gatos analyser, click the Display icon on the main screen until the reading for Absorption vs. Frequency is available for confirmation. In the bottom plot, the black dots (measured) and the blue line (fitted) should align). Also confirm that Gas Temp has warmed to company recommendations (for the Los Gatos Analyser, 45°C).	
Step 3: Switch instrumentation to continuous flow mode	Select the flow mode (continuous free flow mode) and the rate at which data should be stored, such as 1, 2, 5, 10, 20, 50 or 100 seconds (for the Los Gatos Analyser, click the Rate icon on the main screen to make the selection).	Operating Mode Slow: 100s 50s 20s 10s 5s 2s 1s Batch: Syringe Injection Batch: Syringe Injection (Dilution x10) Plot Frequency Plot on demand Plot every Nth fit 1 • Cancel Save
Step 4: Create new file	To ensure that measurements recorded for the day are on the same file, create a new file that will be used for the entire day (for the Los Gatos Analyser, click the Setup icon on the main screen, then the Time/Files tab on the next screen and the " Create New File " button).	<form></form>

Step 5: Instrument calibration	Supply CO ₂ reference gas to instrument by a tube attachment regulated at the same flow rate as the analyser (for the Los Gatos Analyser, use 1-2 L min ⁻¹). Ensure correct flow of gas before attaching to instrument inlet using a flow meter.	
	Calibrate the analyser after entering the known CO ₂ ppm and δ^{13} C of the reference gas as measured on additional instrumentation (for the Los Gatos Analyser, select Setup icon and then Calibrate tab and follow instrument instructions until calibration is complete).	<figure><figure></figure></figure>
Step 6: Confirm instrument calibration	Allow 1-2 minutes for instrument to begin to record output data after calibration. Confirm that CO ₂ ppm and δ^{13} C measurements of the reference gas are similar to those entered in the calibration process. Record the start and end time of the reference gas measurement.	
Step 7: Measure samples	Disconnect the inlet from the CO_2 reference tank and direct the inlet to the area for desired CO_2 measurement and record time on instrument monitor of the start and end of measurement. If measuring gas with a high $\delta^{13}C$ or CO_2 concentration higher than 500 ppm, allow instrumentation to purge with unenriched atmospheric gas for 2 minutes in between each	Image: state stat

Step 8: Confirm instrument calibration	sample to ensure no carry-over of CO ₂ . Repeat process for each sample. Confirm instrument calibration every hour and check for drift in measurements by re- measuring a CO ₂ reference gas. Note the start and end of the CO ₂ reference gas measurement. Purge the analyser by allowing the reference gas to flow 1 minute prior to measuring for another minute.	
Step 9: Collecting recorded data	Once all samples have been measured, copy the data from the analyser to a USB memory stick. Transfer the file that was created for measurements that day (for the Los Gatos Analyser, click the Files icon and then the Mount USB button and drag the desired file to the right side screen containing contents of the USB stick. When complete, click the Unmount USB button then click the Close button).	
Step 10: Turning off the instrument	To turn off the instrument, ensure that the software is ready for shutdown first (for the Los Gatos Analyser, click the Exit icon on the main screen and follow analyser instructions).	

4. MEASUREMENTS USING THE LASER CO₂ CARBON ISOTOPE ANALYSER IN INJECTION MODE

4.1. SCOPE AND FIELD OF APPLICATION

Laser CO_2 carbon isotope analysers can also be placed in an injection mode, in which individual gas samples can be injected with an airtight gas syringe and measured. This method is

particularly useful when analysing (low-volume) samples that have been collected and stored prior to analysis and are typically used for studies that require a relatively low number of measurements. Because continuous flow mode has a higher flow rate of, for example 1 L min⁻¹ for the Los Gatos Analyser, low-volume samples are too rapidly consumed in this mode and should be measured in injection mode instead.

This section describes how to use the laser CO_2 carbon isotope analyser to measure CO_2 in injection mode and acquire data.

4.2. BACKGROUND INFORMATION AND CONSIDERATIONS

Because instrument calibration cannot be performed in injection mode, data correction using reference gas(es) will need to be performed after measurements (see protocol on Data Management). Furthermore, samples should be measured at least twice to confirm values.

4.3. EQUIPMENT

- Rotary vacuum pump (pumping speed > 1 m³ h⁻¹, ultimate vacuum > 10^{-3} mbar)
- Gas tight syringe (100 mL)
- Gas bag or gas vial
- CO₂ reference gas(es)

4.4. PROCEDURE

The following procedure is to measure CO₂ concentration and δ^{13} C-CO₂ with a laser CO₂ carbon isotope analyser in injection mode. This will measure gas injected into the injection port. *A Los Gatos laser CO₂ carbon isotope analyser has been selected as an example for illustration, though the procedure is relevant to additional models of any provider.*

Step	Procedure	
Step 1: Instrumentation warm-up	Turn on and warm-up instrumentation (<i>for the Los</i> <i>Gatos analyser, allow for at</i> <i>least 2 hours</i>). Drift in CO ₂ measurements will occur if instrument is calibrated before warm-up.	
Step 2: Confirm instrumentation warm-up	Check the laser adjustment (for the Los Gatos analyser, click the Display icon on the main screen until the reading for Absorption vs. Frequency is available for confirmation. In the bottom plot, the black	

	dots (measured) and the blue line (fitted) should align). Also confirm that Gas Temp has warmed to company recommendations (for the Los Gatos Analyser, 45°C).	Image: selection of the
Step 3: Attach CO ₂ free air source to instrumentation	Attach a CO ₂ free air source to the "ZERO AIR INLET" on the back of the instrument. If only measuring a few number of samples, a synthetic air bag or a CO ₂ scrubber (as seen on picture, containing a combination of Carbosieve and magnesium perchlorate (Mg(ClO ₄) ₂) can be attached to this inlet. If measuring a larger batch of samples, attach this directly to a synthetic air gas line supplied at a pressure of 5 to 10 psig (or 1.36 to 1.70 bar).	<image/>
Step 4: Switch instrumentation to injection mode	Switch the instrument to injection/batch mode (for the Los Gatos Analyser, click the Rate icon on the main screen, then select the Batch mode with "Syringe Injection" or, if samples contain very high concentrations of CO ₂ (over 10 000 ppm), "Syringe Injection (Dilution X10)". Click Save. Allow time for the instrument to purge and flush with zero air.	Operating Mode Slow: 100s 50s 20s 10s 5s 2s 1s Batch: Syringe Injection (Dilution x10) Plot Frequency Plot on demand • Plot every Nth fit 1 Cancel Save

Step 5: Create new file	To ensure that measurements recorded for the day are on the same file, create a new file that will be used for the entire day (for the Los Gatos Analyser click the Setup icon on the main screen, then the Time/Files tab on the next screen and the Create New File button).	Interface List Addate Mail Interface List Addate Mail Interface Interface List Addate Interface
Step 6: Measuring a CO2 reference gas	Connect a gas bag valve to a vacuum pump. Open valve and evacuate bag. Close the valve before removing the evacuated bag.	
	Connect the gas bag to the CO ₂ reference gas. Open valve and fill bag with roughly 500 mL of reference gas. Close the valve before removing the filled bag.	
	When the instrument indicates it is ready for a sample gas to be injected, measure the reference CO_2 gas first as a sample.	

	Place empty gas syringe into septum of filled gas bag and flush 2-3 times with CO ₂ reference gas by pulling CO ₂ from bag and releasing it into the open air. After flushing, fill syringe with instrument specified injection volume (for the Los Gatos Analyser, 100 mL) of reference gas.	
	Place the filled syringe into the injection port and initiate sampling. Let the vacuum empty the syringe. Remove the syringe. (for the Los Gatos Analyser, click the Next button on the main screen and follow instrument instructions until sampling is complete). Allow time for the instrument to deliver the sample into cell, equilibrate the gas and measure.	
	Save the measurement (for the Los Gatos Analyser, Click the Save button on the main screen and note the text document the sample is saved as, example "CO2iso_2018-01-23_b003.txt").	Image: state of the state
Step 7: Measure samples	Measure same volume of sample gas in same way as the CO ₂ reference gas.	

Step 8: Instrument calibration check	After every hour, confirm instrument calibration and check for drift by re- measuring a CO ₂ reference gas.	
Step 9: Collecting recorded data	Once all samples have been measured, copy the data from the analyser to a USB memory stick. Transfer the file that was created for measurements that day (for the Los Gatos Analyser, click the Files icon and then the Mount USB button and drag the desired file to the right side screen containing contents of the USB stick. When complete, click the Unmount USB button then click the Close button).	
Step 10: Turning off the instrument	To turn off the instrument, ensure that the software is ready for shutdown first (for the Los Gatos Analyser, click the Exit icon on the main screen and follow analyser instructions).	

5. DATA MANAGEMENT OF LASER CO₂ CARBON ISOTOPE ANALYSER COLLECTED MEASUREMENTS

5.1. BACKGROUND

Data collected on a laser CO_2 carbon isotope analyser is stored in text format and must be transferred onto appropriate data processing software prior to data analysis. Data output can be large, especially when data is collected in continuous free flow mode. It is therefore necessary to use software that can easily convert data stored as text into a spreadsheet. Microsoft Office Excel is an accessible software program that can do this task. Described below is a protocol on how to manage and correct data in Excel.

5.2. ADVANTAGES AND POTENTIAL LIMITATIONS

Data management and correction can be performed on Excel, but to perform advanced statistical analysis, further software and instruction is necessary. As the type of statistical analysis will vary greatly depending on the research question being asked, we focus strictly on how to manage and correct data collected on the laser CO_2 carbon isotope analyser. Methods for statistical analysis are outside the scope of this publication.

5.3. PRINCIPLE

The laser CO₂ carbon isotope analyser stores over 35 columns of data, but the first 9 columns hold the most relevant data for users (Figure 4.). Specifically, these columns contain the time of collected data, CO₂ ppm, standard deviation of CO₂ ppm, δ^{13} C of CO₂, standard deviation of δ^{13} C of CO₂, δ^{18} O of CO₂ (and H₂O), standard deviation of δ^{18} O of CO₂ (and H₂O) and concentration of water and its respective standard deviation. As the standard deviation each data output is likely minimal, there are only 4 relevant columns (time, CO₂ ppm, δ^{13} C and H₂O ppm). The following protocol describes how to obtain this data and calculate CO₂ fluxes and sources in Excel.

0	A	8	C	D	E	F	G	Н	1	J	-
1	Time	[CO2]_ppm	[CO2]_ppm_sd	D13C_VPDB_CO2	D13C_VPD8_CO2_sd	D180_VPDB_CO2	D180_VPDB_CO2_sd	[H2O]_ppm	[H2O]_ppm_sd	[CO2]d_ppm	[CO2]d
2	2017/12/21 08:15:14.911	# 4.066472e+02	©.000000e+00	-1.077068e+01	* 0.000000e+00	-2.105432e+01	0.000000e+00	3.642596e+02	0.000000e+00	4.067954e+02	0.0000
3	2017/12/21 08:15:15.347	4.054294e+02	* 0.000000e+00	-1.032864e+01	0.000000e+00	-2.432494e+01	* 0.000000e+00	3.641102e+02	" 0.000000e+00	4.055771e+02	0.0000
4	2017/12/21 08:15:16.288	4.020336e+02	© 0.000000e+00	-9.063698e+00	0.000000e+00	-2.764157e+01	0.000000e+00	3.651451e+02	0.000000e+00	4.021805e+02	0.0000
5	2017/12/21 08:15:17.222	4.002544e+02	0.000000e+00	-1.008814e+01	0.000000e+00	-1.584898e+01	* 0.000000e+00	3.606825e+02	0.000000e+00	4.003988e+02	0.0000
6	2017/12/21 08:15:18.164	* 3.992499e+02	0.000000e+00	-9.364567e+00	" 0.000000e+00	-1.875376e+01	" 0.000000e+00	3.618770e+02	0.000000e+00	3.993944e+02	0.0000
7	2017/12/21 08:15:19.103	* 3.984191e+02	0.000000e+00	-8.662769e+00	* 0.000000e+00	-2.636823e+01	* 0.000000e+00	3.600790e+02	0.000000e+00	3.985626e+02	0.0000
8	2017/12/21 08:15:20.043	* 3.968496e+02	* 0.000000e+00	-1.045852e+01	" 0.000000e+00	-1.977076e+01	0.000000e+00	3.631329e+02	0.000000e+00	3.969938e+02	0.0000
9	2017/12/21 08:15:20.982	* 3.963396e+02	© 0.000000e+00	-9.455928e+00	* 0.000000e+00	-2.249045e+01	* 0.000000e+00	3.643355e+02	0.000000e+00	3.964840e+02	0.0000
10	2017/12/21 08:15:21.923	* 3.957888e+02	* 0.000000e+00	-9.948615e+00	7 0.000000e+00	-2.179129e+01	* 0.000000e+00	3.606377e+02	* 0.000000e+00	3.959316e+02	0.0000
11	2017/12/21 08:15:22.863	* 3.960861e+02	" 0.000000e+00	-1.012573e+01	* 0.000000e+00	-1.586983e+01	* 0.000000e+00	3.535317e+02	* 0.000000e+00	3.962262e+02	0.0000
12	2017/12/21 08:15:23.802	* 3.967801e+02	* 0.000000e+00	7.765110e+00	0.000000e+00	-1.623603e+01	* 0.000000e+00	3.619422e+02	0.000000e+00	3.969238e+02	0.0000
13	2017/12/21 08:15:24.742	* 3.974578e+02	" 0.000000e+00	-9.076502e+00	* 0.000000e+00	-3.668399e+01	* 0.000000e+00	3.631595e+02	0.000000e+00	3.976022e+02	0.0000
14	2017/12/21 08:15:25.682	* 3.984840e+02	0.000000e+00	-1.064801e+01	0.000000e+00	-1.902801e+01	* 0.000000e+00	3.618947e+02	* 0.000000e+00	3.986283e+02	0.0000
15	2017/12/21 08:15:26.622	* 3.990657e+02	" 0.000000e+00	*-9.146960e+00	* 0.000000e+00	-1.889508e+01	* 0.000000e+00	3.649544e+02	* 0.000000e+00	3.992114e+02	0.0000
16	2017/12/21 08:15:27.562	3.994164e+02	" 0.000000e+00	-1.031970e+01	© 0.000000e+00	-1.828539e+01	* 0.000000e+00	3.630400e+02	0.000000e+00	3.995615e+02	0.0000
17	2017/12/21 08:15:28.502	* 3.993114e+02	© 0.000000e+00	-1.075051e+01	* 0.000000e+00	-2.749242e+01	* 0.000000e+00	3.591405e+02	* 0.000000e+00	3.994548e+02	0.0000
18	2017/12/21 08:15:29.442	* 3.989852e+02	© 0.000000e+00	-1.010647e+01	0.000000e+00	-2.333930e+01	* 0.000000e+00	3.624770e+02	* 0.000000e+00	3.991299e+02	0.0000
19	2017/12/21 08:15:30.382	3.982574e+02	* 0.000000e+00	-9.694556e+00	© 0.000000e+00	-2.029450e+01	* 0.000000e+00	3.618594e+02	* 0.000000e+00	3.984016e+02	0.0000
20	2017/12/21 08:15:31.322	3.974954e+02	" 0.000000e+00	-8.915911e+00	* 0.000000e+00	-1.902081e+01	* 0.000000e+00	3.594604e+02	" 0.000000e+00	3.976383e+02	0.0000
21	2017/12/21 08:15:32.262	3.960337e+02	© 0.000000e+00	-1.112551e+01	© 0.000000e+00	-2.755323e+01	* 0.000000e+00	3.599334e+02	* 0.000000e+00	3.961763e+02	0.0000
22	2017/12/21 08:15:33.202	* 3.954273e+02	" 0.000000e+00	-9.099641e+00	* 0.000000e+00	-1.960214e+01	* 0.000000e+00	3.593724e+02	* 0.000000e+00	3.955695e+02	0.0000
23	2017/12/21 08:15:34.142	3.956561e+02	© 0.000000e+00	-1.116771e+01	* 0.000000e+00	-2.366348e+01	* 0.000000e+00	3.616156e+02	7 0.000000e+00	3.957992e+02	0.0000
24	2017/12/21 08:15:35.082	3.948907e+02	" 0.000000e+00	-1.021903e+01	© 0.000000e+00	-2.447830e+01	0.000000e+00	3.645712e+02	* 0.000000e+00	3.950347e+02	0.0000
25	2017/12/21 08:15:36.022	3.951270e+02	* 0.000000e+00	-1.178799e+01	0.000000e+00	-2.980242e+01	0.000000e+00	3.625550e+02	0.000000e+00	3.952703e+02	0.0000
26	2017/12/21 08:15:36.962	* 3.951466e+02	" 0.000000e+00	-1.035123e+01	©.000000e+00	-2.181546e+01	* 0.000000e+00	3.653908e+02	* 0.000000e+00	3.952911e+02	0.0000
27	2017/12/21 08:15:37.903	3.948613e+02	" 0.000000e+00	-9.560263e+00	C.000000e+00	-1.265124e+01	* 0.000000e+00	3.606747e+02	7 0.000000e+00	3.950038e+02	0.0000
28	2017/12/21 08:15:38.843	* 3.953914e+02	" 0.000000e+00	-1.132861e+01	© 0.000000e+00	-1.932872e+01	0.000000e+00	3.625915e+02	* 0.000000e+00	3.955348e+02	0.0000
29	2017/12/21 08:15:39.783	3.957267e+02	0.000000e+00	-1.016713e+01	0.000000e+00	-1.814341e+01	0.000000e+00	3.636119e+02	0.000000e+00	3.958706e+02	0.0000
30	2017/12/21 08:15:40.723	3.952051e+02	0.000000e+00	-8.639580e+00	0.000000e+00	-2.133664e+01	0.000000e+00	3.605106e+02	0.000000e+00	3.953477e+02	0.0000
31	2017/12/21 08:15:41.663	3.953395e+02	0.000000e+00	-9.188438e+00	0.000000e+00	-2.266956e+01	0.000000e+00	3.615465e+02	0.000000e+00	3.954825e+02	0.0000
32	2017/12/21 08:15:42.603	* 3.950014e+02	* 0.000000e+00	-9.858724e+00	* 0.000000e+00	-3.213781e+01	0.000000e+00	3.610723e+02	" 0.000000e+00	3.951441e+02	0.0000
33	2017/12/21 08:15:43.543	3.944109e+02	0.000000e+00	-1.023447e+01	0.000000e+00	-2.490482e+01	0.000000e+00	3.603612e+02	0.000000e+00	3.945531e+02	0.0000

Figure 4. An example of data transferred onto Microsoft Office Excel from a CO₂ Carbon Isotope Analyser (in this case, Los Gatos). The 9 columns mentioned in 5.3. are highlighted.

5.4. SOFTWARE

Microsoft Office Excel

5.5. PROCEDURE

The following procedure is to process data collected by the laser CO_2 carbon isotope analyser. A Los Gatos laser CO_2 carbon isotope analyser has been selected as an example for illustration, though the procedure is relevant to additional models.

Step	Procedure	
Step 1:In Excel, open the analyser text document. You will be queued to note how the original type is separated. Click Delimited (with characters) then click next.	Text Import Wizard - Step 1 of 3 The Text Wizard has determined that your data is Fixed Width. If this is correct, choose Next, or choose the data type that best describes your data. Original data type Choose the file type that best describes your data: Original data type Choose the file type that best describes your data: Original data type	
	Next select "comma" as the type of delimiter. Click next.	Text Import Wizard - Step 2 of 3 This screen lets you set the delimiters your data contains. You can see how your text is affected in the preview below. Delimiters Delimiters Space Qther: Data greview VC:a89a02a BD:May 15 2015 SN:LGR-15-0125 Time 2017/12/21 08:15:14.911 2017/12/21 08:15:14.912 2017/12/21 08:15:16.288 4.066472e402 0.000000e400 4.020336e402 0.000000e400 * Cancel <back< td=""></back<>

Finally select a "general" format and click finish.	Text Import Wizard - Step 3 of 3 This screen lets you select each column and set the Data Format. Column data format © general Text General Text Cancel Column (skip) Data greview Column (skip) Column (skip) Data greview Column (skip) Column (skip) Column (skip) Column (skip) Data greview Column (skip) Column (sk	
Save the imported text data as an original file. Continue by copying columns with data on time, CO ₂ ppm, δ^{13} C CO ₂ , and H ₂ O ppm.	A IDE IDE <thide< th=""> <thide< th=""> <thide< th=""></thide<></thide<></thide<>	
Create a new worksheet within this workbook, example "1". Copy the rows of data from "LGR" that are associated with the time the sample was run. In this case, standard 1 was run from 9:27:31 to 9:37:281 on 2018- 05- 22.	A B C D E F G 1 dte time ppm CO2 d13C d180 ppm H2O G 1 d180 ppm H2O G 1 G 1 0 9.729 10.796 815 3 2018-05-22 09:27:31 481.0 -9.729 10.796 815 5 2018-05-22 09:27:33 481.0 -9.259 5.504 815 5 2018-05-22 09:27:35 481.1 -9.694 6.238 817 7 2018-05-22 09:27:36 481.2 -8.568 3.278 814 3 2018-05-22 09:27:37 481.7 -12.794 18.734 804 3 2018-05-22 09:27:37 481.6 -8.158 7.465 803 1 2018-05-22 09:27:40 482.5 -10.017 10.095 810 <	

		82	* × × × 4040							
	Deste the relevant data	1	A	В	time	C	D	E B	F	G
	Faste the relevant data	2	2018-05-22 09:27:31	00:0	00:00	481.0	-9.729	815		
	in a new workbook on	3	2018-05-22 09:27:32	00:0	00:01	480.8	-9.151	818		
	a new worksheet.	4	2018-05-22 09:27:33	00:0	00:02	481.0	-9.259	815		
	avample "I CP" and	5	2018-05-22 09:27:34	00:0	00:03	481.3	-10.310	807		
	example LOK and	7	2018-05-22 09:27:36	00:0	0:05	481.2	-8.568	814		
	insert "time" using the	8	2018-05-22 09:27:37	00:0	00:06	481.7	-12.794	804		
	formula: "B=A2-A\$2".	9	2018-05-22 09:27:37	00:0	00:07	481.6	-8.158	803		
	conviting formula to all	10	2018-05-22 09:27:38	00:0	0:08	482.3	-10.373	809		
	copy this formula to an	12	2018-05-22 09:27:40	00:0	00:09	482.5	-8.997	810		
	rows.	13	2018-05-22 09:27:41	00:0	00:10	482.5	-10.017	810		
		14	2018-05-22 09:27:42	00:0	00:11	482.8	-10.195	818		
		16	2018-05-22 09:27:43	00:0	0:12	482.8	-9.198	816		
		17	2018-05-22 09:27:45	00:0	00:14	483.3	-8.216	809		
		18	2018-05-22 09:27:46	00:0	00:15	483.0	-8.716	810		
		19	2018-05-22 09:27:47	00:0	00:16	483.7	-8.722	810		
		20	Sheet) Sheets LGR Sheet2 (0011	81.17	4838	-9 1119	815		(+)
Sten 2:		1	A	В		С	D	E	F	G
Step 2.	Make a new column on	1	date time	00.0	time pp	om CO2	d13C	ppm H2O	1/ppm	
		2	2018-05-22 09:27:31	00:0	0:00	481.0	-9.729	815	0.00208	
Source	worksheet "1",	4	2018-05-22 09:27:33	00:0	0:02	481.0	-9.259	815	0.00208	
calculation	containing the inverse	5	2018-05-22 09:27:34	00:00	0:03	481.3	-10.310	807	0.00208	
curculation	of the CO	6	2018-05-22 09:27:35	00:0	0:04	481.1	-9.694	817	0.00208	
		7	2018-05-22 09:27:36	00:00	0:05	481.2	-8.568	814	0.00208	
	concentration (in this	8	2018-05-22 09:27:37	00:00	0:06	481.7	-12.794	804	0.00208	
	case, "F2=1/C2).	10	2018-05-22 09:27:37	00:0	0:07	482.3	-10.373	809	0.00208	
		11	2018-05-22 09:27:39	00:0	0:08	482.1	-8.739	805	0.00207	
		12	2018-05-22 09:27:40	00:00	0:09	482.5	-8.997	810	0.00207	
		13	2018-05-22 09:27:41	00:00	0:10	482.5	-10.017	810	0.00207	
		14	2018-05-22 09:27:42	00:0	0:11	482.8	-10.195	818	0.00207	
		15	2018-05-22 09:27:43	00:00	0:12	482.6	-9.198	804	0.00207	
		17	2018-05-22 09:27:44	00:0	0:14	483.3	-8.216	809	0.00207	
		18	2018-05-22 09:27:46	00:00	0:15	483.0	-8.716	810	0.00207	
		19	2018-05-22 09:27:47	00:00	0:16	483.7	-8.722	810	0.00207	
		20	2018-05-22 09-27-48	00.00	l0·17	483.8	-9 109	815	0.00207	
1										
	Calculate the intercept	62	 ★ ✓ & weak(shipo,ss) 	D	r	D	E		G	
	of the Keeling plot (the	1	date time	time	ppm CO2	d13C	ppm H2O	1/ppm	Keeling plot i	intercept
	lineer regreggion with	2	2018-05-22 09:27:31	00:00:00	481.0	-9.729	815	0.00208		289.3186
	illical legiession with	3	2018-05-22 09:27:32	00:00:01	480.8	-9.151	818	0.00208		
	$1/[CO_2]$ on the x-axis	4	2018-05-22 09:27:33	00:00:02	481.0	-9.259	815	0.00208		
	and ${}^{13}C$ on the v-axis)	6	2018-05-22 09:27:35	00:00:03	481.1	-9.694	817	0.00208		
	using	7	2018-05-22 09:27:36	00:00:05	481.2	-8.568	814	0.00208		
	using	8	2018-05-22 09:27:37	00:00:06	481.7	-12.794	804	0.00208		
	"=INTERCEPT(D:D,F	9	2018-05-22 09:27:37	00:00:07	481.6	-8.158	803	0.00208		
	:F)"	10	2018-05-22 09:27:38	00:00:08	482.3	-10.373	809	0.00207		
		12	2018-05-22 09:27:40	00:00:09	482.5	-8.997	810	0.00207		
		13	2018-05-22 09:27:41	00:00:10	482.5	-10.017	810	0.00207		
		14	2018-05-22 09:27:42	00:00:11	482.8	-10.195	818	0.00207		
		15	2018-05-22 09:27:43	00:00:12	482.6	-9.198	804	0.00207		
		16	2018-05-22 09:27:44	00:00:13	482.8	-8.746	816	0.00207		
		18	2018-05-22 09:27:46	00:00:15	483.0	-8.716	810	0.00207		
		19	2018-05-22 09:27:47	00:00:16	483.7	-8.722	810	0.00207		
		20	2018-05-22 09-27-48	00-00-17	483.8	-9 109	815	0.00207		

Step 3:									
I	Calculate the CO ₂ flux	65	*) = = & +6296024903	P	c	D	E	c	G
Fl	$(nnm h^{-1})$ as the slone	1	date time	time	ppm CO2	d13C	nom H2O	1/ppm	Keeling plot intercept
Flux	(ppin ii) as the slope	2	2018-05-22 09:27:31	00:00:00	481.0	-9.729	815	0.00208	289.3186
calculation	of the CO ₂ ppm	3	2018-05-22 09:27:32	00:00:01	480.8	-9.151	818	0.00208	
curculation	(achuman D in this	4	2018-05-22 09:27:33	00:00:02	481.0	-9.259	815	0.00208	CO2 flux
	(column B in uns	5	2018-05-22 09:27:34	00:00:03	481.3	-10.310	807	0.00208	520.0241
	example) by the time	6	2018-05-22 09:27:35	00:00:04	481.1	-9.694	817	0.00208	
		7	2018-05-22 09:27:36	00:00:05	481.2	-8.568	814	0.00208	
	(column A in this	8	2018-05-22 09:27:37	00:00:06	481.7	-12.794	804	0.00208	
	example) and then	9	2018-05-22 09:27:37	00:00:07	481.6	-8.158	803	0.00208	
	example) and then	10	2018-05-22 09:27:38	00:00:08	482.3	-10.373	809	0.00207	
	divide by 24 as Excels'	11	2018-05-22 09:27:39	00:00:08	482.1	-8.739	805	0.00207	
	time of a most in in dama	12	2018-05-22 09:27:40	00:00:09	482.5	-8.997	810	0.00207	
	time format is in days.	13	2018-05-22 09:27:41	00:00:10	482.5	-10.017	810	0.00207	
	Example	14	2018-05-22 09:27:42	00:00:11	482.8	-10.195	818	0.00207	
		15	2018-05-22 09:27:43	00:00:12	482.6	-9.198	804	0.00207	
	=SLOPE(C:C,B:B)/24"	16	2018-05-22 09:27:44	00:00:13	482.8	-8.746	816	0.00207	
	(see calculation in	1/	2018-05-22 09:27:45	00:00:14	483.3	-8.216	809	0.00207	
		10	2018-05-22 09:27:46	00:00:15	403.0	-8./10	810	0.00207	
	5.6.2).	20	2010-05-22 05:27:47	00:00:10	403.7	0.722	010	0.00207	
		417	• &						
		1	A	В	С	D	E	F	G
		1	date time	time	ppm CO2	d13C	ppm H2O	1/ppm	Keeling plot intercept
		2	2018-05-22 09:27:31	00:00:00	481.0	-9.729	815	0.00208	289.3186
	To calculate the area-	3	2018-05-22 09:27:32	00:00:01	480.8	-9.151	818	0.00208	CO2 flux
	specific flux of carbon	5	2018-05-22 09:27:33	00:00:02	481.3	-10.310	807	0.00208	520.0241
	specific flux of carbon	6	2018-05-22 09:27:35	00:00:04	481.1	-9.694	817	0.00208	
	emitted (ug m ⁻² h ⁻¹)	7	2018-05-22 09:27:36	00:00:05	481.2	-8.568	814	0.00208	Container area
		8	2018-05-22 09:27:37	00:00:06	481.7	-12.794	804	0.00208	0.1963
	see calculation in	9	2018-05-22 09:27:37	00:00:07	481.6	-8.158	803	0.00208	Container volume
	section 5.6.3 Example	11	2018-05-22 09:27:39	00:00:08	482.1	-8.739	805	0.00207	0.5000
	section 5.0.5. Example	12	2018-05-22 09:27:40	00:00:09	482.5	-8.997	810	0.00207	
	"=G5*G11*12.01/(G14*	13	2018-05-22 09:27:41	00:00:10	482.5	-10.017	810	0.00207	Molar volume
	G8)"	14	2018-05-22 09:27:42	00:00:11	482.8	-10.195	818	0.00207	24.7882
	007.	15	2018-05-22 09:27:43	00:00:12	482.6	-9.198	804	0.00207	Area-specific flux
		17	2018-05-22 09:27:45	00:00:14	483.3	-8.216	809	0.00207	641.5962
		18	2018-05-22 09:27:46	00:00:15	483.0	-8.716	810	0.00207	
		19	2018-05-22 09:27:47	00:00:16	483.7	-8.722	810	0.00207	
		20	2018-05-22 09-22-48	00.00.17	483.8	.9 109	R15	0.00207	

A Macro for the flux and keeling plot calculations in Excel is available upon request.

5.6. CALCULATIONS

5.6.1. Calculating the soil surface area and volume of measurement chambers.

$$A = \pi \times r^2 \tag{5.1}$$

Where A = area; r = radius of container

Use the equation to calculate the volume:

$$volume = A \times h \tag{5.2}$$

Where A = area of container; h = height of container

In the subsequent flux calculations, the container volume is in litres. Therefore to obtain the container volume in L, convert for example from m³ using:

$$1 L = 0.001 m^3$$

In addition to the volume of chamber the "dead volume" has to be considered:

The "dead volume" results from the volume of the tubing between analyser and measurement chamber, and of the volume of the measurement cell of the analyser. In general, the volume of the measurement chamber should be much larger than the "dead volume". If this is the case, the dead volume is negligible. On the other hand, if this is not the case, the dead volume should be added to the measurement chamber volume.

5.6.2. Calculating the flux of CO_2 -C.

Calculate the rate of change of CO_2 concentration per hour (ppm h⁻¹) as:

$$CO_{2ra} = \frac{\sum_{i=1}^{n} (t_i - t_{av})(CO_{2i} - CO_{2av})}{\sum_{i=1}^{n} (t_i - t_{av})^2}$$
(5.3)

Where CO_{2rate} = slope of the linear regression line of CO_2 concentration versus time over the whole measurement time, CO_{2i} = the CO2 concentration at time *i*, CO_{2av} = the average CO_2 ppm over the whole measurement time; t_i = the time point i; t_{av} = the average time calculated as the sum of all t_i divided by the number of time points

Excel will calculate this slope very easily, as explained below in the procedure.

5.6.3. Calculating the flux of CO₂-C per area.

Calculate the amount of carbon flux emitted per area per hour ($\mu g m^{-2} h^{-1}$) as:

$$C_{flux} = \frac{(CO_{2rate} \times Vol \times 12.01)}{MV \times A}$$
(5.4)

Where C_{flux} = the amount of carbon flux emitted per area per hour (µg m⁻² h⁻¹); CO_{2rate} = the rate of CO_2 flux (ppm h⁻¹); Vol held by container (and dead volume if non-negligible) (L); 12.01 g mol⁻¹= molar mass of C; MV = molar volume (L mol⁻¹ of C = 24.79); A = area of CO₂ exchange (m²)

5.6.4. Calculating the Keeling Plot intercept.

A Keeling plot is a plot of the δ^{13} C (on the Y axis) against the inverse of the CO₂ concentration (on the X axis). The intercept of the regression line of these two represents the δ^{13} C signature of the source (eg. respiration) in absence of dilution from atmospheric CO₂. The Keeling plot intercept (δ^{13} C_{source}) is calculated based on the equations:

$$\partial^{13}C_{s} = \frac{\sum_{i=1}^{n} (\frac{1}{C_{i}} - (\frac{1}{C})_{av})(\partial^{13}C_{i} - \partial^{13}C_{av})}{\sum_{i=1}^{n} (\frac{1}{C_{i}} - (\frac{1}{C})_{av})^{2}}$$
(5.5)

and

$$C_a = C_b + C_s \tag{5.6}$$

Where C_i = measured CO₂ ppm at timepoint i; $(1/C)_{av}$ = the average value of $1/CO_2$ ppm over the measurement time; $C_s = CO_2$ ppm produced by source, $\delta^{13}C_i$ the isotopic signature at time *i*, and $\delta^{13}C_{av}$ the average isotopic signature [4 and 5].

6. CASE STUDY: MEASURING CARBON LOSS OF MAIZE CROP RESIDUES APPLIED IN INCUBATED FRESH, REVIVED AND STORED SOILS

6.1. BACKGROUND

Carbon-13 (¹³C) labelled plant material can be used to trace cycling of plant-derived carbon in numerous systems. For example, in agricultural systems, ¹³C-labelled plant material can be used to measure storage of crop residue-derived carbon to soils in the form of soil organic carbon as well as to measure loss of crop residue carbon to the atmosphere in the form of CO₂. Often, incubation experiments are used to determine such soil carbon losses. Estimates of soil carbon losses derived from incubation experiments are scaled up to estimate ecosystem level amounts of carbon loss. As a demonstration, we use ¹³C-labelled maize plant material (leaf and stem material) to estimate carbon loss as CO₂ from plant material and soil over 70 days in a soil incubation study.

Here, a soil incubation study has been conducted to estimate carbon loss from maize residues (mulch) applied to soils. Mulch loss is different on freshly collected soils, revived soils and stored soils. Although freshly collected soils should be used incubation studies in order to more closely represent field soils, this is often not feasible. Therefore, many studies need to revive stored soils by pre-incubating them after wetting prior to the actual experiment to avoid the flush of microbial activity that is stimulated by re-wetting dried stored soils [6 and 7]. Omitting this pre-incubation step leads to an overestimation of carbon loss due to the artificial flush of microbial activity that occurs when rewetting stored soils. In this experiment we revived an Austrian agricultural soil with water to verify whether soil incubation studies using revived soils can accurately estimate the amount of carbon lost from maize residues added to soils. To this end, CO₂ flux from revived as well as fresh and stored soils with added maize residues were compared in this experimental set up.

6.2. MEASURING SOIL AND MULCH CARBON LOSS

Because the laser CO₂ carbon isotope analyser measures both the concentration of CO₂ and its δ^{13} C value in sampled gas, it can be used to measure the amount of carbon respired from soil and determine its source when carbon sources have distinct isotopic signatures. We used soil from an agricultural site that has a δ^{13} C value of -27 to -28.5‰ and a ¹³C-labelled maize material with a δ^{13} C of 400‰ as mulch (labelled maize was acquired from the Soil and Water Management & Crop Nutrition Laboratory of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture). If the δ^{13} C values of the sources are known, measuring the concentration and δ^{13} C value of CO₂ produced in incubated soils can be used to calculate the contribution of both carbon sources to the flux of CO₂.

All soils were collected from an Austrian Cambisol (from 0-15 cm soil depth) and sieved to 2 mm. Stored soils were dried and stored for 5 months. A portion of the stored soils was first revived for the soil incubation study by restoring soils to 20% gravimetric water content (with a spray bottle to ensure even water distribution) and placing it in jars (5.6 cm diameter, 8 cm height) to a height of 5 cm and a bulk density of 1.31 g cm⁻³. These soils were loosely covered to allow for air-flow and were kept in a dark area at room temperature for 15 days prior to beginning the incubation study. Fresh soils were collected within 48 hours before beginning the study and were transported on ice, back to the laboratory and stored at 4°C prior to being placed in incubation jars. In the laboratory fresh soils were confirmed to also be at 20% gravimetric water content as fresh and revived soils. Stored and fresh soils were then also filled in jars using the same method

previously discussed. In total, three replicates each of fresh, revived and stored soil jars were prepared.

The day after all soil jars were prepared, bare soil CO_2 flux was measured in a closed-loop for each jar for five minutes by placing each jar in a 1 L container (9 cm diameter, 17 cm high) with an airtight lid and two ports connected to the inlet and outlet tubes of the CO_2 carbon isotope analyser. The CO_2 carbon isotope analyser was set to continuous flow mode. Over 5 cm of headspace was present between the top of the 1 L container and the top of the soil incubation jar, thus ensuring proper mixing of air within the container for CO_2 sampling (Figure 5.). To avoid sample carry over, the analyser was purged with ambient air for two minutes in between each sample measurement.

Figure 5. A soil incubation jar within a sealed 1 L container connected to the inlet and outlet tubing of the laser CO₂ Carbon Isotope Analyser.

Once CO_2 measurements of bare soils were completed, 0.21 g of ¹³C-labelled maize mulch was added to each jar (a mulch application equivalent to 0.87 t ha⁻¹). Soil moisture was monitored based on the mass loss of each soil jar and restored with a spray water bottle three times a week. CO_2 measurements were always taken a day after water was applied to avoid measuring the pulse of CO_2 that occurs when water is applied to soil. Soil CO_2 measurements were again taken 1, 4, 7, 13, 15, 20, 30, 40, 54, 70 and 85 days after mulch application using the laser CO_2 carbon isotope analyser.

Data collected from measurements on the CO₂ carbon isotope analyser was processed in Excel and the flux of CO₂ (μ g m⁻² h⁻¹) and the Keeling plot intercept ($\delta^{13}C_{source}$) for each sampled jar was calculated. Graphical representation of analysed data and statistical analysis was generated using JMP 13 software (SAS, Cary, North Carolina, USA). A two-source mixing model was applied to determine the proportion of $\delta^{13}C_{source}$ that was derived from mulch as:

$$f_{13C_{mulch}} = \frac{\partial^{13}C_{source} - \partial^{13}C_{soil}}{\partial^{13}C_{mulch} - \partial^{13}C_{soil}} \times 100\%$$
(6.1)

where $f_{13\text{Cmulch}}$ is the ¹³C proportion of $\delta^{13}\text{C}_{\text{source}}$ that was derived from mulch, $\delta^{13}\text{C}_{\text{source}}$ is the Keeling plot intercept and estimated $\delta^{13}\text{C}$ of the source of sampled CO₂, $\delta^{13}\text{C}_{\text{soil}}$ is the $\delta^{13}\text{C}$ of soil and $\delta^{13}\text{C}_{\text{mulch}}$ is the $\delta^{13}\text{C}$ of mulch. This model assumes that the source of CO₂ produced by sampled soil jars is exclusively from soil and mulch.

Because the proportion of ¹³C derived from mulch in the $\delta^{13}C_{\text{source}}$ is equal to the proportion of carbon derived from mulch, $f_{13Cmulch}$ can then be used to calculate both the proportion of C from mulch and soil in the measured CO₂ since:

$$f_{13C_{mulch}} = f_{C_{mulch}} \tag{6.2}$$

and

$$f_{C_{mulch}} + f_{C_{soil}} = 1 \tag{6.3}$$

where $f_{13Cmulch}$ is the ¹³C proportion of $\delta^{13}C_{source}$ that was derived from mulch, f_{Cmulch} is the proportion of C from mulch that contributed to measured CO₂, and f_{Csoil} is the proportion of C from soil that contributed to measured CO₂. This model likewise assumes that the source of CO₂ produced by sampled soil jars is exclusively from soil and mulch.

6.3. RESULTS AND DISCUSSION

Peak CO₂ loss for fresh and revived soils occurred between 4 to 7 days after mulch application and carbon loss ranged from 74.5 to 99.0 mg of C m⁻² h⁻¹ (Figure 6.). Stored soils had the largest rate of CO₂ loss on the day they were rewetted (163.6 mg of C m⁻² h⁻¹) and respiration rates continually declined, even after mulch application. Thus, soil response to mulch was dwarfed by the large response of stored soil to rewetting. Although reviving stored soils with water did restore CO₂ trends (in response to mulch) similar to fresh soils, 9 to 47 mg of C m⁻² h⁻¹ more carbon was consistently lost from fresh than from revived soils. However, this difference was not statistically significant and only stored soils differed from fresh (p = 0.04) and revived soils (p < 0.01) in across time. For all soil types, rates of CO₂ loss plateau between 70 to 85 days after mulch application and carbon loss ranged from 11 to 23 mg of C m⁻² h⁻¹.

Figure 6. Rate of carbon loss from soil incubation jars (in the form of CO_2) before mulch application (0 d) and after mulch application (1-85 d) for fresh, revived and stored soils. Each line represents the mean trend (and standard error with a 95% confidence interval) of three replicates per soil type and each point represents an individual jar measurement.

The strength of the δ^{13} C signal in sampled CO₂ that was derived from ¹³C-labelled mulch (Figure 7.) was similar to the trend in the rate of CO₂ loss over time (Figure 6.), with the highest δ^{13} C_{source} occurring 4 to 7 days after mulch application. This indicates that the peak in soil CO₂ flux observed on 4 to 7 days is due to the mulch application and loss of mulch-derived carbon. Unlike the CO₂ flux that varied between stored soils and the fresh and revived soils, all three soil types displayed a similar trend in δ^{13} C_{source} and there was no significant difference by soil type over time. Four days after mulch application δ^{13} C_{source} ranged from 172.3 to 294.5 and on day 7 it ranged from 169.7 to 238.3. No δ^{13} C_{source} data for day 85 is available as the 5 minutes closed-loop measurement was too short to generate enough CO₂ build up, thus causing standard deviation of measured δ^{13} CO₂ to be too high and the accuracy of measurement to be too low.

Figure 7. Keeling plot intercept ($\delta^{13}C_{source}$) of CO₂ from soil incubation jars before mulch application (0 d) and after mulch application (1-85 d) for fresh, revived and stored soils. Each line represents the mean trend (and standard error with a 95% confidence interval) of three replicates per soil type and each point represents an individual jar measurement.

A two-source mixing model was applied to determine the proportion of carbon derived from mulch. Four days after mulch application, on average 60% of the carbon was determined to be produced by mulch, while 7 days after application this proportion was on average 54%. As no significant difference in the mulch contributions could be observed between the soil pre-treatments, results were combined to illustrate varying contributions to the CO₂ losses by mulch and soil (Figure 8.) over time. From this, it can be concluded that between days 4 to 7 after mulch application mulch accounts for just as much CO₂ production as soil but that the days before and after that period most of the CO₂ is derived from soil (Figure 8.). For the stored soils that did not display a peak in CO₂ flux on days 4 to 7 (Figure 6.), $\delta^{13}C_{source}$ indicates that the decrease in CO₂ flux on days 4 to 7 relative to days 0 and 1 (Figure 7.) is not as large as it would be if mulch did not contribute to CO₂ emissions.

Figure 8. Average percent of CO_2 derived from soil and mulch from soil incubation jars after mulch application (1-85 d) for fresh, revived and stored soils. Each line represents the mean trend of three replicates per soil type and each point represents an individual jar measurement.

In conclusion, it is demonstrated that (i) the laser isotope CO_2 analyser can be used effectively to monitor CO_2 emissions and their source from incubated, amended soils and that (ii) a stored Austrian agricultural soil can be revived for an incubation study with the aim to measure soil CO_2 fluxes in response to maize mulch application. Further, it is confirmed that the soil CO_2 flux in response to mulch amendment is relatively fast and occurs within the first month of application in these incubated Austrian agricultural soils.

REFERENCES

- [1] ZIMNOCH M., FLORKOWSKI, T., NECKI, J.M., AND NEUBERT, R.E.M., Diurnal variability of δ^{13} C and δ^{18} O of atmospheric CO₂ in the urban atmosphere of Kraków, Poland. Isotopes Environ. Health Stud. 40 (2004) 129-143.
- [2] BERMAN E.S.F., FLADELAND M., LIEM J., KOLYER R., GUPTA M. Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle. Sensors and Actuators B: Chemical. 169 (2012) 128-135.
- [3] McALEXANDER I., RAU G.H., LIEM J., OWANO T., FELLERS R., BAER D., GUPTA M. Deployment of a carbon isotope ratiometer for the monitoring of CO2 sequestration leakage. Anal. Chem. 83 (2011) 6223-6229.
- [4] KEELING C.D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica 13 (1958) 322-334.
- [5] PATAKI, D.E., EHLERINGER, J.R., FLANAGAN, L.B., YAKIR, D., BOWLING, D.R., STILL, C.J., BUCHMANN, N., KAPLAN, J.O., BERRY, J.A. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles 17(1) (2003) 1022 doi:10.1029/2001GB001850.
- [6] OEHL, F., OBERSON, A., Sinaj, S., FROSSARD, E. Organic phosphorus mineralization studies using isotopic dilution techniques. 65 (2001) 780-787.
- [7] FIERER, N., SCHIMEL, J.P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci. Soc. Am. J. 67 (2003) 798-805.

CONTRIBUTORS TO DRAFTING AND REVIEW

Chen, J.	International Atomic Energy Agency, Vienna, Austria
Dercon, G.	International Atomic Energy Agency, Vienna, Austria
Gruber, R.	International Atomic Energy Agency, Vienna, Austria
Heiling, M.	International Atomic Energy Agency, Vienna, Austria
Mayer, L.	International Atomic Energy Agency, Vienna, Austria
Resch, C.	International Atomic Energy Agency, Vienna, Austria
Slaets, J.	International Atomic Energy Agency, Vienna, Austria

ORDERING LOCALLY

In the following countries, IAEA priced publications may be purchased from the sources listed below or from major local booksellers.

Orders for unpriced publications should be made directly to the IAEA. The contact details are given at the end of this list.

CANADA

Renouf Publishing Co. Ltd

22-1010 Polytek Street, Ottawa, ON K1J 9J1, CANADA Telephone: +1 613 745 2665 • Fax: +1 643 745 7660 Email: order@renoufbooks.com • Web site: www.renoufbooks.com

Bernan / Rowman & Littlefield

15200 NBN Way, Blue Ridge Summit, PA 17214, USA Tel: +1 800 462 6420 • Fax: +1 800 338 4550 Email: orders@rowman.com Web site: www.rowman.com/bernan

CZECH REPUBLIC

Suweco CZ, s.r.o. Sestupná 153/11, 162 00 Prague 6, CZECH REPUBLIC Telephone: +420 242 459 205 • Fax: +420 284 821 646 Email: nakup@suweco.cz • Web site: www.suweco.cz

FRANCE

Form-Edit

5 rue Janssen, PO Box 25, 75921 Paris CEDEX, FRANCE Telephone: +33 1 42 01 49 49 • Fax: +33 1 42 01 90 90 Email: formedit@formedit.fr • Web site: www.form-edit.com

GERMANY

Goethe Buchhandlung Teubig GmbH

Schweitzer Fachinformationen Willstätterstrasse 15, 40549 Düsseldorf, GERMANY Telephone: +49 (0) 211 49 874 015 • Fax: +49 (0) 211 49 874 28 Email: kundenbetreuung.goethe@schweitzer-online.de • Web site: www.goethebuch.de

INDIA

Allied Publishers

1st Floor, Dubash House, 15, J.N. Heredi Marg, Ballard Estate, Mumbai 400001, INDIA Telephone: +91 22 4212 6930/31/69 • Fax: +91 22 2261 7928 Email: alliedpl@vsnl.com • Web site: www.alliedpublishers.com

Bookwell

3/79 Nirankari, Delhi 110009, INDIA Telephone: +91 11 2760 1283/4536 Email: bkwell@nde.vsnl.net.in • Web site: www.bookwellindia.com

ITALY

Libreria Scientifica "AEIOU"

Via Vincenzo Maria Coronelli 6, 20146 Milan, ITALY Telephone: +39 02 48 95 45 52 • Fax: +39 02 48 95 45 48 Email: info@libreriaaeiou.eu • Web site: www.libreriaaeiou.eu

JAPAN

Maruzen-Yushodo Co., Ltd

10-10 Yotsuyasakamachi, Shinjuku-ku, Tokyo 160-0002, JAPAN Telephone: +81 3 4335 9312 • Fax: +81 3 4335 9364 Email: bookimport@maruzen.co.jp • Web site: www.maruzen.co.jp

RUSSIAN FEDERATION

Scientific and Engineering Centre for Nuclear and Radiation Safety

107140, Moscow, Malaya Krasnoselskaya st. 2/8, bld. 5, RUSSIAN FEDERATION Telephone: +7 499 264 00 03 • Fax: +7 499 264 28 59 Email: secnrs@secnrs.ru • Web site: www.secnrs.ru

UNITED STATES OF AMERICA

Bernan / Rowman & Littlefield

15200 NBN Way, Blue Ridge Summit, PA 17214, USA Tel: +1 800 462 6420 • Fax: +1 800 338 4550 Email: orders@rowman.com • Web site: www.rowman.com/bernan

Renouf Publishing Co. Ltd

812 Proctor Avenue, Ogdensburg, NY 13669-2205, USA Telephone: +1 888 551 7470 • Fax: +1 888 551 7471 Email: orders@renoufbooks.com • Web site: www.renoufbooks.com

Orders for both priced and unpriced publications may be addressed directly to:

Marketing and Sales Unit International Atomic Energy Agency Vienna International Centre, PO Box 100, 1400 Vienna, Austria Telephone: +43 1 2600 22529 or 22530 • Fax: +43 1 2600 29302 or +43 1 26007 22529 Email: sales.publications@iaea.org • Web site: www.iaea.org/books

International Atomic Energy Agency Vienna ISBN 978-92-0-101419-1 ISSN 1011-4289