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Abstract 

 

The thermal properties and amount of vitrified waste are major factors that determine the eventual disposal area of 

high-level radioactive waste deep underground. The effect of high burn-up operation of a light-water reactor with UO2 fuel 

on the amount and thermal properties of vitrified waste under various nuclear fuel cycle conditions was discussed. In 

addition, the effect of Cs and Sr separation and high-content vitrified waste on reducing the waste-occupied area, which may 

affect the geological disposal area, under high burn-up conditions was quantitatively evaluated by using the Comprehensive 

Analysis of Effects on Reduction of disposal Area (CAERA) index. The fuel burn-up had a limited effect on the amount of 

vitrified waste. Furthermore, the contribution to the heat generation rate of vitrified waste for high burn-up conditions of 
137Cs, 90Sr, and their daughter nuclides, which have relatively short half-lives, increased and contribution of 241Am, which 

has a longer half-life, decreased. Therefore, high burn-up conditions reduced the waste-occupied area via Cs and Sr 

separation, and the maximum effect was a reduction of 74% of the waste-occupied area with a fuel burn-up of 70 GWd/tHM, 

4-year spent fuel (SF) cooling period, 90% Cs and Sr separation, and 30 wt % vitrified waste loading. The results suggested 

that fuel burn-up, SF cooling period, partitioning technology, and vitrified waste loading are important for the geological 

disposal area, and it is necessary to consider the combination of these conditions for reducing the geological disposal area. 

1. INTRODUCTION 

According to Japan’s 5th Strategic Energy Plan in 2018 [1], nuclear power generation is planned to 

provide the base load power supply in Japan. Japan’s basic policy for nuclear energy use is based on the nuclear 

fuel cycle; thus, it is essential to develop and sophisticate the nuclear fuel cycle. However, when constructing 

the nuclear fuel cycle and sustaining nuclear energy use, it is necessary to dispose of a large amount of high-

level radioactive waste (HLW). Therefore, the reducing geological disposal area and amount of HLW are 

required. The thermal properties and amount of vitrified waste are two major factors that determine the 

emplacement of the waste packages and the eventual disposal area deep underground. These two factors, in turn, 

depend strongly on the radionuclide inventories contained in the HLW. The inventories mainly depend on the 

nuclear fuel cycle conditions, which are the fuel burn-up, the spent fuel (SF) cooling period, partitioning 

technologies used in reprocessing, and the vitrified waste loading. Therefore, it is necessary to evaluate 

comprehensively and quantitatively how these conditions affect the thermal characteristics and the amount of 

vitrified waste generated. In particular, evaluating the effect of fuel burn-up for HLW disposal is important for 

improving the economic efficiency and fuel utilization rate. 

In this study, we quantitatively investigated the impact on the thermal properties and amount of vitrified 

waste of high burn-up operation of a light-water reactor with UO2 fuel under various fuel cycle conditions. In 

addition, we assumed that Cs and Sr separation processes and high-content vitrified waste were used for the 

current nuclear fuel cycle to reduce the amount of HLW and geological disposal area. The effect of Cs and Sr 

separation and high-content vitrified waste under high burn-up conditions on geological disposal area was also 

discussed by using Comprehensive Analysis of Effects on Reduction of disposal Area (CAERA) index.  
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2. CALCULATION METHOD AND CONDITIONS 

2.1. Fuel burn-up conditions 

The reactor operating conditions are shown in Table 1. The fuel burn-up, nuclide generation in SF, decay 

heat generation rate, reprocessing, and partitioning were calculated with Origen 2.2-upj [2], and the cross 

section libraries were based on JENDL-4.0 [3]. The fuel was UO2 and its enrichments were assumed to be 4.5 

and 6.5 wt % for burn-up rates of 45 and 70 GWd/tHM, respectively. The fuel was burned assuming a burn-up 

rate of 38 MW/tHM for 1184 and 1842 days in a 17 × 17 pressurized water reactor assembly. Fuel shuffling in 

the reactor operation was not considered. 

 

TABLE 1. CALCUATION CONDITIONS FOR REACTOR OPERATION 

Reactor operation 

Fuel burn-up, GWd/THM 45 70 

Specific power, MW/THM 38 

Operation period, days 1184 1842 

Enrichment, wt% 4.5 6.5 

2.2. Reprocessing and partitioning conditions 

The reprocessing conditions were assumed to be those for a typical PUREX process after several years of 

SF cooling. During reprocessing, 99.6% of U, 99.5% of Pu, and 100% of volatile elements, such as H, C, I, Cl, 

and noble gases (He, Ne, Ar, Kr, Xe, and Rn) were removed (Table 2) [4]. The high-level liquid waste (HLLW) 

was regarded as the residue after reprocessing. The reference case and present [5] case were studied as follows 

and these conditions are compared in Table 3. 

(1) Reference case: the SF after discharge was reprocessed after a 4-year cooling period and no 

partitioning. 

(2) Present study: the SF was reprocessed after a 4- to 50-year SF cooling period. It was assumed that 

70% of Mo and PGM (Ru, Rh, and Pd) were separated from HLLW to satisfy the upper limit of MoO3 and PGM 

loading in HLW to maintain the quality of vitrified waste and stable operation of the glass melter. In addition, 

the Cs and Sr separation from HLLW was assumed to be 90%. The separated elements were assumed to be 

immobilized and disposed of deep underground. However, the disposal area was not considered. 

 

TABLE 2. CALCULATION CONDITIONS FOR REPROCESSING AND VITRIFICATION 

Reprocessing 

U, % 99.6  

Pu, % 99.5  

H, C, I, Cl, Noble gas, % 100 

Vitrification 

Glass weight, kg/unit 400 

Na2O content, kg/unit 10 

Heat generation rate, kW/unit ≦ 2.3 

MoO3 content, wt% ≦ 1.50 

PGM content, wt% ≦ 1.25 
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TABLE 3. COMPARISON OF SETTINGS FOR REFERENCE CASE AND PRESENT CASE 

Event Factor 
Reference 

case 
Present work 

Reactor operation Fuel burn-up, GWd/THM 45 45 and 70 

Reprocessing 

Cooling period of SF, years 4 4 and 50 

Mo separation ratio, % 0 70 

PGM separation ratio, % 0 70 

Cs・Sr separation ratio, % 0 0 to 90 

Vitrification Waste loading, wt% 20.8 15 to 35 

Geological Disposal  
Waste occupied area, m

2
/vitrified waste 

unit 
41.7 13.9 to 300 

2.3. Vitrification conditions 

The vitrification conditions and requirements were as follows (Table 3). 

(a) The weight of vitrified waste was assumed to be 400 kg. 

(b) The loading of sodium oxide (Na2O) was 10 wt % (corresponding to 40 kg) in the vitrified waste to 

maintain the appropriate viscosity of the melted glass in vitrification. 

(c) The upper limit of the heat generation rate of the vitrified waste was assumed to be less than 2.3 kW per 

vitrified waste unit, consistent with the current requirement of Japan’s interim storage facility [6]. 

(d) The upper limits of the MoO3 and PGM loading in vitrified waste were assumed to be less than 1.5 and 

1.25 wt %, respectively, to prevent yellow phase formation in the vitrified waste and deposition of PGM 

in the bottom nozzle of the glass melter [7-9]. 

(e) The vitrified waste was assumed to be stored for 50 years after vitrification to reduce the heat generation 

rate of vitrified waste before disposal. 

2.4. Geological disposal conditions 

The geological disposal site and the thermal analysis were modeled with COMSOL Multiphysics code 

[10]. The analytical model used horizontal emplacement of the vitrified waste in crystalline rock (hard rock), as 

proposed elsewhere [11]. The initial temperature, geothermal temperature gradient and thermal conductivity of 

the materials in the analytical model have been used elsewhere [12].  

The area required for disposing of one unit of vitrified waste is called the waste-occupied area, expressed 

by the product of the disposal tunnel spacing (xD) and waste package pitch (y). In addition, the waste-occupied 

area should be set to satisfy the upper temperature limit of the bentonite buffer material. In this study, the upper 

temperature limit was 100 °C, as used in Japan’s geological disposal programs [5], and the disposal tunnel 

spacing, waste package pitch, and waste-occupied area were calculated at a buffer temperature of 100 °C. The 

upper temperature limit of buffer, 100℃ was conservatively assumed as temperature of illitization of bentonite 

which is the main component of buffer. The reason is that the performances such as water sealing property and 

adsorption property of nuclides required for buffer are decreased by illitization. In the reference case, the waste-

occupied area was 41.7 m
2
/glass unit (xD of 13.3 m × y of 3.13 m) for the horizontal emplacement 

configuration. 

2.5. CAERA index 

The CAERA index was introduced to evaluate the effect of waste-occupied area reduction under various 

nuclear fuel cycle conditions [13, 14]. The CAERA index was defined as: 

 

    ⁄  
                              ⁄                         ⁄

                                  ⁄
                                

 

   
        (1)    
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This index has been used to evaluate the relationship between the effect of waste-occupied area reduction 

and partitioning technology in the nuclear fuel cycle quantitatively by comparison with a reference case [15, 

16]. In this study, the CAERA index of the reference case was calculated as 1.04 kg/m
2
 for a waste-occupied 

area of 41.7 m
2
 and a vitrified waste loading of 20.8 wt %. 

 

3. RESULTS AND DISCUSSION 

3.1. Effect of high burn-up operation on the amount of vitrified waste 

Fig. 1 shows the relationship between fuel burn-up and the amount of vitrified waste for 4 and 50-year 

SF cooling and a vitrified waste loading of 20.8 wt %. The amount of vitrified waste per ton of SF (glass 

unit/tHM) and fuel burn-up (glass unit/GWd) are shown in Figs. 1 (a) and (b), respectively. The amount of 

vitrified waste per metric ton of heavy metal increased with fuel burn-up, whereas the amount of vitrified waste 

per gigawatt day did not change with fuel burn-up. The same trend was reported by Inagaki et al. in a similar 

study [17]. 

 

 

 

3.2. Effect of high burn-up operation on thermal properties of vitrified waste 

Fig. 2 (a) and (b) show the heat generation of vitrified waste as a function of time from just after 

vitrification to disposal and after disposal, respectively, for 4- and 50-year SF cooling and 20.8 wt % waste 

loading. The heat generation rates of vitrified waste from just after vitrification to disposal (Fig. 2 (a)) and just 

after disposal (Fig. 2 (b)) were reduced by extending the SF cooling period. In contrast, more than 10 years after 

disposal, the heat generation rate of vitrified waste was higher for the 50-year SF cooling period than for the 4-

year SF cooling period. According to Okamura et al. [15], this is because although the contribution of 
137

Cs (t1/2 

= 30.1 years), 
90

Sr (t1/2 = 29.8 years), and their daughter nuclides to the heat generation rate of vitrified waste 

was decreased by the prolonged SF cooling period, the contribution of
 241

Am (t1/2 = 432 years), which has a 

longer half-life than
 137

Cs and 
90

Sr, was increased.  

The heat generation rate was not changed by high fuel burn-up for 4-year SF cooling (Fig. 2 (b)). 

However, for 50-year SF cooling, the heat generation rate for a fuel burn-up of 70 GWd/tHM was lower than 

that for 45 GWd/tHM. Fig. 3 shows the contributions of 
137

Cs, 
90

Sr, 
137m

Ba, 
90

Y, 
241

Am, and other nuclides to 

heat generation immediately after disposal (50 years after vitrification) for 4-year SF cooling. The contribution 

of each nuclide to heat generation was different, although the total heat generation was similar. For 70 

GWd/tHM, the contribution of 
137

Cs, 
90

Sr, and their daughter nuclides was larger and that of 
241

Am was smaller 

than for 45 GWd/tHM. Fig. 4 (a) and (b) show the contribution of each nuclide to the heat generation rate as a 

function of the time period after disposal at fuel burn-up rates of 45 and 70 GWd/tHM, respectively. The 

FIG. 1. Amount of vitrified waste units per (a) metric ton of heavy metal and (b) gigawatt day (SF cooling period: 4 and 

50 years; waste loading: 20.8 wt %). 

(a) (b) 
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contribution of each nuclide to the heat generation rate was different for each fuel burn-up rate. In addition, the 

contribution of 
137

Cs, 
90

Sr, and their daughter nuclides was still larger and that of 
241

Am was smaller for the high 

burn-up conditions. Therefore, the contribution of 
137

Cs and 
90

Sr to the heat generation rate was higher under 

high burn-up conditions. 

Fig. 5 shows the amount of 
241

Am per gigawatt day in SF as a function of time after discharge from 

reactor for fuel burn-ups of 45 and 70 GWd/tHM. The formation path of 
241

Am is 

 

                                                                              (2) 

 

The amount of 
241

Am was affected by 
235

U enrichment, based on the formation path of 
241

Am and the lower 

weight of both nuclides at 70 GWd/tHM than at 45 GWd/tHM. In this study, the enrichment was increased to 

model high burn-up. The 
238

U content, which is the starting nuclide for 
241

Am in fresh fuel, decreases with 

increasing fuel burn-up; thus, the amount of 
241

Am should also decrease. Moreover, 
137

Cs and 
90

Sr, which are 

fission products, are produced more frequently under high burn-up conditions. Therefore, the 
137

Cs and 
90

Sr 

loading in vitrified waste increased and the contribution of these nuclides to heat generation of vitrified waste 

increased with fuel burn-up. 

 

 

 

 

 

 

FIG. 3. Contribution of each nuclide to heat generation at disposal at fuel burn-ups of 45 and 70 GWd/tHM (SF cooling 

period: 4 years; waste loading: 20.8 wt %). 

FIG.2. Time course of heat generation of vitrified waste (4-year and 50-year cooling of SF, Waste loading; 20.8 wt%) 

(a) Period after reprocessing until disposal (b) Period after disposal 
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3.3. Effect of waste loading and Cs and Sr separation on waste-occupied area reduction 

The effect of high burn-up operation on the amount of vitrified waste and thermal properties of vitrified 

waste is summarized as follows. 

(a) The amount of vitrified waste is not changed substantially. 

(b) The contribution of 
137

Cs, 
90

Sr, and their daughter nuclides to the heat generation rate is increased and the 

contribution of 
241

Am is decreased. 

(c) The contribution of 
137

Cs, 
90

Sr, and their daughter nuclides to the heat generation rate is reduced and the 

contribution of 
241

Am is increased by extending the SF cooling period. 

(d) It has been reported that the amount of vitrified waste can be reduced by increasing the vitrified waste 

loading [15]. 

Based on these results, we investigated the effect of introducing Cs and Sr separation and high-content 

vitrified waste on the CAERA index for high burn-up operation and shorter SF cooling period. Fig. 6 shows the 

relationship between vitrified waste loading and CAERA index for different fuel burn-ups for 4-year SF cooling 

and 90% Cs and Sr separation. The CAERA index was increased by Cs and Sr separation. For higher waste 

loading than the reference case, a substantially higher CAERA index was obtained. High burn-up operation at a 

burn-up of 70 GWd/tHM had a larger CAERA index than at 45 GWd/tHM. A maximum CAERA index of 4.00 

kg/m
2
 was achieved for a fuel burn-up of 70 GWd/tHM and 30 wt % vitrified waste loading. This CAERA 

index value indicates an approximate reduction of 74% in waste-occupied area compared with the reference case 

FIG. 4. Contribution of each nuclide to heat generation at fuel burn-ups of (a) 45 and (b) 70 GWd/tHM (SF cooling period: 

50 years; waste loading: 20.8 wt %). 

FIG. 5. Time course of amount of 241Am in SF at fuel burn-ups of 45 and 70 GWd/tHM. 
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(CAERA index = 1.04 kg/m
2
). Therefore, high burn-up operation is effective for reducing the waste-occupied 

area by combining suitable Cs and Sr separation, SF cooling period, and vitrified waste loading conditions. 

 

 

4. SUMMARY 

In this study, we analyzed the effect of high burn-up operation on the amount and thermal properties of 

vitrified waste. In addition, the effect of introducing Cs and Sr separation and high-content vitrified waste for 

reducing waste-occupied area was quantitatively evaluated by CAERA index. The conclusions can be 

summarized as follows. 

(a) Increasing the fuel burn-up did not change the vitrified waste per fuel burn-up substantially, although the 

amount of vitrified waste per ton of SF increased. 

(b) High burn-up operation increased the contribution of 
137

Cs, 
90

Sr, 
137m

Ba, and 
90

Y, and decreased the 

contribution of 
241

Am to the heat generation rate of vitrified waste. 

(c) Increasing the SF cooling period decreased the contribution of 
137

Cs, 
90

Sr, and their daughter nuclides 

and increased the contribution of 
241

Am to the heat generation rate of vitrified waste. 

(d) The waste-occupied area could be reduced by introducing Cs and Sr separation and high-content vitrified 

waste under high burn-up operation. 

(e) Based on results (1)–(4), a maximum reduction in waste-occupied area of 74% could be achieved with 

90% Cs and Sr separation, 30 wt % waste loading, and 4-year SF cooling. 

Therefore, for high burn-up operation, it is possible to reduce the amount of vitrified waste and 

geological disposal area by combining suitable SF cooling period, partitioning technology, and vitrified waste 

loading. 
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FIG. 6. Effect of Cs and Sr separation and high waste loading on CAERA index for fuel burn-ups of 45 and 70 GWd/tHM 

(SF cooling period; 4 years; Cs and Sr separation ratio: 90%). 
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