

Evolution of VVER technology towards NPP-2006 project

V. Kosogorov Energoatom Concern OJSC Moscow, Russian Federation

2009.10.28

IAEA

The operating experience of NPPs of Russian design

(as of 01.01.2008)

VVER- 350 reactor - yearsNPPs with RBMK- 490 reactor - yearsNPP with EGP- 130 reactor - yearsNPP with BN- 60 reactor - years

All kinds of NPPs – 1030 reactor - years

Front units of VVER-type design

VVER	NPP	Front Unit	Connected to the grid	Total number of units	Note
- 210	Novovoronezh	1	1964	1	
- 70	Reinsberg	1	1966	1	
- 365	Novovoronezh	2	1969	1	
- 440	Novovoronezh	3	1971	16+19=35	
- 1000	Novovoronezh	5	1980	1 + 4 = 5	
- 1000	Zaporogie	1	1984	21	Unified design
- 1000	Tianwan	1	2006	2	Modified design for China
-1000 (1150 MW)_	Novovoronezh -II Lenungrad - II	Under cons Under cons	struction struction	2 (+2) 4	"NPP-2006" design

Stages of technology development

Theory

Practice

Basic documents governing the development process

HEPFOATOM

Nº	Documents	Inst. Capacity, GW	Electricity Generation, TW-h	Load Factor, %	NPP Share, %
1	Strategy of nuclear power development in Russia in the first half of XXI century (NS-2000)	52	340	80	25
2	Energetic strategy of Russia for the period up to 2020 (ES-2003)	32/42	230/300	82	20
3	Federal target-oriented program "Development of nuclear power industry complex of Russia in 2007- 2010 and outlook up to 2015" (FTP-2006)	41	300	85	20
4	General scheme of power plants placement up to 2020 (Genscheme – 2007)	53/59	372/412	80	23
5	Program of Rosatom State Nuclear Energy Corporation activity for long-term period (2009- 2015) (PLA-2008)	33	234.4	82	20

The current targets of development

Characteristics	2006	2010	2015	2020
NPP installed capacity, GW	23.2	24.2	33.0	41.0
Electricity generation, TW-hour/year	154.7	170.3	224.0	300.0
Nuclear share in electricity generation in Russia, %	16.0	16.0	18.6	20-23
Reduction of operating costs (as compared to 2006), %	100	90	80	70
Reduction of operating costs per unit (as compared to 2006), %	100	90	85	70

Priorities of NPPs placement in Russia

European part	Maximum number of sites
Siberia	Isolated facilities
Far East	Isolated facilities

The criteria for choice

of alternative construction sites in a region:

- necessity of power balance improvement;
- minimization of expenses associated with transmission lines construction;
- efficiency of a NPP in comparing with alternative sources;
- minimization of expenses associated with meeting regulatory requirements in various safety areas;
- personel availability for construction und operating stages

The outcomes from selection of new construction sites for "NPP-2006" implementation

ЭНЕРГОАТОМ

N≌	Construction site	Number of units	Connection of front unit to the grid	Condition
1	Novovoronezh - II	2 (+2)	2012	under construction
2	Leningrad - II	4	2013	under construction
3	Baltic	2	2016	siting license obtaining
4	Seversk (Tomsk)	2	2015	siting license obtaining
5	Tver (Kalinin – II)	4	2015	siting license obtaining
6	Nizhny Novgorod	3	2016	siting license obtaining
7	South-Ural	2	2016	siting license obtaining
8	Central	2	2017	siting license obtaining

ЭНЕРГОАТОМ

NPP-2006

- The thermal power was increased up to 3200 MW, and the power unit (gross) efficiency – up to 36.2% due to:
 - elimination of excessive conservatism
 - improvement of the steam turbine thermal circuit
 - improvement of steam pressure parameters at the SG outlet and reduction of pressure losses in steam lines
- Economic efficiency was improved due to:
 - optimization of passive and active safety systems used in NPP-91 and NPP-92 designs
 - unification of the equipment used
 - reduction of material consumption
 - shortening of the construction period duration

The main targets to be achieved with the new reactor designs

- Reactor power rising
- Increasing of main reactor equipment life time
- Load factor increase
- Safety systems improvement as a means to limit occupational exposure and radioactive material release to the environment during normal operation as well as in DBA and BDBA (SA) conditions
- Decrease of radioactive waste volume
- Exclusion of a possibility of sudden large break of primary circuit by means of application of the LBB conception
- Meeting the customer requirements (for example manoeuvrability, special fuel, seismic conditions and so on) to maximum extent possible

The ways to achieve the above goals are:

Evolutional method for technical problems solution

Adapting, to maximum extent possible, all results of previous Scientific and Research Works done for VVER of different modifications

Account of VVER operation experience

Meeting the requirements of modern Russian and international standards (IAEA, EUR, INSAG).

Base engineering companies in Russia for NPP project development

R&D institutes "Atomenergoproject"

Moscow	Saint-Petersburg	Nizhny Novgorod
Version on the base of "NPP-92"	Version on the base of "NPP-91"	-

The "NPP-2006" design is developed based on common grounds, in particular:

- Federal law applicable to the peaceful use of nuclear energy

- "Technical assignment for development of the baseline design NPP-2006", "Technical assignment for Reactor Plant of NPP-2006"

- Applicable norms, rules and standards currently in force in Russia

As a result, for example, the share of unification for the equipment in two versions of "NPP-2006" design was raised from 25% in August 2006 to 47% in August 2007.

The main technical characteristics of the "NPP-2006" design

Parameter	NPP-2006	V-392B	V-320
Thermal power of reactor, MW	3200	3000	3000
Nominal electric power, MW	up to 1200	1000	1000
Steam pressure, MPa	6.8	6.27	6.27
Steam temperature, °C	287.0	278.5	278.5

The main technical characteristics of the "NPP-2006" design

Parameter	NPP-2006	V-392B	V-320
Fuel cycle, year	4 / 5*	3 (max 4)	3
Maximum fuel burn-up, MW- day/kg U	59.7 / up to 70*	55	40.2
Effective hours of nominal power use, h/year	8400	7360	7000
Coolant temperature at reactor outlet, °C	329.7	321	320

The main technical characteristics of the "NPP-2006" design

Parameter	NPP-2006	V-392B	V-320
Design NPP lifetime, year	60	40 30	
Availability of SA, for reactor-year	2.05·10 ⁻⁷	4.3·10 ⁻⁷	8.3·10 ⁻⁵
Generator -Rotor winding cooling and stator core cooling	Water		
Generator - Stator winding cooling	Water	Gas an	a water

Alteration of main characteristics

Characteristics	NPPs with VVER-1000	NPP-2006	Alteration %
Rated power, MWe	1000	1150	+ 14.7
Yearly output, bln. kWh	7.5	9.0	+ 20.0
NPP life time (designed), year	30	50	+ 66.7
Average annual duration of scheduled outages	40	25	- 37.5
Availability factor, rel. un.	0.80	0.92	+ 15.0
Constructional volumes per 1 MW, m ³ / MW	620	512	- 17.4
Spent fuel volume (in the form of fuel assemblies), t/bln. kWh	5.5	3.5	- 36.4

Comparison of "Novovoronezh-II" and "Leningrad-II" projects

		NV NPP- II	L NPP - II
Blowdown, make-up system of the primary circuit		Make-up: 3 pumps x 60 t/hour with fulfilling their functions in all regulation range – one in operation, two in reserve	Make-up: 2 pumps x 60 t/hour for "rough" boric regulation and coolant leaks compensation, 3 pumps x 6.3 t/hour for "fine" regulation and leaks compensation
	Active part of emergency core cooling system	Two-channel integrated systems of high and low pressure with –ejector-pumps with redundancy of 2x200% and internal redundancy of 2x100%	Separated 4-channel systems of high and low pressure with channel redundancy of 4x100% each
E	mergency boric acid injection system	2-channel system with channel redundancy of 2x100% and internal redundancy of 2x50%	4-channel system of high and low pressure with channel redundancy of 4x100% each
	Passive core water	N/A	4-channel system with channel redundancy of
E	injection system	Closed-circuit 2-channel system with redundancy	4x100% with emergency feed-water tanks_
	system		N/A
	Passive core water injection system	Passive 4-channel system with channel redundancy of 4x33% with 2 tanks in every channel	N/A
P	assive system of the heat removal	Passive 4-channel system with channel redundancy of 4x33% with 2 air-cooling heat exchangers in every channel	Passive 4-channel system with channel redundancy of 4x33% with 18 water-cooling heat exchangers in every channel

State of "Novovoronezh-II" NPP construction as of September 2009, unit 1

State of "Leningrad-II" NPP construction as of September 2009, unit 1

Thank you

Energoatom Concern OJSC

www/rosenergoatom.ru