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Motivation

Problems under Investigation

• Multi-Scale-Length Physics:

kinetic effects can modify large-scale MHD modes

significantly when gyroradius/banana-orbit-width and

mode-dimensions become comparable

• Energetic Particle Physics:

large fast particle pressures in future fusion devices requi-

re self-consistent (non-perturbative, non-hybrid) treat-

ment

Related Physics Problem: growth and damping rates for

fast-particle-driven TAE’s (low-n, low-m)

>

>ξ q=1

fast particle banana orbit

fast particle gyro orbit

Eigenfunction: Internal Kink Mode

small plasma radius
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Code Features

LIGKA: Linear Gyrokinetic Shear Alfvén Physics

• Linear: mode frequency, growth rate and mode structure

• Gyrokinetic: particle on gyroorbit feels perturbation due to

the mode

• Non-hybrid: solving for Ampére’s law (GKM) and quasi-

neutrality equation simultaneously

• Non-perturbative: allowing for change in the eigenmode

structure

• Accurate treatment of particle orbits: numerical integration

over unperturbed particle orbits (HAGIS)

• Accurate treatment of non-zero banana orbit widths: radial

coupling due to broad banana orbits

• Takes into account the Landau pole contributions for nega-

tive growth rates

• Realistic tokamak geometry (so far without X-point)
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Model

Linear Gyrokinetic Equations

gyrokinetic equation:
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Model

Ideal MHD Limit and ’Reduced Kinetic Limit’

• Ideal MHD Limit: QN equation reduces to φ = ψ

system is reduced to shear Alfvén equation with singularity ω = k‖vA
• ’Reduced Kinetic Limit’:

φ− ψ = r̂
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Can be combined into one single fourth order equation as used by Berk,Mett, Lindberg [Phys. Fluids B 5
(1993)] or Fu, Berk, Pletzer [PoP, 12 (2005)]:
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Coupling to the KAW

Singularity of the MHD operator is resolved by fourth order terms

Inwards propagating kinetic Alfvén wave is excited
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Antenna Version

‘Antenna-like’ version of LIGKA

In order to find all modes around and in the gap:

drive vector d added artificially with d nonzero only at the plasma edge

M(ω)

�

φ

ψ

�

= d → I

�

φ

ψ

�

= M(ω)
−1d

No vacuum region and also no proper boundary conditions (yet)

Plasma Response is measured by integral over Eigenfunction:
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Antenna Version Results

Scan throughout the gap region
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Kinetic TAE Modes (KTAEs)

Two KAWs excited at the continuum intersections creating a standing wave: KTAE
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Application: Global TAE modes

Damping Rates of Global TAE Modes

It is still an unresolved question what kind of damping mechanism is responsible for low (m,n) TAE modes:

• PENN: mode conversion of TAE into kinetic Alfvén wave (KAW) mainly in the plasma core

measurements at JET agree with numerical prediction of PENN [Jaun,1999]

• fluid models predict a damping rate 25 times too small

although the mass-scaling is predicted correctly m−1/2

• CASTOR-K with FLR-effects (complex resistivity approximation [Connor, 1994]))

mechanism: coupling of TAE to kinetic Alfvén wave (KAW) at the edge, also when gap is open

• Berk, IAEA 2004: model for TAEs in large aspect ratio plus FLR effects

if gap is open (finite edge density), TAE is only weekly damped, no evidence of KAW conversion in centre

otherwise strong damping due KAW coupling at the edge

• G. Fu, H.Berk, 2005: reduced kinetic model, no significant core damping found, damping rates up to

0.5%
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Electron Landau Damping

TAE Damping Rates

Benchmark with CAS3D-K for JET shot #42979@10.121s (A. Koenies, IPP Greifswald)

gyrokinetic terms turned off, electron Landau damping is main damping mechanism
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Continuum damping at the plasma edge

Damping Rates JET shot #42979@10.121s

• with an open gap the calculated damping rates are about a factor of 8 too small [Fasoli et al.,(1999)]

• since the edge density profile measurements at JET are relatively poor, the gap could be closed:

calculated damping rate: 0.70%

• no mode in the plasma centre is excited

November 2005 11



Radiative Damping

Benchmark with Reduced Kinetic Model (G. Fu, PoP 12,2005):

Based on JET Shot #38573@5.0s

Very good agreement found! KAW ’tunnels into’ the TAE
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Radiative Damping

Benchmark with Reduced Kinetic Model (G. Fu):

experimental values (%i = 3mm):

eigenmode structure starts to change compared to ideal case (perturbative treatment!)
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Radiative Damping

Benchmark with Reduced Kinetic Model (G. Fu):

Significant changes in the eigenfunction:
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Continuum Damping

Benchmark with Reduced Kinetic Model (G. Fu):

For a closed gap case (edge density very small) main damping comes from continuum damping at the edge.

Both codes agree relatively well: 0.5% (G.Fu) - 0.7% (LIGKA)
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Reversed Shear Cases

Finite β-Effect on Cascade Modes

• first benchmark: simple model equilibrium: q(s) = q0 + 0.5q′′(s− 0.5)2

• For an analytical shifted circle equilibrium, LIGKA finds that a larger pressure gradient helps the Cascade

mode to exist

• agreement of LIGKA for a similar numerical equilibrium case with other codes (CASTOR)
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Reversed Shear Cases

Cascade Modes: Eigenmode Structure
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Conclusions and Outlook

Conclusions:

LIGKA is a comprehensive numerical model:

• non-perturbative, includes relevant damping mechanisms (except collisions), realistic tokamak geometry

• benchmarks for all important damping mechanisms successfully completed

• Analysis of JET results, no KAW in the centre found, higher (but still not high enough) damping rates

(than perturbative code results ) are found mainly due to continuum damping at the edge

Outlook:

• further model and code development:

– collisions: simple model, collision operator

– non-Maxwellian fast particle distribution function

• further benchmarking

• detailed investigation of edge damping effects (boundary conditions)

• internal kink mode physics

• extend to higher n modes (matrix reorganisation)

• non-ideal effects on cascade modes
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Reversed Shear Cases

Cascade Modes: Dependence on q0
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Numerical Solution of Kinetic Integrals

Cost and Computing Time

• time

– Kinetic Integrals: 200 radial grid points x 2 variables x 2 equations x 2 Real,Complex x 2

trapped,passing x 2 particle species x m(5) x p(5) = 160000 Integrals

Computing time (blade): 10 integrals per second per cpu

→ 10 minutes on one 32 processor machine

ca. 32-64 iterations necessary (Nyquist contour)

– Eigenvalue problem: inverting a 4000 x 4000 sparse matrix: few minutes

• memory

– Kinetic Integrals:

Orbit integrals or trapped are calculated beforehand with HAGIS : ≈ 1 Gbyte per species

– Eigenvalue problem:

200 radial bins x 2 (Hermite polynomials) x 5 x 2 = 2000 x 2000 matrix ≤ 256 Mbytes
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Solution of Landau Integrals in LIGKA

Numerical Resonance Denominator

Thacher-Tukey algorithm for rational interpolation implemented in LIGKA

win of accuracy in several respects:

• taking into account exact bounce and drift frequen-

cies (HAGIS), but still using constants of motion as

integration variables

• taking into account exact position of pole in complex

Λ-plane, no derivatives needed for calculating the

residuum

• relatively simple form allows for frequent evaluations

during Cauchy principal value calculation

• successful recovery of the analytical result ξZ(ξ)

for the Landau problem

• grid refinement in both energy and pitch angle va-

riable
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Numerical Solution of Kinetic Integrals

Orbit Integrals: Trapped Ions

• linear problem: integration over unperturbed

orbits ⇒expanding perturbed potentials in

finite elements before integration

• calculate time points of transit into neigh-

bouring element with HAGIS: tj,∆tj

•

P

: partitioning of the periodic motion

•

P

: partitioning of one orbit in FE
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