IAEA Analytical Quality in Nuclear Applications Series No. 65

Certification of Activity Concentration of Radionuclides in IAEA-465 Baltic Sea Sediment

CERTIFICATION OF ACTIVITY CONCENTRATION OF RADIONUCLIDES IN IAEA-465 BALTIC SEA SEDIMENT

The following States are Members of the International Atomic Energy Agency:

AFGHANISTAN ALBANIA ALGERIA ANGOLA ANTIGUA AND BARBUDA ARGENTINA ARMENIA AUSTRALIA AUSTRIA AZERBAIJAN BAHAMAS BAHRAIN BANGLADESH BARBADOS BELARUS BELGIUM BELIZE BENIN BOLIVIA, PLURINATIONAL STATE OF BOSNIA AND HERZEGOVINA BOTSWANA BRAZIL BRUNEI DARUSSALAM BULGARIA BURKINA FASO BURUNDI CAMBODIA CAMEROON CANADA CENTRAL AFRICAN REPUBLIC CHAD CHILE CHINA COLOMBIA COMOROS CONGO COSTA RICA CÔTE D'IVOIRE CROATIA CUBA CYPRUS CZECH REPUBLIC DEMOCRATIC REPUBLIC OF THE CONGO DENMARK DJIBOUTI DOMINICA DOMINICAN REPUBLIC **ECUADOR** EGYPT EL SALVADOR ERITREA **ESTONIA ESWATINI ETHIOPIA** FIJI FINLAND FRANCE GABON

GEORGIA GERMANY GHANA GREECE GRENADA **GUATEMALA GUYANA** HAITI HOLY SEE HONDURAS HUNGARY **ICELAND** INDIA **INDONESIA** IRAN, ISLAMIC REPUBLIC OF IRAQ IRELAND ISRAEL ITALY JAMAICA JAPAN JORDAN KAZAKHSTAN KENYA KOREA, REPUBLIC OF **KUWAIT** KYRGYZSTAN LAO PEOPLE'S DEMOCRATIC REPUBLIC LATVIA LEBANON LESOTHO LIBERIA LIBYA LIECHTENSTEIN LITHUANIA LUXEMBOURG MADAGASCAR MALAWI MALAYSIA MALI MALTA MARSHALL ISLANDS MAURITANIA MAURITIUS MEXICO MONACO MONGOLIA MONTENEGRO MOROCCO MOZAMBIQUE MYANMAR NAMIBIA NEPAL NETHERLANDS NEW ZEALAND NICARAGUA NIGER NIGERIA NORTH MACEDONIA NORWAY

OMAN PAKISTAN PALAU PANAMA PAPUA NEW GUINEA PARAGUAY PERU PHILIPPINES POLAND PORTUGAL QATAR REPUBLIC OF MOLDOVA ROMANIA RUSSIAN FEDERATION RWANDA SAINT LUCIA SAINT VINCENT AND THE GRENADINES SAMOA SAN MARINO SAUDI ARABIA SENEGAL SERBIA SEYCHELLES SIERRA LEONE SINGAPORE **SLOVAKIA SLOVENIA** SOUTH AFRICA SPAIN SRI LANKA SUDAN SWEDEN SWITZERLAND SYRIAN ARAB REPUBLIC TAJIKISTAN THAILAND TOGO TRINIDAD AND TOBAGO TUNISIA TURKEY TURKMENISTAN UGANDA UKRAINE UNITED ARAB EMIRATES UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND UNITED REPUBLIC OF TANZANIA UNITED STATES OF AMERICA URUGUAY UZBEKISTAN VANUATU VENEZUELA, BOLIVARIAN REPUBLIC OF VIET NAM YEMEN ZAMBIA ZIMBABWE

The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".

IAEA Analytical Quality in Nuclear Applications Series No. 65

CERTIFICATION OF ACTIVITY CONCENTRATION OF RADIONUCLIDES IN IAEA-465 BALTIC SEA SEDIMENT

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2021

COPYRIGHT NOTICE

All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at:

Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 26007 22529 tel.: +43 1 2600 22417 email: sales.publications@iaea.org www.iaea.org/publications

For further information on this publication, please contact:

IAEA Environment Laboratories, Monaco Radiometrics Laboratory International Atomic Energy Agency 4a Quai Antoine 1er, 98000 Principality of Monaco

CERTIFICATION OF ACTIVITY CONCENTRATION OF RADIONUCLIDES IN IAEA-465 BALTIC SEA SEDIMENT IAEA, VIENNA, 2021 IAEA/AQ/65 ISSN 2074–7659

> © IAEA, 2021 Printed by the IAEA in Austria September 2021

FOREWORD

For more than 50 years the IAEA, through its Environment Laboratories, has been providing quality products and services for the study of radionuclides in marine samples, including the organization of interlaboratory comparisons, the production of reference materials and certified reference materials, and training. Producing a new reference material is a long process, covering the identification of needs, sample collection, pretreatment, physical homogenization, bottling, homogeneity testing, distribution to laboratories, data evaluation, preliminary reporting, additional analyses by expert laboratories, certification of material (including the determination of property values and their uncertainties), and finally issuing the reference materials and certified reference materials. More than 45 reference materials and certified reference materials have been produced, including a wide range of marine sample matrices and radionuclides.

As part of these activities, a sediment sample with elevated radionuclide levels due to a historical nuclear accident in the Baltic Sea region has been selected for a characterization study. This study aims to provide sufficient data using several different analytical methods to develop a new reference material. It is expected that the sample, after certification, will be issued as a certified reference material that can be used for the analysis of anthropogenic and natural radionuclides in sediment.

The IAEA wishes to thank the participants and laboratories that took part in this characterization study and the Helsinki Commission expert group on monitoring of radioactive substances in the Baltic Sea (HELCOM MORS EG) for providing the Baltic Sea sediment. The IAEA officers responsible for this publication were Mai Khanh Pham and S. Tarjan of the Division of IAEA Environment Laboratories.

EDITORIAL NOTE

This publication has been prepared from the original material as submitted by the contributors and has not been edited by the editorial staff of the IAEA. The views expressed remain the responsibility of the contributors and do not necessarily reflect those of the IAEA or the governments of its Member States.

This publication has not been edited by the editorial staff of the IAEA. It does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

The contributors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights.

The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this publication and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate.

CONTENTS

1.	INTRO	DUCTION	1		
2.	METHO	DDOLOGY	2		
	2.1. 2.2. 2.3.	SAMPLING AND PREPARATION OF THE MATERIAL HOMOGENEITY STUDY STABILITY STUDIES	2 2 3 4		
	2.4.	CHARACTERISATION	4		
	2.5.	MOISTURE CONTENT DETERMINATION	5		
3.	RESUL	TS AND DISCUSSION	5		
	3.1.	RESULTS OF HOMOGENEITY STUDY	5 5 8		
	3.2. 3.3.	RESULTS OF STABILITY STUDY DETERMINATION OF ASSIGNED VALUES AND UNCERTAINTIES	8 8		
4.	METRO	DLOGICAL TRACEABILITY	16		
5.	CONCLUSIONS				
APP	ENDIX I	. TABLES OF MEASUREMENT RESULTS	17		
APP	ENDIX I	I. FIGURES OF REPORTED RESULTS	31		
APPENDIX III. DATA ANALYSIS			41		
REF	ERENCE	ES	43		
LIST	OF PAR	RTICATING LABORATORIES	45		
CON	TRIBUT	ORS TO DRAFTING AND REVIEW	49		

1. INTRODUCTION

The accurate and precise determination of radionuclide concentrations in marine samples is an important aspect of marine radioactivity assessment and in the use of radionuclides in studies of oceanographic processes. To support and improve data quality, the IAEA Environment Laboratories (IAEA-EL) in Monaco regularly conduct characterization studies aimed to assign values to reference materials for radionuclides and other components in different matrices of marine samples as an integral part of the Sub-programme IAEA Reference Products for Science and Trade [1, 2].

In collaboration with HELCOM-MORS, sediment was sampled by the RV Aranda August 2012 cruise on 26 August 2012, at 82 m depth in the Baltic Sea (59° 34.91' N, 23° 37.61' E) at the station JML.

As the sample was collected in the Baltic Sea, elevated levels of long-lived anthropogenic radionuclides (such as caesium, plutonium isotopes) were expected due to the contamination caused by the Chernobyl nuclear accident. Participants were informed that the expected activities for natural and anthropogenic radionuclides would be in the ranges:

- γ-ray emitting radionuclides 0.1–1.5 kBq kg⁻¹
- α-particle emitting radionuclides 0.5–5 Bq kg⁻¹

The results of anthropogenic and natural radionuclides from 27 laboratories were used by the IAEA-EL to calculate the certified and information values of the new certified reference material (CRM). This report includes all details on the production of IAEA-465, complying the relevant standard ISO 17034 and ISO Guide 35 [3,4].

2. METHODOLOGY

2.1. SAMPLING AND PREPARATION OF THE MATERIAL

A total mass of 225 kg wet sediment was sampled by box corer (20 cm \times 20 cm) on 26 August 2012, at 82 m depth in the Baltic Sea (at 59° 34.91' N, 23° 37.61' E; station JML of the RV Aranda August 2012 cruise for the HELCOM COMBINE program (HELCOM Contracting Parties within the COMBINE monitoring program).

The sediment sample was first air-dried to 108 kg and subsequently freeze-dried yielding 60 kg of dry sediment. The sample was then ground into powder using a micronisation technique (air-jet mill). The powder was then homogenised by mixing in a nitrogen atmosphere, then bottled and sealed in polyethylene flasks (50 g units) and coded as IAEA-465. A total of 960 bottles were produced. All bottles of sediment powder were sterilised with a 28 kGy gamma-ray dose (⁶⁰Co) at an irradiation facility (Synergy Health, France).

The density of sediment is $0.5 \text{ kg} \cdot \text{dm}^{-3}$. The particle size distribution is shown in Fig. 1. The dominant particle size (approx. 80%) is between 1 and 10 microns.

The major elemental composition (excluding carbon and oxygen) of the sediment is 1.7% of Al, 12.9% of Si, 3.25% of K, 0.76% of Ca and 4.6% of Fe determined by XRF technique.

FIG.1. Particle size distribution of the IAEA-465 CRM.

2.2. HOMOGENEITY STUDY

Sample homogeneity was checked via three different ways:

- the basic sediment elements were analysed by XRF technique from 16 packing bottles randomly selected (bottles number 120, 137, 229, 250, 3, 346, 371, 446, 489, 561, 611, 690, 721, 801, 841, 921), taking three 4 g aliquots, the results evaluated for Al, Si, S, Cl, K and Fe as main components, and for Zn, Br, Rb and Sr as minor elements,
- gamma-ray spectrometry analysis from 15 packing bottles randomly selected (bottles number 5, 250, 611, 921, 120, 841, 446, 561, 137, 90, 371, 489, 801, 781, 229) and 3 subsamples of 40 g sample size, and the second was performed on 20 randomly selected bottles (bottles number 665, 682, 501, 505, 524, 537, 539, 546, 547, 553, 555, 720, 625, 504, 517, 687, 575, 491, 681, 606) taking 20 g of sample.
- 3. alpha emitting natural and transuranic radionuclides were determined by AMS (for Pu isotopes) and triple quadrupole ICP-MS (for U and Th isotopes) and by alpha particle spectrometry. Both between and within packing unit homogeneity was assessed.

The results were evaluated by basic statistical methods using the decomposition of standard deviation type measurement uncertainties, assuming that the remaining uncertainty is due to the heterogeneity only, as a conservative approach. The heterogeneity markers were selected according to the origin of the radionuclides.⁴⁰K represents a macro component of the raw matrix (sediment, 3.25% K), and the ²³²Th-series (²²⁸Ac, ²⁰⁸Tl) gives some information about the natural origin minor components. The Pu isotopes and ¹³⁷Cs are considered as anthropogenic origin pollutants, and the U isotopes can be a mixture of natural and anthropogenic pollution.

From these three separate sets of analytical results obtained from homogeneity tests, only one typical heterogeneity parameter was assessed and used in the final uncertainty budget.

2.3. STABILITY STUDIES

Both long-term and short-term stability of the IAEA-465 are demonstrated. Considering the long preparation process (from 2012 to 2020), the long-term stability can be assessed, via measurements performed during this period.

The conditions of the short-term stability test simulate the expected harsh transport situations with high variation of ambient temperature and exposure to direct heat radiation.

Activity concentrations of selected representative radionuclides (⁴⁰K, ¹³⁷Cs, ²¹⁰Pb, ²²⁸Ra and ²³⁸U) from IAEA-465 samples stored at ambient temperature (AT, approx. 22 °C), at -25 °C and at 70 °C for two weeks have been determined by gamma-ray spectrometry to assess stability under simulated varying environmental conditions.

Radionuclide	Temperature	Bottle number (number aliquots)	Confirmation measurement (Y/N)	Number of measurements
⁴⁰ K, ¹³⁷ Cs, ²¹⁰ Pb	AT (22°C)	953 (2), 954 (2)	Y	4
²²⁸ Ra, ²³⁸ U	AT (22°C)	953 (2), 954 (2)	Y	4
⁴⁰ K, ¹³⁷ Cs, ²¹⁰ Pb	-25°C	404 (2), 863 (2), 631 (1)	Y	5
²²⁸ Ra, ²³⁸ U	-25°C	404 (2), 863 (2), 631 (1)	Y	5
⁴⁰ K, ¹³⁷ Cs, ²¹⁰ Pb	70°C	448 (2), 880 (2), 568 (1)	Y	5
²²⁸ Ra, ²³⁸ U	70°C	448 (2), 880 (2), 568 (1)	Y	5

TABLE 1. IAEA-464 GAMMA-RAY SPECTROMETRY MEASUREMENT FOR SHORT-TERM STAILITY CHECK STATISTICAL EVALUATION OF THE XRF MEASUREMENTS

2.3.1. Short-term stability study

The radionuclides were selected to keep the measurement uncertainty components as low as possible, by using fewer complex spectra evaluation gamma-ray spectrometry. Radionuclides with simple gamma-ray spectrometry spectra evaluations were selected to keep the measurement uncertainty components as low as possible. Precise repeatability parameters for each radionuclide were determined with a series of repeated measurements. The spectra were evaluated correcting for the sample mass and radioactive decay, and the gamma results were directly compared using zeta-score evaluation [6].

2.3.2. Long-term stability study

The results obtained from the short-term stability check, performed in 2020 (see above 2.3.1) were also used for long-term stability (or monitoring), as they were performed more than 5 years after the first homogeneity study by gamma-ray spectrometry at RML in 2012.

The results of the confirmation measurements were compared with the original Certified and Information Values by statistical evaluation using zeta-score calculation. Once the stability of the material was confirmed, all assigned values and their uncertainties of the activity concentrations were decay corrected to a new reference date of the 1st January 2020, while updated the reporting format of the uncertainties.

2.4. CHARACTERISATION

This characterisation study was organised to obtain sufficient data using different analytical methods on a sediment sample with elevated radionuclide levels in the Baltic Sea region due to the influence of the Chernobyl nuclear accident.

The characterisation study was designed to include the analysis of anthropogenic and natural radionuclides. Participating laboratories were requested to determine as many radionuclides as possible from the following: 40 K, 137 Cs, 210 Pb, 210 Po, 226 Ra, 228 Ra, U, Th and Pu isotopes. Any additional radionuclide measurements were included in the report as information values, unless sufficient data was available to justify statistical evaluation. The participating laboratories were chosen for both radiometric (γ -ray spectrometry, α -particle spectrometry and β -particle counting) and mass spectrometry measurement techniques (e.g., ICP-MS and AMS).

The samples were distributed to the selected 26 laboratories in May 2016. Each participant received 50 g of the sediment sample.

For each radionuclide analysed, the following information was requested:

- Average mass of sample,
- Number of analyses,
- Mass activity concentration calculated in net values (i.e., corrected for blank, background, moisture content, etc.), expressed in Bq kg⁻¹,
- Estimate of whole budget uncertainty contribution,
- Description of chemical procedures and counting equipment,
- Reference standard solutions used; and
- Chemical recoveries, counting time, half-life (using data base for decay correction: <u>http://www.lnhb.fr/nuclear-data/module-lara/)</u>.

Results not statistically significant were reported as "less than" values.

The reference date for decay correction purposes was set at 26 August 2012.

The selection of participants for this characterisation study was based on the measurement performances demonstrated by their laboratories in the previous IAEA inter-laboratory comparisons and certification campaigns on marine sediments. Only results from laboratories with a quality system, using validated methods, applying uncertainty and traceability concepts, and having provided good results in previous IAEA interlaboratory comparisons were accepted for the calculation of certified values and their uncertainties.

The deadline for reporting data was set for 30 September 2016. A reminder was sent to participants who did not submit the results in time extending the deadline to March 2017. A total of 26 laboratories sent their reports. The list of reported radionuclides is given in Table 9, Appendix I.

2.5. MOISTURE CONTENT DETERMINATION

The moisture content of the freeze-dried material, determined by drying a 1 g aliquot to a constant mass at 105°C, was found to be approximately 3.3 % at the time of the preparation of this sample. However, as the moisture content may change with the ambient humidity and temperature, it was recommended that it be determined again by the analyzing laboratories by drying at 105°C to a constant mass at the time of analysis in the laboratory and to correct the results accordingly.

3. RESULTS AND DISCUSSION

3.1. RESULTS OF HOMOGENEITY STUDY

3.1.1. Overall homogeneity study

The results obtained from XRF analysis provide a comprehensive and statistically strong picture about the homogeneity of the basic elemental composition of the material. The grain size is between 1–10-micron meter, and it was assumed that it will be similar for all radioactive analytes. The evaluation of the XRF measurement results from three 4 g aliquots from 16 packing bottles are presented in TABLE 2.

TADLE 2. STAT	I BIICAL LVALUA		TIL ARI WILASON		
	Average		(Swb), within	(s _{bb}), between	up heterogeneity
Analyte	concentration	unc.	units*	bottle	(relative value)
Al, %	1.676	0.091	0.117	0.121	0.097 (5.80%)
Si, %	12.821	0.086	0.171	0.240	0.170 (1.33%)
S, %	0.636	0.006	0.018	0.018	0.015 (2.31%)
Cl, %	0.943	0.004	0.008	0.017	0.011 (1.15%)
K, %	3.246	0.014	0.016	0.037	0.023 (0.72%)
Fe, %	4.609	0.008	0.013	0.047	0.028 (0.61%)
Zn, mg·kg ⁻¹	177.56	1.94	1.58	3.59	2.26 (1.28%)
Br, mg·kg ⁻¹	156.06	0.91	0.78	2.29	1.40 (0.89%)
Rb, mg·kg ⁻¹	154.69	0.81	0.62	2.54	1.51 (0.98%)
Sr, mg·kg ⁻¹	132.51	0.60	0.58	1.69	1.03 (0.78%)

TABLE 2. STATISTICAL E	EVALUATION OF THE	XRF MEASUREMENTS
------------------------	-------------------	------------------

*Calculated from three replicates

Where the

- S_{wb} , % standard deviation due to the within unit of bottle, estimated from the three replicates
- S_{bb} , % standard deviation due to the between units of bottles, estimated from the averages of each bottle

The typical value for material heterogeneity, based on a conservative approach is 1.58%.

Using gamma-ray spectrometry, two homogeneity tests were carried out, the first was performed on 15 randomly selected bottles taking three 40 g of sample aliquots of each, and the second was performed on 20 randomly selected bottles taking 20 g of sample. For the former case of γ -emitters measurements, the sediment sample was sealed in a tin-can geometry for three weeks to obtain the ²²⁶Ra–²²²Rn equilibrium (and its progenies) before gamma-ray spectrometry measurement. For the latter case the direct gamma measurement was performed for ⁴⁰K and ¹³⁷Cs. The calculation of normalized count numbers and uncertainties were done following ISO 18589-3 [5] and procedures set up by the Radiometrics Laboratory. The method repeatability was determined by repeated measurement (under repeatability conditions for 10 times) of one selected sample (sample number 606, see detail in 2.2 for homogeneity study). For the assessment of the heterogeneity, the residual parts of the peak area variances were used according to ISO Guide 35:2017 [4]. The results of the statistical evaluation are summarized in TABLE 3.

TABLE 3. STATISTICAL EVALUATION OF HOMOGENEITY TEST BY GAMMA-SPECTROMETRY FOR 40 G SAMPLE SIZE

Nuclide	Energy KeV	Counts	u, count	Min, %	Max, %	S _{wb} , %	Sbb, %	Srep.lim	$u_{het(max)}$	$u_{het(min)}, \frac{0}{0}$
⁴⁰ K	1460	11157	106	-2.41	3.03	0.93	0.65	2.69	1.14	0.63
¹³⁷ Cs	661.7	13265	115	-2.01	2.88	0.74	1.09	2.14	1.32	1.0
²¹⁴ Pb	351.9	3627	60	-8.96	15.26	1.56	4.48	4.77	4.77	4.48
²¹⁴ Bi	609.3	2614	51	-6.41	16.54	2.52	4.76	7.25	5.39	5.02
226Ra(sum)	185/	8848	94	-7.53	16.0	0.97	4.58	2.79	4.68	4.56
	186									
²²⁶ Ra	186	1309	36	-14.4	19.2	1.15	3.45	3.31	3.64	2.36
(- ²³⁵ U)										
²²⁸ Ac	911.1	2082	46	-3.48	4.63	2.10	0.81	6.06	2.25	0.53
²²⁸ Ac	338.3	1547	39	-6.55	6.0	2.13	1.50	6.13	2.60	0.55
²⁰⁸ Tl	583.2	2455	50	-7.56	4.4	1.97	1.47	5.67	2.46	1.40

Where the

- Counts the normalized counts for uniform counting time (60000 s) and for sample weight
- u, counts the uncertainty of count numbers
- Min, % the lowest relative deviation from 3x15 measurement
- Max, % the highest relative deviation from 3x15 measurement
- swb, % standard deviation due to the within unit of one bottle, estimated from the three replicates

- $s_{bb}, \%$ standard deviation due to the between bottles, estimated from the averages of each bottle
- Srep.lim, % repeatability limit estimated from the replicates
- uhet(max), % estimated uncertainty due to the heterogeneity based on conservative approach
- u_{het(min)}, % estimated uncertainty due to the heterogeneity without the statistical variation of the radioactive decay

The estimated heterogeneity parameters from the radon progenies are much higher than others, almost independent from the detected counts numbers. The likely reason is the variation of the ²²²Rn concentration in the air of the laboratory. In cases of relatively low counts numbers from the analyzed sample, a small change may have a visible effect in the peak area. The distribution of these results is skewed towards high count numbers.

Decreasing the sample quantity to 20 g, the ⁴⁰K and ¹³⁷Cs (natural and anthropogenic representatives) were tested by gamma-ray spectrometry, with the same results. The evaluation of the measurement results is summarized in TABLE 4.

Parameter	⁴⁰ K	¹³⁷ Cs
Number of results	20	20
Normalized average count numbers	5110	6223
Standard deviation	68	155
Minimum, %	-2,62	-5.05
Maximum, %	2,67	5.59
s _{bb} , %	1.33	2.49
s _{rep.lim} , %	2.1	3.07
u _{het(max)} , %	1.33	2.49
u _{het(min)} , %	1.1	1.9

*Parameters are the same definitions as listed for TABLE 3.

For the 40 g aliquot size, the estimated typical uncertainty from the average variances (based on the conservative approach) is 1.61% for within and 1.76% for between packing units, while the combined value is 2.39%, excluding the ²²²Rn progenies. Decreasing the aliquot size to 20 g had no significant change, as shown in TABLE 4.

These values are in the same order of magnitude to the XRF results, however the differences between the ⁴⁰K and ¹³⁷Cs indicate that the distribution of the radioactive contaminants might be slightly different compared to the basic rock element composition.

The between bottle homogeneity was tested for alpha emitting radionuclides using a 5 g sample size. Eight aliquots from one packing bottle were analyzed for Pu isotopes, a pure anthropogenic origin pollutant. The results are summarized in TABLE 5. Wet digestion, oxidation degree adjustment, separation by ion exchange chromatography and alpha particle spectrometry was the applied radioanalytical method.

TABLE 5. RESULTS	OF THE BETWEEN E	BOTTLE HOMOGENE	TTY STUDY FOR PU	ISOTOPES
Nuclide	a*, Bq∙kg⁻¹	u*, Bq·kg ⁻¹ (%)	Min, %	Max, %
²³⁹⁺²⁴⁰ Pu	2.168	0.053 (2.45)	-3.10	4.61
²³⁸ Pu	0.0597	0.0053 (8.95)	-12.31	15.11

*a as activity concentration and u as standard deviation of 8 measurements.

3.1.2. Within-bottle homogeneity study/minimum sample intake

A third within bottles test was performed on ten 0.3 g aliquots for plutonium isotope analysis by mass spectrometry AMS by Centro Nacional de Aceleradores, Universidad de Sevilla, Spain and on ten 0.3 g aliquots for uranium isotope determination using ICP-MS QQQ triple quadrupole system by the Departamento de Fisica Applicada I, Universidad de Sevilla, Spain. The results of the statistical evaluation are summarized in TABLE 6.

TABLE 6. RESULTS OF THE SMALL QUANTITY (WITHIN BOTTLE) OF SAMPLE MEASUREMENTS FOR IAEA-465

Sample ID	Nuclide	a, Bq∙kg⁻¹	u, Bq∙kg⁻¹	Min, %	Max, %	Method
2	²³⁹ Pu	1.166	0.088	-9.7	14.6	AMS
	²⁴⁰ Pu	0.843	0.060	-9.3	14.8	
	²³⁶ U	$2.01 \cdot 10^{-10}$	3.07.10-11	-16.9	33.9	
11	²³⁸ U	110	2	-1.33	4.82	ICP-MS QQQ
	²³⁵ U	5.08	0.09	-1.34	4.34	
	²³⁴ U	117	2	-1.09	4.22	
	²³⁰ Th	79.2	5.9	-5.9	18.2	
	²³² Th	64.9	3.3	-7.9	12.1	

*Parameters are the same definitions as listed for TABLE 5.

The range of the reported results demonstrate that the sample homogeneity acceptable for extremely low sample sizes of 0.3 g.

The conservative estimation of the uncertainty due to the sample heterogeneity of 2.39% is accepted for all analytes, considering that the minimum sample size for gamma-ray spectrometry is 20 g and 5 g for radiochemistry methods. For special analytical methods like AMS or ICP-MS, a smaller sample size of 0.3 g can be used, however the variation between results is expected to be higher.

Since the ISO Guide 35 recommends any statistical evaluation for the assessment of the material heterogeneity based on several repetitions and analyzing multiple packing bottles, the observed range (Min%, Max%) gives useful information about the expected result from single sample measurement for the user.

3.2. RESULTS OF STABILITY STUDY

The short-term stability test simulates the possible harsh transport conditions and gives some information about the behavior of the material. This short-term stability of the material was tested by keeping two bottles at -25°C and two bottles at +70°C (and for comparison, two other bottles were kept at the ambient temperature) for a period of two weeks. The samples detailed in TABLE 1 were treated accordingly and analyzed by gamma-ray spectrometry (in 2020), focusing on the

target radionuclides and method repeatability. The measurement results were evaluated by zetascore. Since the reference values for the zeta-score calculation were determined 4 years ago (in 2016), this test will be considered as a long term-stability check as well.

The zeta-score test was defined as:

$$\zeta = \frac{a_{\rm m} - a_{\rm c}}{\sqrt{u_{\rm m}^2 + u_{\rm c}^2}} \tag{1}$$

where:

 $a_{\rm m}$ is the measured value [Bq kg⁻¹] $a_{\rm c}$ is the certified value [Bq kg⁻¹] u_m is the standard uncertainty (k = 1) for the measured value [Bq kg⁻¹] u_c is the standard uncertainty (k = 1) for the certified value [Bq kg⁻¹]

If the absolute value of the zeta-score test exceeded 2.58, the results were evaluated as being significantly different (at a 99% confidence level).

For IAEA-465, five radionuclides ⁴⁰K, ¹³⁷Cs, ²¹⁰Pb, ²²⁸Ra and ²³⁸U with an original certified value, were tested for stability at different temperatures. As shown in TABLE 7, all the zeta-scores returned (absolute) values below the critical value of 2.58 (representing a confidence level of 99%). This confirms the short-term and long-term stability of IAEA-465.

Nuclide	⁴⁰ K			¹³⁷ Cs			²¹⁰ Pb		
			zeta-			zeta-			zeta-
Bottle/Aliquot	a, Bq kg ⁻¹	u*, Bq kg ⁻¹	score	a, Bq kg ⁻¹	u*, Bq kg ⁻¹	score	a, Bq kg ⁻¹	u*, Bq kg ⁻¹	score
Reference									
values	1073	50		90.2	2.7		160	5.5	
953/1 ^A	1069.7	40.0	-0.07	89.6	2.9	-0.15	146	18	-0.73
953/2 ^A	1087.7	40.6	0.21	90.7	2.9	0.13	135	41	-0.61
954/1 ^A	1088.2	40.6	0.22	91.6	3.0	0.34	142	24	-0.74
954/2 ^A	1069.9	40.0	-0.06	89.9	2.9	-0.07	136	15	-1.50
$404/1^{B}$	1072.3	40.1	-0.03	90.8	3.0	0.15	158	18	-0.08
$404/2^{B}$	1083.5	40.5	0.15	91.3	3.0	0.28	129	17	-1.77
863/1 ^B	1081.2	40.4	0.11	90.9	3.0	0.17	149	17	-0.63
$863/2^{B}$	1082.1	40.4	0.13	90.9	3.0	0.17	156	16	-0.22
448/1 ^C	1024.3	46.5	-0.73	90.6	3.5	0.09	129	17	-2.12
448/2 ^C	1050.2	47.6	-0.35	93.2	3.6	0.67	132	17	-1.95
880/1 ^C	1068.6	39.9	-0.08	89.1	2.9	-0.28	183	21	0.76
$880/2^{C}$	1034.1	38.7	-0.63	90.0	2.9	-0.06	131	16	-2.10
581/1 ^C	1057.2	39.5	-0.26	89.8	2.91	-0.1	152	16	-0.73

TABLE 7. RESULTS OF SHORT-TERM AND LONG-TERM STABILITY TEST MEASUREMENTS FOR IAEA-465

*The uncertainty is calculated using the k=1 coverage factor

^AAmbient Temperature (bottles number 953 and 954)

^BTemperature at -25° C (bottles number 404 and 863)

^CTemperature at +70°C (bottles number 448, 880 and 581)

Nuclide	²²⁸ Ra			²³⁸ U		
Bottle/Aliquot	a, Bq kg ⁻¹	u*, Bq kg ⁻¹	zeta-score	a, Bq kg ⁻¹	u*, Bq kg ⁻¹	zeta-score
Reference values	64.5	3.0		87.3	3.1	
953/1 ^A	63.7	3.5	-0.18	95.2	7.7	0.96
953/2 ^A	64.9	3.5	0.08	76.0	6.8	-1.51
954/1 ^A	62.4	3.4	-0.46	83.2	6.6	-0.56
954/2 ^A	63.6	3.4	-0.20	81.4	7.2	-0.74
$404/1^{B}$	64.1	3.4	-0.09	86.0	7.5	-0.16
$404/2^{B}$	64.0	3.5	-0.10	99.6	7.7	1.47
863/1 ^B	65.4	3.6	0.19	81.4	7.5	-0.72
$863/2^{\mathrm{B}}$	65.3	3.5	0.16	84.2	7.2	-0.40
448/1 ^C	61.4	3.2	-0.69	82.8	7.2	-0.57
448/2 ^C	62.9	3.4	-0.35	84.4	7.3	-0.36
880/1 ^C	61.8	3.4	-0.60	82.1	6.4	-0.73
880/2 ^C	61.1	3.2	-0.76	81.5	6.7	-0.78
581/1 ^C	63.3	3.5	-0.26	93.3	6.8	0.81

TABLE 7. RESULTS OF SHORT-TERM AND LONG-TERM STABILITY TEST MEASUREMENTS FOR IAEA-465 (cont'd)

*The uncertainty is calculated using the k=1 coverage factor

^AAmbient Temperature (bottles number 953 and 954)

^BTemperature at -25° C (bottles number 404 and 863)

^CTemperature at +70°C (bottles number 448, 880 and 581)

3.3. DETERMINATION OF ASSIGNED VALUES AND UNCERTAINTIES

The characterisation campaign resulted in 29 reported radionuclides of interest. The obtained data was first checked for compliance with the certification requirements, and then for validity based on technical reasoning.

The property values were determined using robust statistics which, as described in ISO 13528 [6] were used for the determination of the assigned values. The robust mean and robust standard deviations were calculated as per Algorithm A as described in Annex C.21 of ISO 13528 [6]. The calculations are summarized in Appendix III.

The standard deviation of the robust mean was used as the uncertainty of the characterization for each radionuclide, and the uncertainty due to the heterogeneity (2.39 %) and the uncertainty of the short term and long-term stability check (0 %) were propagated to this component.

The activity concentrations for 29 radionuclides were reported and results are shown in Table 9, Appendix I, with the number of reporting laboratories for each radionuclide. The results for the most frequently measured radionuclides can be found in Tables 10 to 25, Appendix I, and Figures 2 to 9, 11 and 13 to 17, Appendix II, while the less frequently measured radionuclides are presented in Table 26, Appendix I. The certified values obtained after statistical treatment are presented in Appendix I, Table 27, and information values are presented in Appendix I, Table 28, with nuclide ratios for uranium and plutonium given in Table 29.

3.4. EXPLANATION OF TABLES

Tables 10–26 contain the original reported data with a reference date of 26-08-2012 and an expanded uncertainty (k=2). The robust mean was used for the assigned values. Tables 27–28

contain the derived property values corrected for radioactive decay (and in some cases ingrowth) to 01-01-2020 and reported with an expanded uncertainty (k=2).

3.4.1. Laboratory code

Each laboratory was assigned an individual code number to ensure anonymity.

3.4.2. Method code

The analytical techniques employed by participants are specified with following codes:

THE CODE OF THE MOLETHOLE TECHNQUES THTELED BY THIRTICHTENTS
--

Method code	Method	Detailed procedure
А	α-particle spectrometry	Treatment, evaporation/precipitation, ion exchange and electrodeposition followed by α-particle spectrometry
G	γ-ray spectrometry	High resolution γ-ray spectrometry using HP-Ge (High Purity Germanium) detectors
LSC	Liquid Scintillation Counting	Treatment, evaporation/precipitation, Liquid Scintillation Counting
ICP-MS	Inductively Coupled Plasma Mass Spectrometry	Treatment, ion exchange, ICP-MS (Inductively Coupled Plasma Mass Spectrometry)
AMS	Accelerator Mass Spectrometry	Leaching, treatment, AMS (Accelerator Mass Spectrometry)

3.4.3 Number of results

The number of determinations corresponds to the number of individual results received from each laboratory.

3.4.4 Activity concentrations

The activity corresponds to the arithmetical or weighted mean computed from all the individual results obtained from the participants with the corresponding standard deviation or weighted uncertainty. They are calculated as activity concentrations for each radionuclide respectively and expressed in the derived SI unit Bq kg⁻¹. A robust mean is given for certification.

3.5. EXPLANATION OF FIGURES

The figures (*Figs.* 2 to 9, 11 and 13 to 17, Appendix II) present the data in order of ascending activity concentration. Data in Figures 2–9, 11 and 13–17 are the original reported data and standard uncertainty (k = 2) with a reporting date of 26-08-2012. Reported values are coloured green with a circular marker, vertical lines represent the standard uncertainties. The horizontal red line is the robust mean for each nuclide on the reference date and the red dot lines are the standard uncertainty (k = 2) of the robust mean. Figures 10 and 12 show the ingrowth and decay of ²²⁶Ra and ²¹⁰Pb over time and are for information only.

3.6. CRITERIA FOR ASSIGNING CERTIFIED VALUES AND UNCERTAINTIES

A good agreement within the stated uncertainty was observed for results obtained with different methods. Therefore, all results were considered in deriving the certified values.

A certified value was assigned when at least 5 independent results were available and its relative expanded uncertainty at k = 2 was less than 15% (i.e., $u(\bar{x})/\bar{x} \le 0.15$). These criteria were fulfilled for ⁴⁰K, ¹³⁷Cs, ²¹⁰Pb (with ²¹⁰Po daughter), ²²⁶Ra (with ²¹⁴Bi and ²¹⁴Pb daughters), ²²⁸Ra (with ²²⁸Ac daughter), ²²⁸Th (with ²²⁴Ra, ²¹²Bi, ²¹²Pb and ²⁰⁸Tl daughters), ²³⁰Th, ²³²Th, ²³⁴U, ²³⁵U, ²³⁸U (with ²³⁴Th and ^{234m}Pa daughters), and ²³⁹⁺²⁴⁰Pu. The certified values are presented in Table 27, together with their expanded uncertainty (k = 2).

3.7. RESULTS DISCUSSION

3.7.1. ANTHROPOGENIC RADIONUCLIDES

Results of the determination of ¹³⁷Cs, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu and ²⁴¹Am reported by participants are presented in Tables 10–12, Appendix I, and shown in Figures 2–5, Appendix II.

3.7.1.1. ¹³⁷Cs

Twenty-six data sets were reported by 24 laboratories (Table 10, Appendix I and *Fig.* 2, Appendix II); all data sets could be used for data evaluation. The laboratories mainly used direct γ -ray spectrometry for the ¹³⁷Cs determination.

3.7.1.2. Plutonium isotopes

The majority of participants used a conventional radiochemistry method including sample treatment, ion-exchange separation followed by electrodeposition and α -particle spectrometry. Some laboratories could separately determine ²³⁹Pu and ²⁴⁰Pu using ICP-MS and AMS, after radiochemical separation of plutonium isotopes.

a) ²³⁸Pu

Thirteen data sets were reported (Table 11, Appendix I and *Fig.* 3, Appendix II), which were used for data evaluation. This nuclide was measured by α -particle spectrometry.

b) ²³⁹⁺²⁴⁰Pu

Twenty data sets were reported from 19 laboratories (Table 11, Appendix I and *Fig.* 4, Appendix II). Both α -particle spectrometry and mass spectrometry techniques were used for ²³⁹⁺²⁴⁰Pu determinations. Most analyses were performed using conventional α -particle spectrometry, while some results were combinations from ICP-MS and AMS methods.

3.7.1.3.²⁴¹Am

Ten laboratories reported 12 data sets of ²⁴¹Am activity concentration with 7 using α -particle spectrometry with prior radiochemical purification from rare earth elements, and 5 laboratories using direct γ -ray spectrometry measurement (Table 12, Appendix I and *Fig.* 5, Appendix II). It is worth to noting that the ²⁴¹Am values given by α -particle spectrometry appear lower than those obtained by γ -ray spectrometry, however there is no significant difference between two α -particle spectrometry and γ -ray spectrometry measurement techniques.

3.7.2. NATURAL RADIONUCLIDES

3.7.2.1. ²³⁸U Uranium series

a) ²³⁸U

Eighteen data sets were reported from 15 laboratories (Table 13, Appendix I and *Fig.6*, Appendix II). Six participants used a conventional method based on sample treatment, ion-exchange separation followed by electrodeposition and α -particle spectrometry. Seven other laboratories used direct γ -ray spectrometry technique. Five laboratories could determine the activities using ICP-MS method, with prior radiochemical separation of uranium isotopes. Since ²³⁴Th (8 data sets from 7 laboratories) and ^{234m}Pa (3 data sets from one laboratory) are in secular equilibrium with ²³⁸U, the data from all three radionuclides was used to calculate the ²³⁸U value.

b) ²³⁴U

Eleven data sets were reported from 10 laboratories (Table 15, Appendix I and *Fig.* 7, Appendix II). Most participants used a conventional method based on sample treatment, ion-exchange separation followed by electrodeposition and α -particle spectrometry. Three laboratories could determine the activities using ICP-MS method, with prior radiochemical separation of the uranium isotopes.

c) ²³⁰Th

Five data sets were reported (Table 16, Appendix I and *Fig.*8, Appendix II). Most participants used a conventional method based on sample treatment, ion-exchange separation followed by electrodeposition and α -particle spectrometry. One laboratory could determine the activities using ICP-MS method, with prior radiochemical separation of the uranium isotopes.

d) ²²⁶Ra

Fifteen data sets were reported from thirteen laboratories (Table 17, Appendix I, and *Fig.*9, Appendix II), also 7 and 6 laboratories reported ²¹⁴Bi and ²¹⁴Pb results, respectively (Table 18, Appendix I). Most laboratories used direct γ -ray spectrometry to determine ²²⁶Ra activity at 186 keV or through their progeny ²¹⁴Bi and ²¹⁴Pb peaks at 609 and 352 keV, respectively. One laboratory used α -particle spectrometry technique and another one used LSC measurement method. The difference in the ²³⁰Th and ²²⁶Ra results indicates that the two nuclides are not in secular equilibrium and deriving the ²²⁶Ra value at some future date needs to take account of ingrowth from ²³⁰Th as well as simple radioactive decay. The change in activity concentration of ²²⁶Ra over time is done via the Bateman equations [8].

$$c_{Ra-226,t} = c_{Ra-2} \, _{,0} \cdot e^{-\left(\frac{\ln 2}{T_{Ra-2}}\right) \cdot t} + c_{Th-23} \, _{,0} \cdot \left[\left(\frac{T_{Th-23}}{T_{Th-230} - T_{Ra-2}}\right) \cdot e^{-\left(\frac{\ln 2}{T_{Th-230}}\right) \cdot t} + \left(\frac{T_{Th-23}}{T_{Ra-226} - T_{Th-230}}\right) \cdot e^{-\left(\frac{\ln 2}{T_{Ra-2}}\right) \cdot t}\right]$$

$$(Eq. 1)$$

Where:

0 (or t₀): The reference time, in this case – 2012-08-26 00:00 t: Time between the reference time and the time of measurement c_{Th-23} ,0: Concentration of ²³⁰Th at the reference time c_{Ra-2} ,0: Concentration of ²²⁶Ra at the reference time c_{Ra-22} ,t: Concentration of ²²⁶Ra at the time of measurement T_{Th-230} : Radioactive half-life of ²³⁰Th T_{Ra-226} : Radioactive half-life of ²²⁶Ra The change in activity concentration of ²²⁶Ra over time is given in figure 10.

e) ²¹⁰Pb

Twenty-four data sets were reported from 16 laboratories (Table 19, Appendix I and *Fig.*11, Appendix II). ²¹⁰Pb and ²¹⁰Po were considered to be in equilibrium at the characterisation study period (2016), as ten half-lives of ²¹⁰Po had passed since the sampling time (August 2012) and the ²¹⁰Pb values were decay corrected to the reference date on 26 August 2012. Results for ²¹⁰Po were divided by the activity ratio between ²¹⁰Pb and ²¹⁰Po (1.018), when these nuclides are in secular equilibrium:

$$\frac{c_{Po-210,eq}}{c_{Pb-210,eq}} = \frac{T_{Pb-2}}{T_{Pb-210} - T_{Po-21}}$$
(Eq. 2)

Where:

 c_{Po-} , eq: Concentration of 210 Po when secular equilibrium has been reached c_{Pb-21} , eq: Concentration of 210 Pb when secular equilibrium has been reached T_{Pb-21} : Radioactive half-life of 210 Pb T_{Po-210} : Radioactive half-life of 210 Po

While most participants used direct γ -ray spectrometry to measure ²¹⁰Pb at 46.5 keV, nine participants used α -particle spectrometry with prior radiochemical purification of ²¹⁰Po, then auto-deposition on a silver disc.

The ²²⁶Ra and ²¹⁰Pb are not in radioactive equilibrium; there is a relatively large ²¹⁰Pb excess in the material, requiring a more complex decay correction method. The supported ²¹⁰Pb is in secular equilibrium with ²²⁶Ra, therefore it (together with its progenies) decays by the ²²⁶Ra half-life, while the unsupported ²¹⁰Pb decays at its own half-life, as shown by the change in activity concentration of ²²⁶Ra over time in the Bateman equations [8].

3.7.2.2 ²³⁵U series

Fourteen data sets were reported from 12 laboratories (Table 20, Appendix I and *Fig.* 13, Appendix II). Five participants used a conventional method based on sample treatment, ion-exchange separation followed by electrodeposition and α -particle spectrometry. Five laboratories determined ²³⁵U using direct γ -ray spectrometry at 186 keV peak/line by subtracting the ²²⁶Ra contribution in the same peak/line; or by assuming that the uranium present was of natural isotopic composition (see Table 29) and thus the activity ratio of ²³⁵U to ²³⁸U was 0.04662 ± 0.00009, which allows the ²³⁵U activity to be estimated by γ -ray spectrometry from the ²³⁴Th activity (which is in secular equilibrium with ²³⁸U) determined from 63.3 and 92.5 keV γ -rays of this nuclide. Three laboratories could determine the activities using ICP-MS method, with prior radiochemical separation of the uranium isotopes.

3.7.2.3. Thorium series

a) ²³²Th

Ten data sets were reported from 9 laboratories (Table 21, Appendix I and *Fig.*14, Appendix II). Three data sets were analysed by γ -ray spectrometry, four others used a conventional method based on sample treatment, ion-exchange separation followed by electro-deposition and α -particle spectrometry; and three data sets were determined by ICP-MS method.

b) ²²⁸Ra

Fourteen laboratories reported data for ²²⁸Ra (Table 22, Appendix I and *Fig.* 15, Appendix II). All laboratories used direct γ -ray spectrometry to determine ²²⁸Ra activity through progeny either ²²⁸Ac at 911 keV or ²²⁸Th at 238 keV or 583 keV. Since ²²⁸Ac is always in secular equilibrium with ²²⁸Ra, the results for ²²⁸Ac are included in the calculation of ²²⁸Ra (Table 23). Based on the reported results and control measurements there is no significant difference between the ²³²Th, ²²⁸Ra and ²²⁸Th and progenies, so it can be assumed that the ²³²Th series are in secular equilibrium.

c) ²²⁸Th

Eight data sets were reported (Table 24, Appendix I and *Fig.* 16 Appendix II). Most participants used direct γ -ray spectrometry to determine ²²⁸Th at two peaks: 238 keV of the ²¹²Pb and 583 keV of the ²⁰⁸Tl isotope. For the activity calculations it must be considered, that the ²⁰⁸Tl is in the 35.93% probability branch after the ²¹²Bi isotope (Table 23).

Two laboratories used a conventional method based on sample treatment, ion-exchange separation followed by electrodeposition and α -particle spectrometry. As the decay chain between ²²⁴Ra and ²⁰⁸Tl is in secular equilibrium with ²²⁸Th, results for ²²⁴Ra, ²¹²Pb, ²¹²Bi and ²⁰⁸Tl are included in the ²²⁸Th dataset. It is assumed that the ²²⁰Rn diffusion cannot influence the equilibrium because of its short half-life.

3.7.2.4. ⁴⁰K

Twenty-four data sets were reported from twenty-three laboratories (Table 25, Appendix I and *Fig.* 17, Appendix II). All participants determined potassium activities by gamma-spectrometry. The data showed good agreement between reported results.

3.7.3. LESS FREQUENTLY REPORTED RADIONUCLIDES

The results for the less frequently reported radionuclides are listed in Table 26, Appendix I.

3.7.3.1. ⁹⁰Sr

One laboratory reported two individual values for 90 Sr using liquid scintillation counting, giving an average value of 16.7 ± 2.4 Bq kg⁻¹.

3.7.3.2. ¹⁵⁵Eu

Two laboratories reported 6 individual values for ¹⁵⁵Eu using γ -ray spectrometry technique, which showed the different values between two laboratories (one laboratory reported the value of 1.87 ±0.13 Bq kg⁻¹ and the other reported the value of 7.11±1.38 Bq kg⁻¹)

3.7.3.4. ²²⁷Ac

One laboratory reported ²²⁷Ac (3.5 ± 0.6) Bq kg⁻¹, which is in the same range of ²³⁵U mass activities (see above) showing that the ²³⁵U and its progeny ²²⁷Ac *might be* in equilibrium, but without further measurements, including determination of ²³¹Pa, a firm conclusion cannot be drawn. This radionuclide is frequently used to determine its parent ²³⁵U activity concentration indirectly.

3.7.3.5. ²³⁶U

One participant reported 9 individual values using AMS technique, give an average of 54 \pm 1 mBq kg⁻¹.

3.7.3.6. ²³⁹Pu and ²⁴⁰Pu

Two laboratories determined separately ²³⁹Pu and ²⁴⁰Pu mass activities using mass spectrometry (ICP-MS and AMS). It is worth noting that the sum of the ²³⁹Pu and ²⁴⁰Pu mass activities determined by these laboratories is in agreement with the ²³⁹⁺²⁴⁰Pu value determined by α -particle spectrometry (2.17 ± 0.04 Bq kg⁻¹).

4. METROLOGICAL TRACEABILITY

Only validated methods and calibrations applied within stated scope were used by participating laboratories in this characterisation study. All results obtained by different laboratories are checked if they are based on reliable measurement standards.

In the individual report form sent to the participants, they were asked to report the results in SI units (expressed as Bq kg⁻¹ dry mass) at the reference date, and to provide the method determination of activity concentration, the details of tracers, and calibration solutions (metrological traceability). The individual results are therefore traceable to the SI. This is also confirmed by the agreement among the technically accepted datasets. As the assigned values are combinations of agreeing results individually traceable to the SI, the assigned quantity values are also traceable to the SI system of units.

5. CONCLUSIONS

In this characterisation study, the 27 selected laboratories (including IAEA-EL) reported results of natural and anthropogenic radionuclides in a sediment sample from Baltic Sea (IAEA-465).

The robust mean mass activities for the sets of individual data were chosen as the most reliable estimates of the true values and are reported as certified and information values. The certified radionuclides include ⁴⁰K, ¹³⁷Cs, ²¹⁰Pb, ²¹⁰Po, ²²⁶Ra, ²²⁸Ra, ²²⁸Th, ²³²Th, ²³⁴U, ²³⁵U, ²³⁸U, and ²³⁹⁺²⁴⁰Pu and the information values are given for other radionuclides ²³⁰Th, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu and ²⁴¹Am. The agreement between the results confirms the absence of any significant method bias (if there is more than one method used) and demonstrates the identity of the radionuclides. Radionuclides are clearly defined as total radionuclide mass fractions and independent of the measurement method.

A summary of the certified and information values with expanded uncertainties for the most frequently reported anthropogenic and natural radionuclides can be found in Table 27 and Table 28, respectively in Appendix I

APPENDIX I. TABLES OF MEASUREMENT RESULTS

Data in Tables 10–26 are the original reported data with a reference date of 26-08-2012 and an expanded uncertainty, where k = 2. The robust mean is included and used as certified values. Tables 27–28 are the derived property values corrected for radioactive decay (and in some cases ingrowth) to 01-01-2020 (using data base for decay correction: <u>http://www.lnhb.fr/nuclear-data/module-lara/</u>) and reported with an expanded uncertainty, where k = 2.

Radionuclide	Number of measurements	Number of results
40K	66	24
⁹⁰ Sr	2	1^{1}
¹³⁷ Cs	73	26
¹⁵⁵ Eu	6	2
$^{208}\text{Tl}^{2}$	21	7
$^{212}{ m Pb}^{6}$	13	4
$^{212}{ m Bi}^{6}$	6	1
224 Ra ⁶	6	1
²²⁸ Th	19	8
228 Th (total) ³	65	21
²²⁸ Ra	37	15
$^{228}Ac^{4}$	17	5
²²⁸ Ra (total)	54	20
²³² Th	34	10
²¹⁰ Po ⁵	22	7
²¹⁰ Pb	44	17
210 Pb (total) ⁷	66	24
²¹⁴ Pb ⁶	17	5
$^{214}{ m Bi}^7$	20	7
²²⁶ Ra	42	15
226 Ra (total) ⁷	79	27
²³⁰ Th	28	5
²³⁴ U	39	11
²³⁴ Th ⁷	23	8
$^{234m}Pa^{8}$	3	1
²³⁸ U	57	18
238 U (total) ⁷	83	27
²²⁷ Ac	10	14
²³⁵ U	45	14
²³⁶ U	9	14
²³⁸ Pu	49	14
²³⁹ Pu	11	2
²⁴⁰ Pu	11	2
²³⁹⁺²⁴⁰ Pu	72	20
$^{241}Am(\alpha)$	20	7
$^{241}Am(\gamma)$	10	5
241 Am (total) ⁸	30	12

¹ One result only, no further analysis possible

⁴ Included in the ²²⁸Ra dataset
 ⁵ Included in the ²¹⁰Pb dataset
 ⁶ Included in the ²²⁶Ra dataset
 ⁷ Included in the ²³⁸U dataset

⁸ Total is for both measurement techniques (α -particle spectrometry and γ -ray spectrometry)

² Included in the ²²⁸Th dataset

³ Total is for principal radionuclides and progeny radionuclides in secular equilibrium

TABLE 10. RESULTS FOR ¹³⁷ Cs IN IAEA-465	
(Reference date: 26 August 2012, unit: Bq kg ⁻¹)	

Lab code	Method code	No. of results	Mass (g)	¹³⁷ Cs
1	G	2	23.69-48.55	132 ± 18
3	G	3	32-34	109 ± 4
4	G	3	49	123 ± 25
5	G	1	4.8735	112 ± 12
6	G	3	31.425	109 ± 10
7	G	4	27	105 ± 9
8	G	1	3.94	116 ± 1
9	G	3	33	95 ± 3
10	G	1	28.46	112 ± 7
11	G	1	11.819	104 ± 4
12	G	3	47.89	114 ± 4
13	G	3	48.9	102 ± 12
14	G	5	4.41-17.82	105 ± 7
15	G	6	44	112 ± 9
16	G	3	19.5-38.9	111 ± 15
17	G	4	49.89	102 ± 15
18	G	1	13.17	89 ± 8
18	G	1	3.81	108 ± 15
19	G	4	46.2	98 ± 7
20	G	4	45.22	101 ± 6
21	G	4	39	100 ± 12
22	G	3	10	102.5 ± 1.1
22	G	3	40	115 ± 2
23	G	2	4.6	104 ± 14
24	G	2	50	100.5 ± 1.5
25	G	3	49.39	108 ± 11
Number of 1 Robust mea Expanded u	reported laborato n ncertainty (k=2)	ry means		26 106.8 6.9

Lab code	Method code	No. of results	Mass (g)	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu
1	А	2	5 52-5 54	0.062 ± 0.014	229 ± 022
2	AMS	9	0.30	_	2.01 ± 0.04
4	A	3	4.9	0.069 ± 0.028	2.23 ± 0.15
5	A	3	5.0-5.3	_	2.13 ± 0.29
6	А	3	15.05 - 6.48	0.058 ± 0.008	2.16 ± 0.10
9	А	3	33	0.081 ± 0.013	2.10 ± 0.09
10	А	3 - 5	5.4-5.9	0.206 ± 0.024	2.14 ± 0.18
12	А	3	5	0.057 ± 0.024	2.12 ± 0.36
13	А	2	0.51-0.523	< 0.054	2.10 ± 0.70
16	А	3	4.9-9.6	_	2.43 ± 0.40
17	А	3	10.03 - 0.06	0.082 ± 0.004	2.12 ± 0.03
18	А	1	14.16	0.074 ± 0.023	2.18 ± 0.27
20	А	4	11.01-11.03	0.079 ± 0.014	2.27 ± 0.15
21	ICP-MS	2	1	_	2.78 ± 0.10
22	А	8	5	0.059 ± 0.020	2.17 ± 0.03
22	А	2	5	$0.054~\pm~0.014$	2.23 ± 0.07
23	А	4	3	$0.053~\pm~0.008$	2.07 ± 0.12
25	А	3	1.07-1.12	_	2.54 ± 0.37
26	А	4	1-2	0.136 ± 0.042	1.84 ± 0.14
27	А	5	3	$0.10 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01$	$2.69 ~\pm~ 0.09$
Number	of reported la	aboratory m	eans	14	20
Robust n	nean			0.073	2.19
Expanded uncertainty (k=2)				0.019	0.06

TABLE 11. RESULTS FOR ²³⁸Pu AND ²³⁹⁺²⁴⁰Pu IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

TABLE 12. RESULTS FOR 241 Am IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg-1)

Lab code	Method code	No. of results	Mass (g)	²⁴¹ Am (x-ray spectrometry)	²⁴¹ Am (α-particle spectrometry)
1	А	2	4.2-4.4	_	$0.77 ~\pm~ 0.08$
6	А	3	15.05-6.48	_	0.96 ± 0.06
8	G	1	3.94	$1.90 \hspace{0.1in} \pm \hspace{0.1in} 0.40$	_
9	А	3	33	_	$0.94~\pm~0.09$
10	G	1	28.46	$1.38 \hspace{0.2cm} \pm \hspace{0.2cm} 0.55$	_
11	G	1	11.819	$1.20 \hspace{0.1in} \pm \hspace{0.1in} 0.30$	_
12	А	3	5	_	0.98 ± 0.24
12	G	3	47.89	$1.50 \hspace{0.1in} \pm \hspace{0.1in} 0.58$	_
17	А	3	10.03-10.06	_	0.61 ± 0.02
17	G	4	49.89	1.17 ± 0.30	_
20	А	4	11.01-11.03	_	0.99 ± 0.15
26	А	2	1–2	_	$0.99 ~\pm~ 0.05$
Number of reported laboratory means Robust mean			eans	5 1.43	7 0.91
Expanded uncertainty (k=2)				0.33	0.13

ab ode	Method code	No. of results	Mass (g)	²³⁸ U
1	А	2	5.52-5.54	79.7 ± 8.2
4	А	3	4.9	76.6 ± 4.9
5	А	5	0.2875-0.3482	89.7 ± 5.1
6	ICP-MS	5	0.2-0.5	85.8 ± 8.7
8	G	1	3.94	97.7 ± 6.1
10	G	1	28.46	94.1 ± 7.5
10	А	3	5.9	85 ± 5
11	ICP-MS	10	0.26-0.29	109.9 ± 0.6
12	G	3	47.89	98.6 ± 7.6
13	G	3	48.9	84 ± 11
13	ICP-MS	1	0.523	85 ± 11
16	А	3	1.95	73.7 ± 5.5
19	G	4	46.2	84.6 ± 8.7
21	ICP-MS	2	1	54 ± 25
22	G	3	40	96 ± 25
25	ICP-MS	3	0.11-0.13	82.0 ± 3.9
25	А	3	1	81.1 ± 4.8
26	А	2	0.5	114 ± 13

TABLE 13. RESULTS FOR ²³⁸U IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

Lab code	Method code	No. of results	Mass (g)	²³⁴ Th*
3	G	3	32-34	84 ± 4
7	G	4	27	86 ± 19
8	G	1	3.94	98 ± 6
15	G	6	44	121 ± 24
17	G	4	49.89	93 ± 13
18	G	1	13.17	52 ± 9
18	G	1	3.81	81 ± 29
22	G	3	40	92 ± 21
Number of Robust me Expanded	reported laborato an uncertainty (k=2)		8 89 14	

TABLE 14. RESULTS FOR ²³⁴Th IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

*The values of ²³⁴Th and ²³⁴mPa (Table 26) will be used for the final ²³⁸U data evaluation (for a total of 27 data sets)

TABLE 15. RESULTS FOR ²³⁴U IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

Lab code	Method code	No. of results	Mass (g)	²³⁴ U
1	А	2	5.52-5.54	83 ± 9
4	А	3	4.9	79 ± 5
5	А	5	0.2875-0.3482	92 ± 3
6	ICP-MS	5	0.2-0.5	89 ± 11
10	А	3	5.9	88 ± 5
11	ICP-MS	10	0.26-0.29	117 ± 1
13	ICP-MS	1	0.523	93 ± 28
13	А	2	0.51-0.523	84 ± 16
16	А	3	1.95	82 ± 6
25	А	3	1	85.6 ± 5.1
26	А	2	0.5	117 ± 14
Number of Robust mea Expanded u	reported laborato an ancertainty (k=2)		11 88.3 7.1	

Lab code	Method code	No. of results	Mass (g)	²³⁰ Th
1	А	2	5.5	72.6 ± 7.4
5	А	5	0.3	69 ± 5
11	ICP-MS	10	0.27	78.3 ± 3.1
25	А	3	1	78.3 ± 4.5
26	А	1	1.01	33.2 ± 2.9
Number of	reported laborato	ry means		5
Robust mean 71.4				71.4
Expanded uncertainty (k=2) 9.3				

TABLE 16. RESULTS FOR ²³⁰Th IN IAEA-465 (*Reference date: 26 August 2012, unit: Bq kg*⁻¹)

TABLE 17. RESULTS FOR ²²⁶Ra IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

Lab code	Method code	No. of results	Mass (g)	²²⁶ Ra
1	G	2	23.69-48.55	58.0 ± 13.0
4	G	3	49	52.6 ± 4.1
5	А	5	0.2875-0.3482	46.7 ± 5.4
5	G	1	4.8735	77.0 ± 17.0
6	G	3	31.425	56.3 ± 5.7
8	G	1	3.94	47.5 ± 1.0
10	G	1	28.46	57.9 ± 4.6
12	G	3	47.89	56.8 ± 3.0
13	G	3	48.9	55.0 ± 6.0
18	G	1	13.17	$45.5 \hspace{0.2cm} \pm \hspace{0.2cm} 7.8$
18	G	1	3.81	55.1 ± 10.8
19	G	4	46.2	39.4 ± 1.3
22	G	3	40	49.6 ± 0.4
24	G	2	50	57.9 ± 0.5
25	LSC	9	1.04-1.09	56.7 ± 7.6
umber of r obust mean	reported laborato	ry means		15 51.4 6.3

Lab code	Method code	No. of results	Mass (g)	²¹⁴ Pb*	²¹⁴ Bi*
3	G	3	32-34	54.8 ± 2.5	56.7 ± 2.8
8	G	1	3.94	-	45.9 ± 4.1
11	G	1	11.819	51.0 ± 3.0	47.0 ± 4.0
15	G	6	44	51.0 ± 4.4	48.0 ± 4.4
21	G	4	39	44 ± 8	44 ± 8
22	G	3	40	45.5 ± 1.2	36.4 ± 2.1
24	G	2	50		57.4 ± 2.3
Number	of reported 1	aboratory me	ans	5	7
Expande	nean duncertaint	(1-2)		49.5	47.9
Expanded uncertainty (k=2)				5.0	0.3

TABLE 18. RESULTS FOR ²¹⁴ Pb and ²¹⁴ Bi IN IAEA-465
(Reference date: 26 August 2012, unit: Bq kg ⁻¹)

*the ²¹⁴Pb and ²¹⁴Bi values will be combined with ²²⁶Ra (Table 17) to assign a final certified value for ²²⁶Ra (for a total of 27 data sets)

Lab code	Method code	No. of results	Mass (g)	²¹⁰ Pb(²¹⁰ Po) ⁹
1	G	2	23 69-48 55	241 + 47
3	G	3	32-34	151 + 6
5	G	1	4 8735	191 ± 0 192 + 50
5 (Po)	A	6	0.5258	192 ± 30 199 ± 13
5 (Pb)	A	6	0.5258	192 ± 7.0
6	G	3	31.425	197 ± 22
8	G	1	3.94	206 ± 9
10 (Pb)	G	1	28.46	179 ± 48
10 (Po)	А	5	3.75-5.0	160 ± 12
11 (Pb)	G	1	11.819	201 ± 16
11 (Po)	А	1	0.3251	206 ± 8
12	G	3	47.89	206 ± 20
13	G	3	48.9	184 ± 23
13 (Po)	А	1	0.256	180 ± 60
13 (Pb)	А	1	0.256	190 ± 70
15	G	6	44	202 ± 28
16	G	3	19.5-38.9	202 ± 27
17	G	4	49.89	184 ± 28
18	G	1	13.17	161 ± 22
18	G	1	3.81	185 ± 34
21	G	4	7-39	201 ± 33
21 (Po)	А	2	0.4-0.5	175 ± 25
25 (Po)	А	3	0.5	178 ± 13
26 (Po)	А	4	0.5-1.0	126 ± 4
Number of rep Robust mean Expanded unc	ported laborator certainty (k=2)	24 189.4 15.3		

TABLE 19. RESULTS FOR ²¹⁰Pb (²¹⁰Po) IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

⁹ The supported activity of ²¹⁰Pb and ²¹⁰Po was considered to be in secular equilibrium with ²²⁶Ra, and the unsupported ²¹⁰Pb and ²¹⁰Po values were corrected t reference date assuming the transient equilibrium at 26 August 2012.

ab ode	Method code	No. of results	Mass (g)	²³⁵ U
			(8)	
3	G	3	32-34	4.0 ± 0.2
4	А	3	4.9	3.5 ± 0.7
5	А	5	0.2875-0.3482	4.1 ± 0.6
6	ICP-MS	5	0.2-0.5	3.93 ± 0.40
10	G	1	28.46	4.6 ± 0.7
10	А	3	5.9	3.7 ± 0.5
11	ICP-MS	10	0.26-0.29	5.07 ± 0.03
13	ICP-MS	1	0.523	3.9 ± 0.5
18	G	1	13.17	3.8 ± 0.6
18	G	1	3.81	4.0 ± 0.8
19	G	4	46.2	3.9 ± 0.2
22	G	3	40	4.6 ± 1.2
25	А	3	1	3.7 ± 0.8
26	А	2	0.5	$4.3 \hspace{0.2cm} \pm \hspace{0.2cm} 0.9$
umber of	reported laborato	rv means		14
obust mea	an	5		4.03
xpanded i	incertainty (k=2)			0.30

TABLE 20. RESULTS FOR ²³⁵U IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

TABLE 21. RESULTS FOR ²³²Th IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

Lab code	Method code	No. of results	Mass (g)	²³² Th
1 5 11 12 13 17 24 25 25 25	A A ICP-MS G ICP-MS G G ICP-MS A	2 5 10 3 1 4 2 3 3	5.52-5.54 $0.2875-0.3482$ $0.26-0.29$ 47.89 0.523 49.89 50 $0.12-0.13$ 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Number of Robust mea Expanded u	reported laborator in incertainty (k=2)	$ \begin{array}{r} 10 \\ 62.1 \\ 6.8 \end{array} $		

Lab code	Method code	No. of results	Mass (g)	²²⁸ Ra
1	G	2	23.69-48.55	67 ± 18
3	G	3	32-34	74.6 ± 4.2
4	G	3	49	109 ± 10
5	G	1	4.8735	70 ± 27
6	G	3	31.425	64.6 ± 8.1
8	G	1	3.94	68.2 ± 2.2
10	G	1	28.46	67.4 ± 5.4
11	G	1	11.819	54.0 ± 2.0
13	G	3	48.9	$64.0 \hspace{0.2cm} \pm \hspace{0.2cm} 8.0$
15	G	6	44	71.0 ± 6.1
18	G	1	13.17	56.1 ± 8.5
18	G	1	3.81	59 ± 9
19	G	4	46.2	59.7 ± 3.5
21	G	4	39	57 ± 12
22	G	3	40	69.7 ± 1.7
mber of i	reported laborato	15		
obust mea	n			03.3

TABLE 22. RESULTS FOR ²²⁸Ra IN IAEA-465 (*Reference date: 26 August 2012, unit: Bq kg*⁻¹)

TABLE 23. RESULTS FOR ²²⁸Ac and ²⁰⁸Tl IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

Lab code	Method code	No. of results	Mass (g)	²²⁸ Ac*	²⁰⁸ TI ¹⁰
3	G	3	32-34	74.6 ± 4.2	75.5 ± 3.7
7	G	2	27	_	54.4 ± 7.2^{10}
8	G	3	3.94	_	62.5 ± 6.0
11	G	1	11.8	54 ± 2	-
15	G	6	44	71 ± 6	64.0 ± 6.4^{10}
21	G	4	39	57 ± 12	58.4 ± 11.1^{10}
22	G	3	40	$62.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.9$	75.3 ± 1.7
24	G	2	50		59.1 ± 1.2
Number of reported laboratory means Robust mean Expanded uncertainty $(k=2)$			ans	5 64 10	7 64.2 9.4

*228 Ac values were combined with ²²⁸Ra (Table 22) to assign the final value for ²²⁸Ra (for a total of 20 data sets)

 $^{^{10}}$ Thallium-208 values were corrected (by RML) for branching factor of 35.93 %

Lab code	Method code	No. of results	Mass (g)	²²⁸ Th
4	G	3	49	273 ± 29
8	G	1	3.94	71.8 ± 1.2
10	G	1	28.46	66.4 ± 5.3
13	G	3	48.9	64.0 ± 7.0
19	G	4	46.2	59.6 ± 2.6
22	G	3	40	75.3 ± 1.7
25	А	3	1	67.9 ± 4.1
26	А	1	1.01	33.2 ± 2.9
Jumber of 1	reported laborato	8		
obust mea	n	67.5		
xpanded u	ncertainty (k=2)			12.3

TABLE 24. RESULTS FOR ²²⁸Th IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

TABLE 25. RESULTS FOR ⁴⁰K IN IAEA-465(Reference date: 26 August 2012, unit: Bq kg⁻¹)

Lab code	Method code	No. of results	Mass (g)	⁴⁰ K
1	G	2	23.69-48.55	1050 ± 170
3	G	3	32-34	1180 ± 50
4	G	3	49	1143 ± 169
5	G	1	4.8735	1035 ± 129
6	G	3	31.425	1070 ± 110
7	G	4	27	948 ± 78
8	G	1	3.94	1131 ± 22
9	G	3	33	950 ± 40
10	G	1	28.46	1077 ± 65
11	G	1	11.819	963 ± 52
12	G	3	47.89	1159 ± 100
13	G	3	48.9	1050 ± 150
14	G	5	4.41-17.82	1168 ± 75
15	G	6	44	1161 ± 91
16	G	3	19.5-38.9	1219 ± 168
17	G	4	49.89	1015 ± 152
18	G	1	13.17	889 ± 99
18	G	1	3.81	1070 ± 140
19	G	4	46.2	972 ± 73
21	G	4	39	982 ± 250
22	G	3	40	1192 ± 21
23	G	2	4.6	1051 ± 144
24	G	2	50	1152 ± 8
25	G	3	49.39	1100 ± 120
Sumber of reported laboratory means				24 1074 96

TABLE 26	. RESULTS	FOR	THE	LESS	FREQUENTLY	MEASURED	RADIONUCLIDES	REPORTED	IN
IAEA-465									
(D)		• • •			1				

Isotope	Lab code	Method code	No. of results	Mass (g)		Ao (Be	ctivity q kg ⁻¹)
⁹⁰ Sr	1	LSC	2	5.52-5.54	16.7	±	2.4
¹⁵⁵ Eu	12	G	3	47.89	7.11	±	1.38
	9	G	3	99.77	1.87	±	0.13
²¹² Bi	15	G	6	44	80	±	13
²¹² Pb	3	G	3	32-34	81.3	\pm	3.2
	7	G	3	27	66.4	±	6.3
	11	G	1	11.8	57	±	2
	15	G	6	44	71.0	\pm	6.5
²²⁴ Ra	15	G	6	44	53	\pm	8.5
²²⁷ Ac	10	G	1	28.46	3.5	\pm	0.6
^{234m} Pa	3	G	3	32-34	72.9	\pm	24.5
²³⁶ U	2	AMS	9	0.3	(1.97	±	$0.13) \times 10^{-4}$
²³⁹ Pu	2	AMS	9	0.3	1.158	±	0.0027
	21	ICP-MS	2	1	1.90	±	0.09
²⁴⁰ Pu	2	AMS	9	0.3	0.843	±	0019
	21	ICP-MS	2	1	0.88	±	0.11

(Reference date: 26 August 2012, unit: Bq kg⁻¹)

TABLE 27. SUMMARY OF CERTIFIED VALUES FOR IAEA-465(Reference date: 1 January 2020, unit: Bq kg⁻¹)

Radionuclide	Certified value [Bq kg ⁻¹]	Expanded uncertainty* [Bq kg ⁻¹]	Relative uncertainty [%]
⁴⁰ K	1074	70	6.4
¹³⁷ Cs	90.2	5.4	6.0
²¹⁰ Pb ^{‡,}	160	11	6.7
²¹⁰ Po [†]	162	11	6.7
226 Ra [¤]	51.5	3.7	7.2
$^{228}\text{Ra}^{\#}$	64.5	6.0	9.3
$^{228}{ m Th}^+$	64.5	6.0	9.3
²³² Th	64.5	6.0	9.3
²³⁴ U	88.3	6.5	7.4
²³⁵ U	4.03	0.28	6.9
²³⁸ U	87.3	6.2	7.1
²³⁹⁺²⁴⁰ Pu	2.19	0.12	5.7

*The uncertainty is expressed as an expanded uncertainty using a coverage factor k = 2 estimated in accordance with the JCGM 100:2008 'Evaluation of measurement data - Guide to the expression of uncertainty in measurement' [7]

and ISO Guide 35 [4].

[†]Polonium-210 is in transient equilibrium with the unsupported activity of 210 Pb.

Lead-210 values should be corrected for ingrowth from 226 Ra.

[°]Radium-226 values should be corrected for ingrowth from ²³⁰Th.

[#]Radium-228 is assumed to be in equilibrium with ²³²Th.

⁺Thorium-228 is assumed to be in equilibrium with ²³²Th and ²²⁸Ra.

TABLE 28. SUMMARY OF INFORMATION VALUES FOR IAEA-465 RADIONUCLIDE
CONCENTRATIONS

Radionuclide	Information [Bq kg ⁻¹]	Expanded uncertainty* [Bq kg ⁻¹]	Relative uncertainty [%]
²³⁰ Th	71.4	10.2	14.3
²³⁹ Pu	1.53	0.75	49.0
²³⁸ Pu	0.07	0.01	17.8
²⁴⁰ Pu	0.850	0.040	4.7
²⁴¹ Am*	1.07	0.20	18.4

(Reference date: 01 January 2020, unit: Bq kg⁻¹)

*Americium-241 values should be corrected for ingrowth from ²⁴¹Pu if value available.

TABLE 29. SUMMARY OF INFORMATION VALUES FOR IAEA-465 ISOTOPE RATIOS (Reference date: 01 January 2020)

Ratio	Value	Expanded uncertainty*	Relative uncertainty [%]
$m(^{234}\text{U})/[m(^{234}\text{U})+m(^{235}\text{U})+m(^{238}\text{U})]^{\text{m}}$	0.000055	0.000004	7.5
$m(^{235}U)/[(m(^{234}U)+m(^{235}U)+m(^{235}U)] m$	0.00712	0.00043	6.0
$m(^{238}U)/[m(^{234}U)+m(^{235}U)+m(^{238}U)]^{m}$	0.993	0.064	6.4
m(²⁴⁰ Pu)/m(²³⁹ Pu) ^m	2.05	0.99	48
$^{238}Pu/^{239+240}Pu^{a}$	0.032	0.004	13
$^{240}Pu/^{239}Pu^{a}$	0.56	0.27	70

^mMass ratio

^aActivity ratio

APPENDIX II.

FIGURES OF REPORTED RESULTS

Figures 2–9, 11 and 13–17 contain the original reported data and standard uncertainty with a reporting date of 26-08-2012. Reported values are coloured green with a circular marker; vertical lines represent the standard uncertainties reported (k=2). The horizontal red line is the robust mean for each nuclide on the reporting date and the red dot lines are the standard uncertainty of the robust mean (k=2). Figures 10 and 12 show the ingrowth and decay of 226 Ra and 210 Pb over time and are for information only.

Lab. code

FIG.2. Laboratory results for ¹³⁷Cs

FIG.3. Laboratory results for ²³⁸Pu

FIG.4. Laboratory results for ²³⁹⁺²⁴⁰Pu

FIG.5. Laboratory results for ²⁴¹Am

FIG.6. Laboratory results for ²³⁸U

FIG.8. Laboratory results for ²³⁰Th

Lab. code

FIG.9. Laboratory results for ²²⁶Ra

FIG.10. Decay and ingrowth of ²²⁶Ra

FIG.11. Laboratory results for ²¹⁰Pb

FIG.12. Decay and ingrowth of ²¹⁰Pb

Fig.13. Data evaluation for ^{235}U

FIG.14. Laboratory results for ²³²Th

FIG.15. Laboratory results for ²²⁸Ra

FIG.16. Laboratory results for ²²⁸Th (the value of lab 4 is out of range)

FIG.17. Laboratory results for ⁴⁰K

APPENDIX III.

DATA ANALYSIS

Deriving property values

Robust statistics as described in ISO 13528 [6] were used for the determination of the assigned values, where the robust mean and robust standard deviations were calculated as per Algorithm A as detailed described in Annex C.21 of ISO 13528 [6].

Individual results were ranked in increasing order:

$$(x_1, x_2, x_i, ..., x_n)$$

Initial values of the robust average x^* and robust standard deviation s^* were calculated as:

$$x^* = \text{median of } x_i \quad (i=1,2,3...,n)$$
 (Eq. 3)

Where n is the number of reported results

$$s^* = 1.483 \times \text{median} |x_i - x^*| \ (i=1,2,3....n)$$
 (Eq. 4)

The initial values x^* and s^* were updated by calculating:

$$\delta = 1.5 \times s^* \tag{Eq. 5}$$

For each x_i ($i = 1, 2, 3 \dots n$) calculate

$$x_{i}^{*} = \begin{cases} x_{i}^{*} = x^{*} - \delta, & \text{if } x_{i} < x^{*} - \delta \\ x_{i}^{*} = x^{*} + \delta, & \text{if } x_{i} > x^{*} + \delta \\ x_{i}^{*} = x^{*}, & \text{otherwise} \end{cases}$$
(Eq. 6)

New values for x^* and s^* were calculated as:

$$x^* = \frac{\sum_{i=1}^{n} x_i^*}{n} \tag{Eq. 7}$$

$$s^* = 1.134 \sqrt{\frac{(x_i - x^*)^2}{(n-1)}} \tag{Eq. 8}$$

The robust estimates of x^* and s^* were calculated by iteration by updating the values of x^* and s^* until they converged to the third significant figure.

REFERENCES

- POVINEC, P.P., PHAM, M.K., 2001. IAEA Reference Materials for Quality Assurance of Marine Radioactivity Measurements. Journal of Radioanalytical and Nuclear Chemistry, 248(1), 211–216. https://doi.org/10.1023/A:101063162
- [2] SANCHEZ-CABEZA, J.-A., PHAM, M.K, POVINEC, P.P., 2008. IAEA Program on the Quality of Marine Radioactivity Data. Journal of Environmental Radioactivity, 99, 1680– 1686. https://doi.org/10.1016/j.jenvrad.2008.04.007
- [3] INTERNATIONAL ORGANISATION FOR STANDARDISATION, 2016. ISO 17034:2016, General Requirements for the Competence of Reference Material Producers. ISO, Geneva.
- [4] INTERNATIONAL ORGANISATION FOR STANDARDISATION, 2017. ISO Guide 35, Reference materials – Guidance for Characterization and Assessment of Homogeneity and Stability. ISO, Geneva.
- [5] INTERNATIONAL ORGANISATION FOR STANDARDISATION, 2015. ISO 18589-3:2015, Measurement of radioactivity in the environment – Soil – Part 3: Test Method of gamma-emitting Radionuclides Using gamma-ray Spectrometry. ISO, Geneva.
- [6] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, Statistical methods for use in proficiency testing by interlaboratory comparisons, ISO 13528:2015 (E), ISO, Geneva (2005).
- [7] JOINT COMMITTEE FOR GUIDES IN METROLOGY, 2008. Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML Report, JCGM 100:2008
- [8] BATEMAN, H., 1910. The Solution of a System of Differential Equations Occurring in the Theory of Radioactive Transformations. Proceedings of the Cambridge Philosophical Society, 15(V), 423-427

LIST OF PARTICIPATING LABORATORIES

AUSTRALIA

Cook, M.	Radiation and Nuclear Sciences Forensic and Scientific Services, Queensland Department of Health 39 Kessels Road Coopers Plains, QLD 4108
BELGIUM	
Hult, M. / Jobbágy, V.	European Commission JRC - Geel Retieseweg 111 2440 Geel
DENMARK	
Nielsen, S.P.	DTU Nutech Technical University of Denmark Frederiksborgvej 399, Risø Campus 4000 Roskilde
FINLAND	
Vartti, VP.	STUK – Radiation and Nuclear Safety Authority P.O. Box 14 00881 Helsinki
FRANCE	
Gurriaran, R.	IRNS/PRP-EVN/STEME/LMRE LMRE Bat 501 – Bois des Rames 91400 Orsay
Van Beek, P.	LEGOS/LAFARA Observatoire Midi Pyrénées 14 Avenue Edouard Belin 31400 Toulouse

GERMANY

Aust, M O. / Nogueira, P.	Johann Heinrich von Thünen-Institut Institut für Fischereiökologie Marckmannstraße 129b, Haus 4 20539 Hamburg
Degering, D.	VKTA – Strahlenschutz, Analytik & Entsorgung Rossendorf e. V. Postfach 510119 01314 Dresden
Herrmann, J.	Federal Maritime and Hydrographic Agency (FMHA) Radioactivity of the Sea Wuestland 2 22589 Hamburg
Ilchmann, C. / Pottiez, D.	Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Abteilung II (Integrativer Umweltschutz) Strahlenmessstelle Berlin Rubensstraße 111-113 12157 Berlin
Rieth, U.	Landesmessstelle für Radioaktivität Behörde für Gesundheit und Verbraucherschutz Institut für Hygiene und Umwelt Marckmannstraße 129b, Haus 6 20539 Hamburg
Schikowski, J.	Georg-August-Universität Physikalische Chemie Tammannstr. 6 37077 Göttingen
ITALY	
Laubenstein, M.	Laboratori Nazionali del Gran Sasso S.S. 17/bis km 18+910 67100 Assergi (AQ)
JAPAN	
Nakano, M.	Japan Atomic Energy Agency 4-33, Muramatsu Tokai-mura, Naka-gun Ibaraki, 319-1194
Morimoto, T. 46	Japan Chemical Analysis Center

295-3 Sanno-cho Inage-ku Chiba-shi, Chiba 263-0002

KOREA, Republic of

Lee, SH.	Korea Research Institute of Standards and Science 1 Doryong-Dong, Yuseoung-Gu Daejeon 305-340
POLAND	
Mietelski, J. W. / Tomankiewicz, E.	Nuclear Physical Chemistry Department The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences PL-31-342 Krakow, Radzikowskiego 152
Suplinska, M.	Central Laboratory for Radiological Protection Konwaliowa 7 03-194 Warsaw
Zalewska, T.	Institute of Meteorology and Water Management, Maritime Branch Waszyngtona 42 81-342 Gdynia
PORTUGAL	
Carvalho, F.P.	Laboratório de Protecção e Segurança Radiológica Instituto Superior Técnico / Campus Tecnológico Nuclear Estrada Nacional 10, km 139,7 2695-066 Bobadela LRS
SLOVAKIA	
Povinec, P.P. / Sykora, I.	Faculty of Mathematics, Physics and Informatics Comenius University SK-84248 Bratislava
SPAIN	
Chamizo, E.	Centro Nacional de Aceleradores Isla de la Cartuja 41092 Sevilla

	Spain
Gascó, C.	CIEMAT (RAyVR) Edificio 70 Planta 2 Despacho 11 Avda de la Complutense 40 28040 Madrid
Mas, J.L. / Hurtado, S.	Servicio de Radioisotopos, CITIUS Avda. Reina Mercedes 4B 41012 Sevilla

UNITED KINGDOM

Smedley, P.

Cefas Lowestoft Laboratory Pakefield Road Lowestoft, Suffolk NR33 0HT

USA

La Rosa, J. / Nour, S.

National Institute of Standards and Technology 100 Bureau Drive Radiation Protection, Bldg. 245, room B131 Gaithersburg, MD 20899

INTERNATIONAL ATOMIC ENERGY AGENCY

Bartocci, J./ Blinova, O./ Fujak, M.	IAEA – Environment Laboratories.
Levy, I./ Mc-Ginnity, P./ Pham, M.K.	4a, Quai Antoine 1er
	98000 Monaco

CONTRIBUTORS TO DRAFTING AND REVIEW

HARMS, A. V.	International Atomic Energy Agency
JEROME, S.M.	International Atomic Energy Agency
MAURING, A.	International Atomic Energy Agency
PATTERSON, S.	International Atomic Energy Agency
PHAM, M.K.	International Atomic Energy Agency
TARJAN, S.	International Atomic Energy Agency

ORDERING LOCALLY

IAEA priced publications may be purchased from the sources listed below or from major local booksellers.

Orders for unpriced publications should be made directly to the IAEA. The contact details are given at the end of this list.

NORTH AMERICA

Bernan / Rowman & Littlefield

15250 NBN Way, Blue Ridge Summit, PA 17214, USA Telephone: +1 800 462 6420 • Fax: +1 800 338 4550 Email: orders@rowman.com • Web site: www.rowman.com/bernan

REST OF WORLD

Please contact your preferred local supplier, or our lead distributor:

Eurospan Group

Gray's Inn House 127 Clerkenwell Road London EC1R 5DB United Kingdom

Trade orders and enquiries:

Telephone: +44 (0)176 760 4972 • Fax: +44 (0)176 760 1640 Email: eurospan@turpin-distribution.com

Individual orders: www.eurospanbookstore.com/iaea

For further information:

Telephone: +44 (0)207 240 0856 • Fax: +44 (0)207 379 0609 Email: info@eurospangroup.com • Web site: www.eurospangroup.com

Orders for both priced and unpriced publications may be addressed directly to:

Marketing and Sales Unit International Atomic Energy Agency Vienna International Centre, PO Box 100, 1400 Vienna, Austria Telephone: +43 1 2600 22529 or 22530 • Fax: +43 1 26007 22529 Email: sales.publications@iaea.org • Web site: www.iaea.org/publications

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA