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Abstract. A continuum global gyrokinetic code GYRO
 
has been developed to comprehensively simulate core

turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the
experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode
turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear
stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius
(ρ*) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The
code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical
profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment
within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion
flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.

1.  Introduction

This paper exemplifies recent advances in gyrokinetic simulations of tokamak transport
and notes future challenges. GYRO development began in 1999 and reached  its major design
milestones in early 2003 [1]. It is presently the most advanced gyrokinetic code. GYRO is a
physically comprehensive nonlinear continuum (Eulerian) gyrokinetic code which can treat
either (i) gyroBohm scaled flux tubes at vanishing ρ* or (ii) full-radius and full-torus core
profiles at small but finite ρ* (ρ* = ρs/a where ρs = cs/Ωi  is the ion sound gyroradius). It
contains the physics needed for physically realistic simulations of the tokamak core: toroidal
ITG physics, trapped and passing electrons, electron-ion pitch angle collisions, electro-
magnetic effects up to the ideal beta limit, real geometry, ExB and magnetic flutter transport.
These features are in common with the similar predecessor flux tube continuum gyrokinetic
code GS2 [2] and the more recent PIC flux tube code GEM [3] against which GYRO has
been successfully benchmarked. GYRO operating in a nearly full radius slice at finite ρ*
uniquely has both ExB and diamagnetic rotational shear stabilization which can effectively
break gyroBohm scaling [4], as well as parallel rotational shear drive. We refer to simulations
with these features has having the �full physics� needed for quantitative agreement with
experiments. During the past year we have added neoclassical flows and drivers with
conservative Krook ion-ion collisions, multiple ion species for impurity and plasma pinch
studies, and feedback methods for simulations at fixed flows rather than the conventional
fixed gradients. The latter is the first step to a future steady state gyrokinetic transport code.
The versatility of GYRO with either artificial or experimental profile input, and with either
flux-tube or global operation, allows many applications, some of which we review here.

2. Formulation of the Global Continuum Gyrokinetic Code GYRO

GYRO solves the standard electromagnetic nonlinear gyrokinetic (and Poisson-Ampere)
equations [5] for fluctuations about a given profile of shifted Maxwellian distributions. An
Eulerian (continuum) rather than Lagrangian (PIC) discretization is used [1]. Recently, we
have used a 2nd order implicit-explicit Runge-Kutta scheme [6] which treats the electron par-
allel advection implicitly, removing the stiff term in the gyrokinetic-Maxwell system and
allowing faster runs. This also improves stability over purely explicit methods and allows
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larger radial slices in electromagnetic simulations, since the implicit advance moves the n=0
Poisson-Ampere field inversion farther from the long wavelength singularity which is
troublesome with radial slices of more than a few hundred ion gyrolengths. Real tokamak
geometry is treated with local MHD equilibria  (as formulated by Miller [7,8]) about nested
flux surfaces labeled by the midplane minor radius r (normalized to the outer minor radius a).
GYRO uses a sparce grid but grid convergence (resolution) is always checked. Simulations of
a radial slices with profiles have �benign� zero value boundary conditions, i.e. do not affect
the slice interior [4]. An adaptive source[4] is used to maintain given driving gradients.

It is important to say that the 5-D gyrokinetic GYRO does not retain all the physics of the
6-D collisional Vlasov or Maxwell-Boltzmann system. All the terms in the gyrokinetic equa-
tion [5] are explicitly first order in ρ*. In particular gyroBohm scaling is broken only by the
effect of the profile variation. There are no explicitly next order ρ* terms like the so-called
parallel nonlinearity. Various small ρ* approximations are made for numerical tractability
and consistency. For example: the next order terms in the ballooning mode eikonal derivative
and  nonlinear terms in the Poisson-Ampere equations are dropped. Such next order terms
break exact gyroBohm scaling even without profile variation and may well be important in
the pedestal region where ρs/LT,n and � /n n0 could be 10% instead of 1% characteristic of the
core. First order gyrokinetic equation may not apply with good accuracy in the pedestal. We
believe accuracy can only be determined by comparison to a 6-D Vlasov simulation.

3. Full Physics Simulations of Bohm-scaled DIII-D L-mode Dimensionally Similar ρρρρ*
Pairs

Since the first 1990 DIII-D ρ* scaling experiments [9], it has been difficult to understand
how gyroBohm-sized transport can have Bohm scaling at such very small ρ* values; and fur-
thermore why Bohm scaling is experimentally associated only with the ion channel in
L-modes. A good quantitative understanding of the mechanisms breaking gyroBohm scaling
still eludes us. Our primary focus [10] has been on obtaining physically comprehensive simu-
lations of the Bohm-scaled DIII-D L-mode dimensionally similar pairs [11], understanding
what physical mechanisms are required to get the Bohm scaling, as well as finding a quanti-
tative match of the simulated and experimental power flows. Figure 1 shows the radial profile
of the effective (combined channel) energy diffusivity χ χ χeff i e≡ +( ) /2 normed to the
gyroBohm unit diffusivity χ ρGB s s

2≡ ( / )c a  at the norming radius r/a=0.6 for ρ* = 0.0026
(2.1 T DIII-D discharge 101391) and ρ* = 0.004 (1.05 T DIII-D discharge 101381). The
parameters of this matched pair at the norm point are r a/ .= 0 6, R a/ .= 2 68, a L/ .Ti = 2 88 ,
a L/ .Te = 3 13, a L/ .n =1 35, T Ti e/ .= 0 89, q =1 50. , � / .s d nq dr= =l 1 02, elongation κ =1 5. ,
and triangularity δ = 0 05. . The collisionality is v c aei s/[ / ] .= 0 174  and β =1 1. % (about 1/3
critical). Apparently the diffusivity at the norm point is not strongly dependent on 3-fold
variation in the radial slice size suggesting that nonlocal effects are minimal here. When the
diffusivities are normed to gyroBohm, the larger ρ* discharge will have the smaller normed
diffusivity by the ratio of the ρ* values, i.e. 0.004/0.0026 = 1.53 compared to 9/6. The
experimental values at the norm point are considerably lower at 2.1/1.3 = 1.6 but close to the
Bohm scaling ratio χ χ ρB GB≡( )/

*
. The collisional exchange between ion and electron

channels prevents meaningful separation but the simulated ion energy flows are about 2 times
larger than the electron flows. Figure 1 simulations used heavier electrons m mi e/  = 20
instead of 60 for deuterium to speed-up the code for larger boxes.

Figure 2(a) shows small slice runs with the correct ratio m mi e/ = 60. Even though the
heavier electrons overestimate the correct maximum growth rate γmax . [ / ]= 0 3 c as  (at r/a =
0.60 by only 10%, the corrected mass ratio drops the transport levels by 2-fold yet still
maintain the Bohm ratio. This is apparently due to the competition between γmax and the
ExB shear stabilization rate γ ∂ ∂E E s= =( / ) ( / ) / . [ / ]r q q r V r c a0 13  (at r/a = 0.6) which can
quench the turbulence entirely. Here γ γE / .max ≈ 0 5 is less than a quench value of 1 0 3± .
suggested by circular ITG gyrofluid studies [12] although similar studies in real geometry
indicate γ γE / .max ≈ 0 5 can quench the turbulence [8]. In fact it is also shown that turning off
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Fig. 1. Effective one channel energy diffusivity
normed to gyroBohm at r/a=0.6 ρ* = 0.0026 in (a)
and ρ* = 0.004 in (b).

the experimental equilibrium sheared ExB
profile again doubles the energy transport
but the Bohm scaling ratio is lost and the
gyroBohm scaled flux tube level of
χ χeff GB/ ≈ 8 is nearly obtained at the
smaller ρ*. [Curiously the best DIII-D
H-mode pairs have significantly less ExB
shear at r/a=0.6 which may account for their
gyroBohm scaling (even with 1.5 times
larger ρ*).] Similarly electron-ion collisions
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Fig. 2. Effective one channel energy diffusivity
normed to gyroBohm at the r/a=0.6 norm point versus
ρ* comparing �full physics� for m mi e/ =60 with
experiment and turning off ExB shear, electron-ion
collisions, and finite beta in (a). Reductions in the in
the ion temperature gradient from the base experi-
mental values shown in (b) for the ρ* = 0.004 case. A
5% reduction is shown in (a).

de-trap the trapped electrons which increase the drive for the ITG turbulence; removing the
collisions results in 2 times higher transport levels and a similar loss of the Bohm scaling.
Finite beta, well below the ideal limit, typically weakens the transport somewhat. Here it
weakens the tendency to Bohm scaling. All of these effects are in agreement with previous
ITG-adiabatic electrons simulation with realistic profiles: specifically, that Bohm scaling is
easier to obtain when the maximum growth rate is weakened with respect to the ExB shear
rate [4]. In fact the core DIII-D L-mode transport is �stiff� and close to marginal transport.
Figure 2(b) shows that even 10% reductions in the ion temperature gradient drive (well
within experimental uncertainty), will allow the simulated and experimental power flows to
match. This strongly suggests that the only way to verify agreement between theoretical
models (or simulations) and experiments is by comparison of simulated and experimental
temperature profiles with a gyrokinetic transport code.

We note in passing that the Kelvin-Helmholtz drive from the shear in the ion parallel
velocity is quite modest for these discharges; the ion viscosity χφ is comparable to the ion
energy diffusivity χ i [χ χφ / i = 0.85 in the 5% reduction ρ* = 0.004 case Fig. 2(a).] Only
ExB transport has been shown; magnetic flutter transport is well below 10% of the electron
energy transport at these β values (It is about 2% here although we have seen as high as 30%
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at 60% of the beta limit.) The DIII-D core has negligible convection and sits at a null flow
point with density gradient driven outflow in balance with an electron temperature gradient
pinch flow.

The mechanism breaking the gyroBohm scaling is not entirely clear. Our previous
circular ITG adiabatic electron simulations with realistic profiles in this range of DIII-D ρ*
values [4], clearly showed  that gyroBohm scaling could be broken down to Bohm or worse
when the purely diamagnetic local mode phase velocity shear rates
γ ∂ ∂ ρs mode s= ∝( / ) ( / ) / [ / ]

*
r q q r V r c a  become comparable to local maximum growth rates

[13]. The total mode phase velocity V V Vmode mode E= +_ 0  has an intrinsic diamagnetic
velocity and an ExB Doppler rotation velocity with is only partly diamagnetic. For the more
realistic DIII-D simulations in Figs. 1 and 2, the ExB velocity shear results mostly from
toroidal rotation. In fact the ExB shear rate (peaking near r/a=0.6 and passing through 0 at
r/a=0.7 and near r/a=0.2-0.3) is virtually the same in both discharges and only slightly larger
for the smaller ρ* discharge. The diamagnetic component from the intrinsic mode velocity
γ ∂ ∂

*
( / ) ( / ) /_= r q q r V rmode 0  is approximately 0.021 and 0.009 [ / ]c as  for ρ* = 0.004 and

0.0026 respectively. These rates are just too small and actually oppose the ExB shear rate for
co-injection toroidal rotation. (Curiously, it has been recently reported that counter-injected
DIII-D H-modes have been found to have Bohm scaling whereas the normal co-injected
H-modes has gyroBohm scaling [14]). The profile of γmax is parabolic increasing from 0 at
r/a=0.3 (i.e. a typical stable central core) to 0.3[ / ]c as  at r/a/=0.6 and 0.37[ / ]c as  at r/a=0.8.
The γmax profile is almost identical for the two discharges with the ρ* = 0.0026 discharge
very slightly lower (and not in the direction to cause Bohm scaling). This analysis does not
favor the local velocity shear rate versus growth rate theory [13], and we turn to a possible
nonlocal mechanism.

4.  Nonlocal Effects Breaking GyroBohm Scaling

Our previous circular ITG adiabatic electron simulations with realistic but weakly sheared
profiles showed that at weak driving, the turbulence appeared to drain from the unstable outer
region and spread into the core {Fig. 4(b) of Ref. [4]}. χ χ/ GB decreased in the unstable
region and increased in the stable region as ρ* increased from 0.0025 to 0.0075. The
spreading gave a super-gyroBohm scaling in the stable core, but a small breaking of
gyroBohm toward Bohm in the unstable outer region. This effect is too weak for the small
DIII-D ρ* values to account for Bohm scaling. We believe this nonlocal turbulence spreading
effect explains why turbulent transport results in an often stable central core when local
transport models like GLF23 [15] suggest it should be quenched. In contrast, Lin et al. [16]
and Hahm et al. [17] suggest that nonlocality is the key mechanism for Bohm scaling. They
studied this �turbulence spreading� effect in circular ITG adiabatic electron global (GTC
code) simulations with nearly a flat core profile (0.3 < r/a < 0.7) draining to a stable central
core and a stable edge. The well studied �cyclone base� [18] parameters (typical of DIII-D)
were set at r/a=0.5. These highly unphysical profiles did produce Bohm scaling for 0.004 <
ρ* < 0.008 as later verified by GYRO [19].

We have recently re-examined [20] this nonlocal breaking of gyroBohm scaling to better
quantify and understand its potential as a Bohm-scaling mechanism. We also suggest a
heuristic theory to describe such nonlocal effects. Figure 3 shows GYRO ITG-adiabatic elec-
tron simulations with piecewise flat profiles with the r/a=0.6 DIII-D parameters from Figs. 1
and 2 (close to cyclone base parameters). There is no ExB shear or any kind of profile shear-
ing; there is no variation in any term of the gyrokinetic equation except a sharp 4-fold drop in
the driving ion temperature gradient at the left quarter of the radial slice providing a stable
region. Runs with and without this stable region are shown. The maximum growth rates are
γmax = 0.167. 0.126, and 0.082 [ / ]c as  corresponding to the 0%, 15% and 30% reductions in
the ion temperature gradient shown in Fig. 3. (These are two mode runs with
k nq rθρ ρs s= =( / ) [ , . ]0 0 3 . Spot checks at the extremes with eight mode runs to kθρs ≤ 0 7.
are entirely similar with perhaps 20% higher transport levels.) The runs without a stable core



5 TH/8-2

ρ
*
= 0.002 0.004 0.008 

ρ
*
= 0.002 0.004 0.008 

ρ
*

= 0.002 0.004 0.008 

1.00 × grad T

(a) (b) (c)
0.85 × grad T

0.85 × grad T

0.3
0.0

0.5

1.0

1.5

χ i [
U

ni
ts

 o
f 

(c
s/

a)
ρ s2 ] 2.0

2.5

0.4 0.5
r/a
0.6 0.7 0.8 0.9 0.3 0.4 0.5

r/a
0.6 0.7 0.8 0.9 0.3 0.4 0.5

r/a
0.6 0.7 0.8 0.9

Fig. 3. Ion diffusivity normed to gyroBohm versus radius for ITG adiabatic electron piecewise flat profiles
with DIII-D r/a=0.6 parameters  from Figs. 1 and 2 in (a); ion temperature lowered by 0.85 in (b) and (c).
Both left and right regions are stable in (c).

to the left show the gyroBohm scaling (χ χ/ GBindependent of ρ*). They have the same trans-
port levels as flux tube runs with cyclic boundaries and prove that the zero value boundaries
are benign. The runs with the stable core to the left show a tendency toward Bohm scaling to
the outside and super-gyroBohm in the stable core. (The 4:1 sharp discontinuity in diffusivity
is from our piecewise flat profile and reflects the definition of energy flux divided by tem-
perature gradient; the energy flux is continuous.) Note that the �local hypothesis� [19] is sat-
isfied: at  every point the local diffusivity approached the local gyroBohm scaled diffusion as
ρ* gets sufficiently small. There is clearly a �nonlocality length� L proportional to the relative
ion gyrolength and inversely to the maximum growth rate. This makes Bohm scaling more
likely at smaller maximum growth rate. This is consistent with Fig. 2(a) and all our previous
work (e.g. Ref. [4]). Figure 3(c) has a stable core to the left and an unphysical stable edge to
the right. Clearly two sided drainage to both left and right greatly increases the nonlocal
effect giving Bohm scaling for 0.004 < ρ* < 0.008 (as found in the case studied in Refs.
[16,17,19].) We have checked that the adaptive source maintains the original driving
temperature gradients.

A heuristic model can be made for incorporating gyroBohm breaking nonlocality into
gyroBohm �local� transport models like GLF23 [15]: Such models use quasi-linear theory for
the flows with a gyroBohm scaled spectral weight I x e Tk k( ) [( | � | / ) / ]

*
= ∝φ ρ 2

γloc_k
net

s( ) /[ / ]x c a  where x is the local radius, and γloc_k
net  the local linear ballooning mode

growth rate for each mode k less the ExB shear rate. We propose to replace the local rate with
a nonlocal rate

γ γk
net

loc_k
net( ) /[ ( )] ( )exp[ | | / ( )]x dx L x x x x L x= ′ ′∫ ′ − − ′ ′

−∞

∞
2    .

It is easy to show [20] that for ′ <x xL  ( ′ >x xR) the appropriate left (right) boundary
condition is γ γloc_k

net
loc_k
net

L( ) ( )′ =x x  γ γloc_k
net

loc_k
net

R( ) ( )′ =[ ]x x  respectively. In the example of
Fig. 3, if x0 is the quarter box separation between the piecewise flat profiles, we can write
γ γ γnet

loc
unstable

loc
damped( ) ( ) ( )x f x x f x x= − − −0 0  w i t h  f x x x x( ) [ ( )− = − −0 0Θ

( / ) ( )exp( | | / )]1 2 0 0Sign x x x x L− − − . L x( )′  is again the nonlocal length which is taken to be a
constant L here. As shown in Ref. [20] this model gives a good description of the nonlocal
draining, a spreading effect shown in Fig. 3 provided L has the correct properties. For
L a/

*
∝ →ρ 0 clearly γ γk

net
0k
net( ) ( )x x→  and local gyroBohm scaling is recovered. For

L/a → ∞, γ γk
net

glob_k
net( )x →  the global eigenmode rate which tends to be a radial average of

the local eigenmode rates [13]. Neither the local rates nor the global rates have a dependence
on ρ*. Global eigenmodes can form in a torus only because adjacent singular surfaces (with
given n) are coupled and correlated by the curvature drifts, however it takes a long time to
couple all the singular surfaces in the plasma, the number of which increase like 1/ρ*. They
will tend to be sheared apart by the n=0 radial modes (zonal flows) before they can
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completely form. It can be argued [20], that L a T/ /[� ]∝1 γE glob . Counting the number of
singular surfaces in the plasma and their toroidal connection rate, the global formation time is
T sR cglob s= [ / ] /

*
1 ρ . The zonal flow ExB shearing rate is � � /γ φE x

2
k

= k c B . Since the zonal
flow potentials scale in proportion to the high-n transport potentials, andk kx s y sρ ρ≈ ≈ 0 3. ,
we find L a s a R c a/ [( / )( / )]/[ /( / )]

*
∝ ρ γ β

loc_k
net

s  with β =1 2/ . Figure 3 appears to suggest that
β ≈1 would give a better description. Note this heuristic argument suggests that nonlocality
and any tendency to Bohm scaling is a toroidal property. Clearly adding a second (and
unphysical) stable region to the right will double the drainage and the tendency to Bohm
scaling in the flat profile unstable region. Only a detailed nonlocal model as outlined here and
fit to the simulations of Fig. 3, can determine if this nonlocal drainage affect can describe the
realistic Bohm scaling in Figs. 1 and 2. Although one can see some nonlocal effects in Fig. 1
(spreading into the stable region r/a < 0.3), the rather small variation with radial slice (at
r/a=0.6) suggests nonlocal drainage is not significant here.

5. Profile Corrugations, Dynamos and the Neoclassical Current-voltage Relation, and
Interaction of Turbulence and Neoclassical Flows

The most unexpected qualitative discovery made with GYRO simulations is that the flux-
surface and time averaged n=0 �equilibrium� gradient profiles of density, temperature, and
potential are corrugated on the scale of a few ion gyrolengths. Figure 4(a) shows an example
for the electron temperature gradient. The profile consist of the smooth experimental profile
input [green in Fig. 4(a)] plus the n=0 �zonal flow� perturbation: T r T r T r0 0 0( ) ( ) � ( )_ exp= + .
� ( ) / ( ) ( )

*
T r T r O0 0 ≈ ρ  is small but the basic saturation rule is ∂ ∂ ∂ ∂� ( ) / ( ) /T r r T r r0 0≈ . The sur-
prise is that while these perturbations do fluctuate and move around in radial position, they do
not time average to zero over a few milliseconds. Instantaneous or shorter term averages will
be perhaps twice as large but longer time averages show no decrease. The reason appears to
be that the corrugations are tied to singular surfaces which do not move in time. As shown in
Fig. 4, the corrugations line up on the lowest order rational surfaces in this 16-mode ∆n = 6
simulation. The transport levels and corrugation size are the same for a 32-mode ∆n = 3
simulation, except there will be a few more lower order surfaces. In fact the radial divergence
of any flux surface average radial turbulent flow will show similar corrugations localized
about singular surfaces. For example we have shown [21], that the radial divergence of the
turbulent radial flow of parallel current gives a corrugated turbulent dynamo EMF and
toroidal current density localized on singular surfaces: − =−r r r1 4∂ ∂ ω πΓ Εx

J
pe
2

dyn/ ( / ) ,
J Edyn neo dyn= σ , with E T ea Edyn e dyn= [ / ] �

*ρ
2  for gyroBohm scaling. Figure 4(b) shows an

example. The current density corrugations could easily be 150% of background in DIII-D
J J E Endyn dy A/ � / �=[ ]. In the massless electron limit, this magnetic flutter dynamo can be

related to the MHD �alpha dynamo� [21]. A second electrostatic dynamo related to the elec-
tron parallel nonlinearity [22] [ �Edyn

II  in Fig. 4(b)] is smaller but less corrugated. Integrating
over radius neither appears to drive significant total current and we expect little deviation
from the neoclassical current-voltage relation. However the corrugations of current density
could have a significant effect on ′∆  determining tearing mode stability. The corrugations in
temperature and density gradients will also cause corrugations in the bootstrap currents.

Radial transport flows result from three mechanisms: ExB fluctuations � �υExg , and mag-
netic flutter υ||

� / �B B gx 0 , as well neoclassical curvature drifts υdx �g  ( �g  is the non-adiabatic
fluctuation and/or deviation from the flux surface average Maxwellian distribution function

denotes flux surface and time average.) The usual turbulent flows result from the beating
of n > 0 fluctuations. The n=0 radial modes (or zonal flows) could contribute to the standard
neoclassical flows which arise from flux surface deviations. It is easy to show that including
only the cross field nonlinearity, there can be no interference or �cross talk� between turbu-
lent and standard neoclassical flows at vanishing ρ*; i.e. the flows are simply additive as gen-
erally assumed. We have recently shown [23] that this also holds to a good approximation for
finite ρ* in DIII-D. By adding the n=0 neoclassical driver and neoclassical flow diagnostic to
GYRO, we have extended the (n=0 only) large orbit neoclassical gyrokinetic simulations by
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Wang, Hinton, and Wong [24] to look for �cross talk�. Figure 5 shows an ITG adiabatic elec-
tron simulation with no ExB shear with the n=0 neoclassical driver and conservative Krook
model ion-ion collisions turned �on� and �off�. Since the collisions slightly stabilize the n=0
radial modes the n > 0 transport is slightly higher. Otherwise the neoclassical driver has little
if any significant effect here. The neoclassical driver (  

r r r
υ θdx ( ) [ ( / ) ]⋅ ∇ − ∇F e T0 0Φ ) contains

the input ion temperature and density gradients as well as potential gradients and induces the
neoclassical parallel ion velocity profile which (if strong enough) could drive Kelvin-
Helmholtz via the nonlinear interaction with n > 0 modes. (When the neoclassical driver is
neglected, the parallel velocity shear is added directly to ω

*
 terms). Figure 5(b) shows that

the ion neoclassical energy diffusivity radially averaged over the corrugations close to the
non-turbulent large-orbit [24] diffusivity. Clearly both ion-ion collisions and the neoclassical
driver which induces n=0 perturbations to have O(ρ*) deviations from the flux surfaces are
required to get significant neoclassical transport. Otherwise, the neoclassical flows in the
corrugations will average out. The radial average neoclassical plasma flow is ambipolar and
negligible. (Note again that the energy diffusivities are flows divided by temperature
gradients. When the neoclassical diffusivity is added to the ExB, the total is positive.)
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