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Abstract. Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown
to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field
diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which
is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus,
the diffusing field lines induce a radial electron heat diffusivity M ' L/(πR0q) ∼ 10 >> 1 times the magnetic
field diffusivity η/µ0 ' νe(c/ωp)2. The paleoclassical electron heat flux model provides interpretations for many
features of “anomalous” electron heat transport: magnitude and radial profile of electron heat diffusivity (in
tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational
surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form.

1. Introduction: Paleoclassical Physical Mechanism

The fastest and dominant Coulomb-collision-induced transport processes in magnetically-confined
plasmas occur on the electron collision time scale 1/νe and will be called paleoclassical [1,2]: par-
allel electron heat conduction and magnetic field diffusion. On this time scale, the electron distri-
bution is Maxwellianized and electron heat conduction equilibrates the electron temperature Te over
long distances parallel to the magnetic field B — up to the electron collision length λe ≡ vTe/νe in
which vTe ≡ (2Te/me)1/2. Magnetic field diffusion is induced by the plasma electrical resistivity η. It
causes magnetic flux (bundles of field lines) to diffuse perpendicular to B with a diffusion coefficient
Dη ' η0/µ0 ≡ νe(c/ωp)2 ∼ (∆x)2/∆t, which implies a diffusive radial step ∆x ' δe ≡ c/ωp [the
electromagnetic (em) skin depth] in a collision time ∆t ' 1/νe.

Electron gyromotion about magnetic field lines causes the electron guiding center to be identified
with the small amount of magnetic flux associated with field lines penetrating the gyroorbit. However,
since those field lines diffuse radially due to Dη, the guiding center position becomes a radially diffusing
“stochastic variable.” To account for this effect a spatial Fokker-Planck operator [3] is added to the
usual drift-kinetic equation — see (17), (18). If λe is longer than the length of a helical field line on
a q∗ ≡ m/n rational surface or the effective parallel length of diffusing field lines [for n ≤ nmax ∼ 10
— see (23)], the parallel equilibration length L is reduced to these lengths — see (26). The effect of
the Te equilibration over a length L along radially diffusing helical rational field lines that are longer
than the poloidal periodicity half length (∼ πR0q) is that the effective electron heat diffusivity is a
multiple M ∼ L/(πR0q) ∼ 10 of the magnetic field diffusivity Dη — see (22), (25), (27), and (29).

2. Magnetic Field Geometry

The paleoclassical model is developed using a full axisymmetric magnetic field model for arbitrary
aspect ratio (A ≡ R0/r ≡ 1/ε where R0, r are the major, minor radii of the torus) to facilitate
application of the theory to most types of axisymmetric toroidal plasmas — large aspect ratio tokamaks
(A >> 1) and regions of spherical tokamaks (STs, A >∼ 1), spheromaks, and reversed field pinches
(RFPs) where ε2, B2

p/B
2
t << 1. Approximate results for large aspect ratio tokamaks are indicated at

the end of many equations after an approximate equality (').
Paleoclassical transport is concerned with diffusion of magnetic flux (bundles of magnetic field

lines). Since for axisymmetric toroidal plasmas with ε2, B2
p/B

2
t << 1 the toroidal magnetic flux ψt is

less mobile than the poloidal magnetic flux ψ [4-6], diffusion of the poloidal flux surfaces (and field lines)
will be determined relative to ψt and hence a dimensionless, cylindrical-type radial variable ρ: ρ ≡
[ψt/ψt(a)]1/2 ' r/a, ψt(ρ, t) ≡ (1/2π)

∫∫
dS(ζ) ·Bt ' r2B0/2. The appropriate magnetic field model

[4-6] has toroidal (t) and poloidal (p) components: B = Bt+Bp = I∇ζ+∇ζ×∇ψ =∇ψ×∇(q θ−ζ).
As usual, I = I(ρ, t) ≡ RBt ' B0R0. Also, ζ is the toroidal angle and ψ(ρ, t) ≡ (1/2π)

∫∫
dS(θ) ·Bp,

∂ψ/∂ρ ' aR0Bp. Further, θ is the straight-field-line (in the ψ = constant plane) poloidal angle and
q is the winding number or pitch (“safety factor” for kink stability) of magnetic field lines on a flux
surface: q(ρ, t) ≡ (∂ψt/∂ρ)/(∂ψ/∂ρ) = # toroidal transits/# poloidal transits ' r Bt/R0Bp. For an
axisymmetric magnetic field q(ρ, t) = q(ψ, t) and B ·∇θ = I/qR2 ' Bt/R0q = Bp/r.

The Jacobian for transforming from the original Eulerian coordinates to the curvilinear set ui ≡
(ρ, θ, ζ) is

√
g ≡ 1/∇ρ ·∇θ×∇ζ = (∂ψ/∂ρ)/B ·∇θ ' raR0. The radial differential of the volume is
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V ′ ≡ ∂V (ρ, t)/∂ρ = 2π
∫ π
−π
√
g dθ ' a(2πr)(2πR0). The average of an axisymmetric (∂f/∂ζ = 0)

scalar function f(x, t) over a flux surface is 〈f(x, t)〉 = (2π/V ′)
∫ π
−π
√
g dθ f(x, t). The flux-surface-

average is an annihilator for the parallel gradient operator: 〈B ·∇f〉 = 0, for any function f(x, t) that
is periodic in both θ and ζ. For a similarly periodic vector field A(x, t), the flux-surface-average of its
divergence, defined by ∇·A ≡

∑
i(1/
√
g)(∂/∂ui)(

√
gA·∇ui), becomes 〈∇·A〉 = ∂〈A·∇V 〉/∂V .

Flux surfaces are rational or irrational depending on whether q is the ratio of integers (m,n):

q(ρ, t)
{

= m/n, rational surface,
6= m/n, irrational surface.

(1)

The irrational surfaces form a dense set while the rational surfaces are a set of measure zero and radially
isolated from each other. Rational surfaces are of interest here because their (helical) magnetic field
lines close on themselves after m toroidal (or n poloidal) transits.

The differential length d` along magnetic field lines obtained from the poloidal (∇θ) projection of
the field line equation dx/d` = B/B is d` = (B/B ·∇θ) dθ ' R0q dθ. The half length `∗ of a closed
helical field line on a q∗ ≡ q(ρ∗) ≡ m/n rational surface is [2]:

`∗ ≡
1
2

∫ nπ

−nπ

B dθ

B ·∇θ = πR̄q∗n, rational field line length; R̄ ≡ 〈B〉 V ′
4π2q∗∂ψ/∂ρ

' R0. (2)

While helical field lines on medium order rational surfaces with n ∼ 10 >> 1 are long (>> πR̄q∗),
those with low n (≡ n◦ = 1, 2) are short (∼ πR̄q∗).

Radial distances between medium order rational surfaces can be estimated using a Taylor series
expansion of q(ρ, t) about a rational surface at ρ = ρ∗: q(ρ, t) ' q∗ + x q′ + O(x2), in which q∗ ≡
q(ρ∗, t) = m/n, x ≡ ρ − ρ∗ (dimensionless radial distance from rational surface), and q′ ≡ |∂q/∂ρ|ρ∗ .
The distance between rational surfaces with m±1 but the same n is obtained from 1/n = q−q∗ ' xq′:

∆ ' 1/nq′, distance between same n rational surfaces. (3)

Defining q(ρmax) = mmax/nmax and expanding q(ρ) = (mmaxn+ 1)/nmaxn about ρ = ρmax yields the
distance between a q∗ ≡ m/n rational surface and the nearest n ≤ nmax rational surface:

δx(n) ≡ ρ∗ − ρmax '
1

nmaxn q′
, minimum spacing for q′ 6= 0, n ≤ nmax; or, (4)

δxmin(n) ≡ ρ∗ − ρmax '
(

2
nmaxn q′′

)1/2

, q′′ ≡ ∂2q

∂ρ2

∣∣∣∣
ρ∗

, spacing near minimum in q. (5)

For nmax
>∼ 10, q′ ∼ 1, and q′′ ∼ 1, all of these distances are small fractions of the minor radius:

∆ ∼ 1/nmax << 1 for n ∼ nmax, and δx(n) <∼ 1/nmax << 1, δxmin(n) <∼ 1/
√
nmax < 1.

3. Magnetic Flux, Field Line Diffusion

Evolution equations for ψt and ψ obtained from Faraday’s law (∂B/∂t = −∇×E) are [2,5,6]:

dψt
dt
≡ ∂ψt

∂t

∣∣∣∣
x

+ 〈ug ·∇ψt〉 = 0, toroidal flux evolution, 〈ug ·∇ψt〉 ≡ q
〈E ·Bp〉
〈B ·∇ζ〉 ; (6)

dψ

dt
≡ ∂ψ

∂t

∣∣∣∣
x

+ 〈ug ·∇ψ〉 =
〈E ·B〉
〈B ·∇ζ〉 −

∂Ψ
∂t
, poloidal flux evolution. (7)

Toroidal flux ψt is advected radially by the grid velocity ug induced by the poloidal electric field, but
conserved in a Lagrangian frame. In (7) ∂Ψ/∂t ≡ V ζ

loop(t)/2π is the (positive) constant of a spatial
integration. It represents the toroidal loop voltage induced by the rate of change of the magnetic flux
in the central solenoid of a tokamak. The poloidal flux ψ and hence poloidal magnetic field lines move
relative to ψt [compare (6) and (7)] because of departures from ideal MHD (i.e., a nonzero parallel
electric field 〈E ·B〉) or a temporally changing magnetic flux in the central solenoid (i.e., ∂Ψ/∂t 6= 0).

A parallel Ohm’s law for 〈E ·B〉 is obtained [2] from the flux-surface-average of the parallel (B · )
component of the electron momentum equation including inertial and viscosity effects:

〈E ·B〉
〈B ·∇ζ〉 =

(
ηnc
‖
µ0

+ δ2
e

d

dt

)
〈µ0J ·B〉
〈B ·∇ζ〉 +

µe
νe
η0

1
〈R−2〉

dP

dψ
, parallel Ohm’s law. (8)
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Here, the terms on the right indicate: magnetic flux diffusion [see (12) below] induced by the neoclas-
sical parallel resistivity, electron inertia, and the neoclassical bootstrap current. The (neoclassical)
parallel electrical resistivity (neglecting poloidal electron heat flow effects) is

ηnc
‖
η0
'
ηSp
‖
η0

+
µe
νe
, neoclassical resistivity;

ηSp
‖
η0
'

√
2 + Z√

2 + 13Z/4
, Spitzer resistivity. (9)

The reference (⊥) resistivity η0 and electron viscous drag frequency µe adapted from [5,6] are

η0

µ0
≡ meνe
nee2µ0

' 1.4× 103 Z

[Te(eV)]3/2

(
ln Λ
17

)
m2

s
,

µe
νe
' Z +

√
2− ln(1 +

√
2)

Z (1 + ν
1/2
∗e + ν∗e)

ft
fc

ν∗e=0
Z=1=⇒ 1.5

ft
fc
. (10)

Here, Z (→ Zeff ≡
∑

i niZ
2
i /ne for multiple ion species) is the (effective) ion charge, fc ' 1−1.46ε1/2 +

O(ε3/2) is the circulating particle fraction [6], ft ≡ 1−fc, and ν∗e ≡ νe/[ε3/2(vTe/R0q)] = R0q/ε
3/2λe is

the electron collisionality parameter. The ηnc
‖ in (9), (10) ranges from being equal to (for µe/νe << 1)

to twice (for µe/νe >> 1) the most precise neoclassical resistivity results [5,6].
From Ampere’s law µ0J ≡ ∇×B = (∂I/∂ψ)∇ψ×∇ζ +∇ζ ∆∗ψ, in which the usual magnetic

differential operator is ∆∗ψ ≡ (1/|∇ζ|2)∇· |∇ζ|2∇ψ. Dotting this µ0J with B, flux surface averaging,
and using |∇ζ|2 = R−2 yields [2,6]

∆+ψ ≡ 〈µ0J ·B〉
〈B ·∇ζ〉 =

I

〈R−2〉V ′
∂

∂ρ

[〈 |∇ρ |2
R2

〉
V ′

I

∂ψ

∂ρ

]
' 1
r

∂

∂r
r
∂ψ

∂r
. (11)

Substituting the Ohm’s-law-determined 〈E ·B〉 in (8) using 〈J ·B〉 from (11) into the poloidal flux
evolution equation (7), one obtains a diffusion-type (at least for δ2

e∆
+ << 1) equation for ψ:

d

dt

(
1− δ2

e∆
+
)
ψ = Dη ∆+ψ − Sψ; Dη ≡

ηnc
‖
µ0

, magnetic field diffusivity. (12)

Sources of poloidal flux in Sψ ≡ ∂Ψ/∂t − (µe/νe)η0(1/〈R−2〉)dP/dψ arise from the “current-drive”
effects due to a changing flux in the central solenoid (∂Ψ/∂t ≡ V ζ

loop/2π) and the bootstrap current.
In equilibrium in the Lagrangian frame, d/dt → 0 and the equation for the stationary poloidal

flux ψ0 becomes 0 = Dη ∆+ψ0 − Sψ. Thus, in equilibrium the diffusion of ψ (poloidal field lines) is
balanced by the source Sψ of poloidal magnetic flux, field lines; the Poynting flux represented by ∂Ψ/∂t
brings poloidal field lines into the plasma and the magnetic field diffusivity Dη diffuses them out of
the plasma — even for a stationary poloidal magnetic field Bp, which will be henceforth assumed.

To determine the properties of the small bundle of magnetic flux δψ(x, t) penetrating an elec-
tron gyroorbit, one substitutes an Ansatz of ψ → ψ0 + δψ into (12) to obtain (for x2 << 1)
(∂/∂t + ūg ∂/∂x)(1 − δ̄2

e ∂
2/∂x2) δψ ' ν̄eδ̄

2
e ∂

2δψ/∂x2, in which the following normalized variables
have been defined: ūg ≡ 〈ug ·∇ρ〉, δ̄e ≡ δe/ā, 1/ā2 ≡ (1/〈R−2〉)〈|∇ρ|2/R2〉 ' 1/a2, D̄η ≡ Dη/ā

2,
ν̄e ≡ νe(ηnc

‖ /η0). For |x| < δe (or k2
xδ

2
e > 1), the δψ solution of this equation is spatially constant [2];

hence, it produces no field lines or diffusion of them in this region (i.e., δBp ≡∇ζ×∇δψ = 0 there).
For radial scale lengths longer than the em skin depth δe (for which k2

xδ̄
2
e << 1 so that δ2

e∆
+ << 1

can be neglected), the evolution equation for δψ becomes a simple diffusion equation:

d δψ

dt
≡
(
∂

∂t
+ ūg

∂

∂x

)
δψ = D̄η

∂2δψ

∂x2
. (13)

Its (Green function) solution for a delta function of flux initially located at x = 0 is

δψ(x, t) = e−(x−ūgt)2/4D̄ηt/(4πD̄ηt)1/2,

∫ ∞
−∞
dxx δψ = ūg t,

∫ ∞
−∞
dxx2 δψ = 2D̄ηt = 2 ν̄et δ̄2

e . (14)

Note that δψ indicates a temporally evolving probability distribution for the radial location of a
unit quanta of poloidal flux (field lines) that was initially at x = 0. As indicated, the average radial
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displacement and spread (variance) of the flux (field lines) grow linearly with time. This advection and
diffusion process occurs even when the magnetic field B is in stationary equilibrium (i.e., dψ/dt = 0).

In the next section a Fokker-Planck model will be used to include effects of radial advection and
diffusion of field lines in a kinetic analysis. Relevant Fokker-Planck coefficients deduced from (14) are

〈∆x〉
∆t

= ūg,
〈(∆x)2〉

2 ∆t
= D̄η =⇒ 〈∆x〉

∆t
≡ 〈∆x〉

∆t
eρ,

〈∆x∆x〉
∆t

≡ 〈(∆x)2〉
∆t

eρeρ. (15)

In the last form the Fokker-Planck coefficients have been written in a general vectorial form in terms
of the covariant base vector in the “radial” direction eρ ≡ ∂x/∂ρ =

√
g∇θ×∇ζ, for which eρ·∇ρ = 1.

To consider diffusion of helical flux (field lines) in the vicinity of a rational surface at ρ = ρ∗ where
q∗ ≡ q(ρ∗) = m/n, one uses a local helical coordinate system with helical angle [7] α ≡ ζ − q∗θ =
ζ− (m/n) θ. Since ∇θ×q∗∇θ = 0, the Jacobian

√
g ≡ (∇ρ ·∇θ×∇α)−1 is the same as before. Thus,

one writes B in the local helical form B =∇α×∇ψ +∇ψ∗×∇θ ≡ Bh + B∗, in which

∂ψ∗/∂ρ = (q − q∗) ∂ψ/∂ρ, helical flux definition =⇒ ψ∗0 ' (x2/2) q′ ψ′. (16)

Here, the last form has been obtaied using q(ρ) ' q∗ + xq′. Integrating the general form in (16) over
ρ near ρ = ρ∗, taking its total time derivative, and using dψt/dt = 0 from (6), one obtains [2] (again
neglecting em skin depth effects for x2 > δ̄2

e and t > 1/ν̄e) dψ∗/dt = − q∗ dψ/dt. Thus, the helical flux
ψ∗ diffuses like the poloidal flux ψ does. Also, writing ψ∗ → ψ∗0 + δψ∗, one finds [2] that δψ∗ obeys
the same diffusion-type equation as δψ does, i.e., (13). Hence helical flux (field lines) in the vicinity
of rational surfaces also advect and diffuse with the Fokker-Planck coefficients given in (15).

4. Paleoclassical Kinetics, Analysis

In plasma kinetic theory magnetic flux surfaces and field lines are usually assumed to be fixed in space;
however, as discussed in the preceding section, when η 〈J ·B〉 6= 0 they diffuse radially. Thus, the
bundle of magnetic flux (field lines) penetrating the electron gyroorbit becomes a stochastic (diffusing)
variable. The field line diffusion is, like most stochastic processes [3], governed (at least for x2 > δ̄2

e

and t > 1/ν̄e) by a diffusion equation and representable by Fokker-Planck coefficients — as given in
(15). The relevant electron kinetic equation is the gyro-averaged one, which is called the drift-kinetic
equation [5]. Adding the Fokker-Planck-type effects [3] of magnetic flux (field line) diffusion of the
electron guiding centers, the magnetic-field-diffusion-Modified Drift-Kinetic Equation (MDKE) is

∂f

∂t
+
v‖
B

B·∇f + vD·∇f + ε̇
∂f

∂ε
= C{f}+D{f}. (17)

Here, f = f(xg, ε, µ, t) is the guiding center distribution function, C{f} is the Coulomb collision oper-
ator, and the other notation is standard. Effects due to magnetic field line diffusion are indicated by
the Fokker-Planck spatial diffusion operator (D), which in general is [3] D{f} ≡ −∇· [(〈∆x〉/∆t)f ] +
∇· [∇· (〈∆x∆x〉/2 ∆t)f ]. Using ∇·A ≡

∑
i(1/
√
g)(∂/∂ui)(

√
gA·∇ui) and the Fokker-Planck co-

efficients in (15), when f is solely a function of a magnetic flux coordinate (i.e., ρ, ψ∗ or x), the
flux-suface-average of this operator becomes [neglecting 〈∇ρ · ∂eρ/∂ρ〉 = 〈∇ρ · ∂2x/∂ρ2〉 ∼ O(ε2)]

〈D{f(ρ)}〉 ' 1
V ′

∂

∂ρ

(
−V ′ 〈∆x〉

∆t
f +

∂

∂ρ
V ′
〈(∆x)2〉

2 ∆t
f

)
=

1
V ′

∂

∂ρ

(
−V ′ūgf +

∂

∂ρ
V ′D̄ηf

)
. (18)

Next, consider Fourier expansion of the distribution function in poloidal (θ) and toroidal (ζ) angles:

f(ψ, θ, ζ) =
∑
m,n

fmn(ψ) eimθ−inζ =
∑
m

fm0(ψ) eimθ +
∑
m,n6=0

fmn(ψ)eimθ−inζ ≡ fa + fna. (19)

The n = 0 contributions represent the axisymmetric distribution function fa that yields the usual
neoclassical transport [5,6]. The electron energy transport equation including both neoclassical and
axisymmetric paleoclassical effects is obtained from the flux-surface-average of the kinetic energy
moment of the axisymmetric part of (17), approximating f in D{f} by a Maxwellian fM (ψ):

3
2
∂

∂t
(neTe) +

∂

∂V
〈(qnc

e +
5
2
TeΓnc

e ) ·∇V 〉+
∂

∂V
〈Qpc

e ·∇V 〉 = Qe, (20)
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Here, the electron entropy-producing processes are: the neoclassical conductive (qnc
e ) and convective

[(5/2)TeΓnc
e ] heat fluxes, the paleoclassical heat flux (Qpc

e ) which is induced by D{fM}, and the heating
(Qe) due to collisional effects (joule heating, electron viscosity, and collisions with ions).

Near a q∗ = m/n rational surface fna can be put into a form that isolates its poloidal (θ) and
helical [α ≡ ζ− q∗θ = ζ− (m/n) θ] angle dependences: fna(ψ, θ, α) =

∑
n6=0 e

−inα∑
m̃ fm+m̃,n(ψ) eim̃θ.

Further, since near a rational surface the magnetic field can be represented by its helical and magnetic
shear components as B = Bh + B∗, the parallel-streaming differential operator in (17) becomes [7]:
B ·∇f = (B ·∇θ)[∂f/∂θ|ψ∗,α + (q − q∗) ∂f/∂α|ψ∗,θ]. Thus, near the q∗ ≡ m/n rational surface
f → f(ψ∗, θ, α, ε, µ) and applying this parallel-streaming operator to fna yields

B ·∇fna = (B ·∇θ)
∑
n6=0

e−inα
∑
m̃

eim̃θ × i [m̃− n(q − q∗)] fm+m̃,n(ψ). (21)

Since the parallel-streaming term (v‖/B) B ·∇fna is dominant in (17), it causes the Fourier coefficients
fm+m̃,n to be small unless m̃−n(q− q∗) is small. Near the q∗ ≡ m/n rational surface q ' q∗+xq′ and
this coefficient becomes m̃− n(q− q∗) ' m̃− nxq′. It will be small and lead to the largest fm+m̃,n for
m̃ = 0 and |nxq′| << 1. The resulting “helically resonant” Fourier coefficient (near q = q∗) will be
f∗(x) ≡ fm,n(ψ∗). Here, the argument has been changed from the poloidal (ψ) to the helical (ψ∗) flux,
which is the appropriate flux (radial) label near the given rational surface. Using (3), the criterion
|nxq′| << 1 is |x| << ∆. Hence, f∗(x) solutions will be highly peaked near the q∗ rational surface.

Developing a useful (i.e., one-dimensional) representation for fna near a q∗ = m/n rational surface
for n >> 1 is analogous to the development of ballooning mode theory [8]. The basic issue is: how
does one maintain periodicity of the solutions in the poloidal (θ) and helical (α) angles as one moves
radially away (i.e., to x 6= 0 in a sheared magnetic field structure) from a rational surface composed of
helically symmetric field lines. For “flute-like” behavior extending long distances (|`| >> πR̄q) along
large n helical field lines, one assumes q is locally a linear function of x (i.e., q ' q∗+xq′) and employs
the procedure Lee and Van Dam [8b] used to develop a ballooning representation, to obtain [2]

fna '
∑
n6=0

e−inα
∞∑

p=−∞
f̂∗(θ + λ+ 2πp) einxq

′(θ+λ+2πp) '
∑
n6=0

e−inα
∫ `∗

−`∗

d`

2πR̄q∗
f̂∗(`) ei k‖(x) `. (22)

Here, f̂∗(`) is the Fourier transform [8b] of f∗(x). Note that this fna is a periodic function of both the
poloidal (θ) and helical (α) angles. In the last form the discrete sum over p has been converted into
a continuous integral in which ` ' (θ + λ+ 2πp)R̄q∗ represents extension of the poloidal angle θ into
a field line variable along B. For the sheared (q′ 6= 0) magnetic field k‖(x) ≡ nxq′/R̄q∗.

The ` integration limits in (22) are the half length of a helical field line: `∗ = πR̄q∗n from
(2). These limits also imply the sum over p in (22) only extends from −n/2 to n/2 — to represent
summing over n poloidal transits of the field line. Since f̂∗(`) is usually nearly constant for |`| ≤ `∗
[2], (22) yields a factor ∼ `∗/πR̄q∗ = n >> 1, which produces the multiplier M [see (27), (29)] in
the paleoclassical electron heat diffusivity — physically because contributions of n poloidal passes
of the rational helical field line are summed to obtain the net response for one poloidal period of
the plasma. In the “ballooning representation” the parallel distance ` is proportional to the Fourier
transform variable kx(`) for the x (radial) variation of f∗(x). Also, note that k‖(x) ` = kx(`)x, where
kx(`) ≡ nq′(`/R̄q∗) = nq′(θ+λ+2πp), which is the usual [8] kx = kθs θ with kθ ≡ nq/ρa and s ≡ ρ q′/q.

Satisfying the criterion k2
x(`)δ̄2

e < 1 (or |x|2 > δ̄2
e) for diffusing field lines requires |`| < `δ ≡

R̄q∗/(nδ̄eq′). Requiring `δ to be longer than the helical field line length `∗ ≡ πR̄q∗n in (2) yields a
maximum n and length of field lines that are diffusing over their entire length:

nmax ≡ 1/(πδ̄eq′)1/2, maximum n; `max ≡ πR̄q∗nmax, maximum diffusing length. (23)

Solutions of the nonaxisymmetric MDKE in (17) are sought [2] using an ordering scheme in which
the transit frequency ωt ∼ v‖(B ·∇θ)/B ∼ vTe/R0q is larger than all other frequencies. To lowest
order ∂f∗0/∂θ|ψ∗,α = 0; hence f∗0 must be independent of the poloidal angle θ. The next order kinetic
equation includes parallel streaming along ψ∗ surfaces and collisions. Bounce-averaging it annihilates
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a ∂f∗1/∂θ term to yield ωt (q− q∗) ∂f∗0/∂α|ψ∗ = 〈C{f∗0}〉θ, whose solution [2] (for q− q∗ 6= 0, λe > `∗)
is a Maxwellian constant along ψ∗ surfaces (i.e., closed field lines with the pitch of rational field lines):

f∗0 = fM (ψ∗, ε, t) = ne(ψ∗, t)
(

me

2πTe(ψ∗, t)

)3/2

e−ε/Te(ψ∗,t). (24)

When λe < `∗, finite parallel electron heat conduction limits the electron temperature equilibration
to the region |`| <∼ λe. Thus, the f∗0 in (24) is applicable for |`| ≤ `fM∗ ≡ min {`∗, λe}.

The paleoclassical radial electron heat transport induced by the diffusion of the nonaxisymmetric,
helical magnetic flux (field lines) near q∗ = m/n is obtained by taking the helical average of the energy
moment of the D{fna} term in (17) and using the fna representation in (22) with f∗0 from (24):

−〈∇·Qpc
e∗〉 ≡

∫
d3v

mv2

2

∫ π

−π

dα

2π
einα 〈D{fna}〉 ' 〈D{

∫ L

−L

d`

2πR̄q∗
eik‖(x)` 3

2
neTe}〉. (25)

The Fokker-Planck coefficients in (15) are only applicable for x2 > δ̄2
e . Thus, the maximum half length

of helical field lines is the `max in (23). Hence, the limits of the ` integration in (25) are given by
±L, in which L is the minimum of the lengths over which f0∗ is Maxwellian (`fM∗) and field lines are
diffusing (`max):

L ≡ min { `max, λe, `n◦}, equilibration length. (26)

Since very near a rational surface |k‖(x)L| << 1, one can set eik‖` ' 1 [for |x| << R̄q∗/nq′L ≤
1/(πn2q′) = ∆/πn], perform the ` integration in (25), and obtain for the total (advective plus diffusive)
paleoclassical electron heat flux near the q∗ flux surface

〈Qpc
e∗ ·∇V 〉 = V ′M ūg

3
2
neTe −

∂

∂ρ

(
V ′M D̄η

3
2
neTe

)
, M ≡ L

πR̄ q∗
, helical multiplier. (27)

Considering radial profile effects [2], the net helical paleoclassical electron heat flux (after summing
over all possible rational surfaces) varies little with radius. Thus, q∗ can be replaced by q(ρ) in (27).
However, in the vicinity of low order rational surfaces where q(ρ◦∗) ≡ m◦/n◦ with n◦ = 1, 2 it also
varies little with radius, but is smaller because L and hence M are smaller there [up to a distance
from ρ◦∗ of order δx◦ ≡ δx(n◦) or, around a minimum in q about q◦, δx◦min ≡ δx◦min(n◦)].

5. Paleoclassical Radial Electron Thermal Transport

The total paleoclassical electron heat flux (Qpc
e ) in the rest frame of the toroidal flux surfaces (i.e.,

removing ug contributions) for a stationary poloidal magnetic field Bp is the sum of axisymmetric
(M → 1 in (27) [2]) and the nonaxisymmetric (quasi-helical symmetric) transport flux in (27):

〈Qpc
e ·∇V 〉 = − ∂

∂ρ

(
V ′(M + 1) D̄η

3
2
neTe

)
, total paleoclassical electron heat flux. (28)

The diffusive part of this heat flux indicates a paleoclassical electron heat diffusivity of

χpc
e ≡

3
2

(M + 1)Dη '
3
2
M
ηnc
‖
µ0

=
3
2
Mν̄eδ

2
e , paleoclassical electron heat diffusvity χe. (29)

Comparing this χpc
e with the magnetic flux diffusivity Dη in (12), one sees that Te diffuses a factor

of order M faster than ψ does — because Te is equilibrated over the long length L of helical field
lines, compared to the poloidal periodicity length πR̄q. Thus, the paleoclassical model may be able
to explain the experimentally observed Te “profile resiliency” [9], which was originally called “profile
consistency” [10] and has often been linked to the q profile.

There are two collisionality regimes of paleoclassical electron heat diffusion. For most toroidal
plasmas the collision length λe is longer than `max; then, M = nmax >> 1 yields

χpc
e '

3
2

(
1

πδ̄e|q′|

)1/2 ηnc
‖
µ0

, λe > `max ≡ πR̄q nmax, collisionless paleoclassical regime. (30)
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As an example of the magnitude of this “collisionless” electron heat diffusivity, for a typical ohmically-
heated TFTR plasma [10b] with Te ' 1.2 keV, ne ' 3 × 1019 m−3, Zeff ' 2, R0 ' 2.55 m, q ' 1.6,
and a/q′ ' 0.4 m at r/a ' 0.4/0.8 = 0.5, one obtains η0/µ0 ' 0.067 m2/s, ηnc

‖ /η0 ' 2.2 (neglecting
ν∗e effects, which would make the results a factor of 0.6 smaller), δe ' 10−3 m, nmax ' 11, and
λe ' 300 m > πR0q nmax ' 140 m, so that L ' πR0q nmax, M = nmax ' 11, and the estimated χpc

e is
2.5 m2/s ∼ χexp

e . Since this χpc
e ∝ n

1/4
e /(q′T 3

e )1/2 ∝ Te(r)−3/2, the radial dependence of χpc
e increases

strongly as Te decreases with increasing r, in qualitative agreement with inferences from experiments.
In high density, more collisional plasmas where L = λe, M = λe/(πR̄q) >> 1 yields

χpc
e '

3
2

ηnc
‖
η0

vTe
πR̄q

c2

ω2
p

, πR̄q < λe < πR̄q nmax, collisional paleoclassical regime. (31)

In typical high density toroidal plasmas Zeff ' 1 and ν∗e >> 1; for such plasmas (3/2)(ηnc
‖ /η0) '

(3/2)(0.51). Thus, the collisional χpc
e implies an overall electron energy confinement time τEe ∼

a2/4χpc
e ' 0.27 (ne/1020m−3) a2R0q (Te/500eV)1/2 s, which approximately reproduces (in both mag-

nitude and scaling for the highest performance pellet-fueled Alactor C plasmas [11] that had a = 0.165
m and R0 = 0.64 m) the “neo-Alcator scaling” deduced empirically primarily from ohmically-heated
tokamak plasma data in the 1970s and early 1980s [12]: τAE ∼ 0.07neaR2

0qa.
In the closed field line region near the magnetic separatrix region where q and q′ become very

large, one can have λe <∼ πR̄q. In this region, the paleoclassical electron heat diffusivity is [2]

χpc
es '

3
2

ηSp
‖
µ0

1 +
ηnc
‖

ηSp
‖

λe
πR̄q

, πR < λe < πR̄q max {1, nmax}, near-separatrix region. (32)

For λe/πR̄q > (ηSp
‖ /η

nc
‖ ) ∼ 1, this yields the collisional χpc

e in (31). In the opposite limit one obtains

a smaller χpc
es ' (3/2)(ηSp

‖ /µ0) ' [100/Te(eV)]3/2 m2/s for Zeff ' 1. There are some experimental
indications in DIII-D [13] that within about 2 cm of the separatrix ∇Te is significantly larger, which
implies χexp

e is reduced there; the maximum ∇Te apparently occurs at about the ρs ∼ 0.95–0.97
predicted by the paleoclassical model: q(ρs) ∼ (λe/πR̄) (ηnc

‖ /η
Sp
‖ ) ∼ 5–10.

The paleoclassical model applies to all types of axisymmetric toroidal plasmas in regions where
ε2, B2

p/B
2
t << 1. For R0 ' 1 m STs with Te ∼ 1 keV and ne ∼ 3 × 1019 m−3, the prediction at

r/a ∼ 0.5 is χpc
e ∼ 5–10 m2/s, which, in reasonable agreement with experimental results [14], is large

because for STs q′ << 1 is small and ηnc
‖ /η0

>∼ 3 is large in the plasma confinement region (r/a ∼ 0.5).
For quiescent RFP plasmas in the Madison Symmetric Torus (MST) Pulsed Poloidal Current Drive
(PPCD) experiments [15], at r/a ∼ 0.3–0.5 one obtains χpc

e ∼ 5–10 m2/s (large because q < 0.2 and
|q′| <∼ 0.2 are small), which is close to the effective χe’s inferred from global (χ̄exp

e ≡ a2/4τE ∼ 7.5
m2/s [14a]) and local (χexp

e ∼ 10–30 m2/s [14b]) measurements. In quasi-symmetric stellarator plasmas
there would be no paleoclassical transport if there is no flux-surface-average parallel current 〈J ·B〉;
however, net flux-surface-average parallel currents in a stellarator would induce a χpc

e .
As indicated by (26), (27), and (29), the predicted χpc

e is much smaller for the “short” helical field
lines [see (2) and discussion thereafter] in the vicinity of low order rational surfaces with q◦ = m◦/n◦:
χpc
e ∼ (3/2)(n◦+1) ηnc

‖ /µ0. The estimated width of the low χpc
e “transport barriers” is 2 δx◦ ≡ 2 δx(n◦)

for q′ 6= 0, or, if q is near a minimum at the rational surface, 2 δx◦min ≡ 2 δxmin(n◦). These barrier
widths can be compared to some key tokamak results. First, as experiments in RTP [16] slowly moved
highly localized electron cyclotron heating (ECH) radially outward, a “stair-step” reduction in the
central Te was observed as the ECH passed low order rational surfaces. It was thus inferred [16] that
transport barriers existed with about a factor of 10 reduction in χe over relative (to a) barrier widths
of order 0.04 (0.1 for q = 1/1). For RTP parameters 2 δx◦ ∼ 0.06–0.12 (0.17 for q = 1/1). Next, jumps
in Te (over radial widths ∼ 0.2) have been observed in evolving DIII-D L-mode plasmas [17] as an off-
axis minimum in q(ρ, t) passes through low order rational surfaces. For the DIII-D parameters, 2 δx◦min

gives a similar estimate (∼ 0.3) for the transport barrier width. Finally, a strong ∇Te and internal
transport barrier were created in the pioneering JT-60U experiments [18]; the experimentally inferred
barrier width was ∼ 0.11, close to the paleoclassical prediction of 0.14 near an assumed qmin = 3.
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Note that the paleoclassical electron heat flux in (28) is not in a normal (diffusive) Fourier heat
flux law form (i.e., qe = −κe∇Te ≡ −neχe∇Te). Rather, it can be written in general as:

〈Qpc
e ·∇V 〉 = −V ′neχpc

e

∂Te
∂ρ
− 〈qpi

e ·∇V 〉; 〈qpi
e ·∇V 〉 ≡ Te

∂

∂ρ

(
V ′neχ

pc
e

)
, heat pinch. (33)

The electron heat pinch heat flux 〈qpi
e ·∇V 〉 is usually positive (inward) and increases with ρ, in

qualitative agreement with JET experimental results [9]. Also, a heat pinch effect implies [9] a “power
balance” χe (χpb

e ), which is defined as the net electron heat flux divided by −ne∇Te, less than χpc
e .

Alternatively, in qualitative agreement with some tokamak experimental data [19], 〈Qpc
e ·∇V 〉 can be

written in the form of a heat flux proportional to the degree to which −∇ lnTe ≡ 1/LTe exceeds a
critical magnitude' ∂ ln(V ′neχ

pc
e )/∂r. If this paleoclassical critical gradient is approximately constant

over the confinement region, it would agree with the experimental observations that ∇ lnTe in the
“confinement region” (0.3 <∼ ρ <∼ 0.8) is nearly constant [20] and usually close to its critical value.

6. Summary and Discussion

Equations (28)–(33) are the main paleoclassical results. As indicated in the preceding section, they
provide interpretations for many features of “anomalous” electron heat transport. Because the results
were obtained by a large n asymptotic analysis and the characteristic lengths in L have been only
approximately determined, M (and hence all M -dependent results) should be interpreted as scaling
results. More detailed studies could introduce numerical coefficients of order unity in L, M , and χpc

e .
Paleoclassical electron heat transport is based on the primitive Coulomb collision processes of

parallel electron heat conduction and plasma resistivity leading to magnetic field diffusion. Thus, it
is an “irreducible, ubiquitous” transport process, just as classical and neoclassical transport [5,6] are.

Plasma turbulence induced by microinstabilities could induce additional transport. Since Dη ∝
η ∝ 1/T 3/2

e , the “collisionless” paleoclassical electron heat diffusion coefficient decreases with increas-
ing electron temperature; for nmax

<∼ 10 and ηnc
‖ /η0

<∼ 2, χpc
e becomes less than 1 m2/s for Te >∼ 2 keV.

Thus, if microturbulence-induced transport due to trapped-electron or electron-temperature-gradient
instabilities induce χµturb

e
>∼ 1 m2/s, they could become dominant transport mechanisms for electron

temperatures above a few keV. Such microturbulence would apparently not directly affect paleoclas-
sical processes since it usually does not affect the parallel Ohm’s law much [21] and the parallel
correlation length for magnetic microturbulence usually exceeds the relevant paleoclassical length L.
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