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Abstract. It is found that magnetic field has a stabilization effect whereas the sheared flow has a destabilization 
effect on the RT instability in the presence of sharp interface. RT instability only occurs in the long wave region 
and can be completely suppressed if the stabilizing effect of magnetic field dominates. The RT instability 
increases with wave number and flow shear, and acts much like a Kelvin-Helmholtz instability when 
destabilizing effect of sheared flow dominates. It is shown that both of ablation velocity and magnetic filed have 
stabilization effect on RT instability in the presence of continued interface. The stabilization effect of magnetic 
field takes place for whole waveband and becomes more significant for the short wavelength. The RT instability 
can be completely suppressed by the cooperated effect of magnetic field and ablation velocity so that the ICF 
target shell may be unnecessary to be accelerated to very high speed. The growth rate decreases as the density 
scale length increases. The stabilization effect of magnetic field is more significant for the short density scale 
length. 
 
1. Introduction 
 
The Rayleigh-Taylor (RT) instability occurs in inertial confinement fusion (ICF) and core-
collapse supernova when a heavy fluid is accelerated by a light fluid [1-5]. This instability is 
annoying because it obstructs the realization of ICF. Hence, it is important to seek physical 
mechanisms that can suppress such instability. In almost all the treatment, there is no relative 
velocity between heavy fluid and the light fluid. This is a reasonable assumption but not fully 
justified. In realistic situation, compression will inevitably give rise to an inhomogeneity 
along the direction perpendicular to the interface between the heavy and light fluids. This 
inhomogeneity can induce an equilibrium flow parallel to the interface. Thus, it is interesting 
to study the effect of the equilibrium flow and its shear on the RT instability. On the other 
hand, the growth rate of the instability is commonly written as akVkLkg βαγ −+= )1/( 0 , 
where k is the wave number, g is the acceleration, aV  is the ablation velocity, and L0 is the 
density scale length at the ablation surface. Unfortunately, the coefficients α and β are not 
universal constants and fitting their magnitudes in different numerical simulations has shown 
different values. Therefore, α and β must be functions of some parameters such as 
equilibrium parameters and the perturbed wavelength.  
 
Recently, the self-generated magnetic fields in laser-produced plasmas have attracted much 
theoretical and experimental attention for their roles in the design of ICF [6]. The self-
generated magnetic fields can be produced by processes such as filamentation, resonance 
absorption, thermal, and Weibel instabilities [7]. Simulations on the interaction of an 
ultraintense laser pulse with an overdense plasma target have shown extremely high magnetic 
field strength up to 103 MG. These extremely strong magnetic fields may have interesting 
effects on the physics of ICF, including the RT instability. 
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In this paper, we consider the effects of magnetic filed, shear flow, and ablation velocity on 
the linear growth of RT instability. The starting point of our work is the ideal 
magnetohydrodynamic (MHD) equations in the SI system as follows: 
 

 0)( =⋅∇+
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∂ uρρ

t
 (1) 

 gBJu ρρ −×+−∇= p
dt
d  (2) 

 BJ ×∇= −1µ  (3) 

 EB
×−∇=

∂
∂

t
 (4) 

 0=×+ BuE  (5) 
 
where ρ is the mass density, d/dt is the convective time derivative, u the fluid velocity, p the 
plasma pressure, J the current density, and B and E are the magnetic and electric fields, 
respectively.  
 
We are going to investigate the perturbation of the equilibrium and assume all quantities are 
of the form )exp(10 tiikyfff ω−+=  where the subscripts ‘0’ and ‘1’ denotes respectively 
the equilibrium and small perturbation. 
 
2. The effects of magnetic filed and sheared flow on RT instability 
 
It is assumed that the inertial state of fluid is described as yyxx zuzu eeu )()( 000 += , 

)(00 zρρ = , and yyxx zBzBB ee )()( 000 += so that 00 =⋅∇ B , and 00 =⋅∇ u  are 
automatically satisfied. Assume the perturbation of velocity and magnetic filed respectively 
as )()()( 1111 zuzuzu zzyyxx eeeu ++= , )()()( 1111 zBzBzB zzyyxx eeeB ++= . 

 
FIG. 1 The scheme of velocity, gravity, density , pressure, shear flow and magnetic field. 
 

The linearized version of equations (1) - (5) for the perturbations can be combined as 
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   (6) 
 
where 00 / µρyA Bu =  is the Alfvén velocity. Let 0* yku−= ωω , *1 /)()( ωωzuzu zz =  and 

)( 222
*0

2
* Auk−= ωρωρ , then the above equation becomes: 
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If a sharp interface exists at 0=z , the equilibrium mass density, magnetic field and flow 
have a jump: 
 
 )()()(0 zhz −+− −+= ρρρρ , −+ > ρρ .  (8) 
 )()()(0 zhBBBzB yyyy −+− −+=  (9) 
 )()()(0 zhuuuzu yyyy −+− −+=  (10) 

where h(z)  is the Heaviside function and defined as ∫
+∞

∞−
−=− dxxzh )()( ζδζ . Hence, if all 

of −ρ , +ρ , −yu , +yu , −yB  and +yB  are constants, Eq. (7) can be simplified in either side 

of 0=z  as zz ukdzud 222 / = . This equation has a neat solution: 
 
 )()](exp)([exp)(exp)( 00 zhkzkzukzuzu zzz −−+=  (11) 
 
By using Eqs. (8-11), integration of Eq. (7) over the sharp interface from －0  to ＋0  gives 
 
 µρρωρωρ /)()()()( 22222

+−−+−−++ ++−−=−+− yyyy BBkkgkuku   (12) 
 
whose solution is complex and can be separated into two parts γωω i+= r , where 

)/()( +−++−− ++= ρρρρω yyr uuk  stands for the pure oscillating frequency which results in a 
Doppler shift. Meanwhile, the imaginary part  
 
 2/122222 ])1([ rATuT ukAkgkA −−+= δγ  (13) 
 
is the growth rate of RT instability, where )/()( +−+− +−= ρρρρTA  is the Atwood number , 

2/|| −+ −= yyu uuδ  denotes the reduced difference of equilibrium flow across the sharp 

interface and 2/122 ))](/()[(v +−+− ++= ρρµyyra BB  is the reduced Alfvén speed. 
 

At first, we would like to discuss the effect of magnetic field on RT instability. It can be 
obtained from Eq. (13) that 

 
 0/vv/ 2 <−=∂∂ γγ rara k  (14) 

 
The growth rate is a monotonic function that decreases as rav  increases, which is confirmed 
by Fig. 2. In other words, RT instability can be suppressed by magnetic field, and even 
quenched when the magnetic field is strong enough that the rav  is larger than the threshold 
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2/122 ]/)1[(v kgAA TuTT +−= δ . For perturbations with large wave number or short wavelength, 
this threshold is relatively small and the RT instability can be quenched easily. This 
stabilizing effect is provided by the Lorentz force in the z -direction against the gravity, 
which is produced by the perturbed current 1xJ  and the equilibrium magnetic field 0yB . 
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FIG. 2 Growth rate via reduced Alfven speed rav    FIG. 3 Growth rate via reduced shear 
uδ  

for 0.1=k , 5.0=TA  and 0.1=uδ .         for 0.1=k , 5.0=TA  and 0.1=rav  
 

Secondly, we would like to discuss the effect of sheared flow on RT instability. 
Similarly, it can be obtained from Eq. (13) that 

 
 0/)1(/ 22 >−=∂∂ γδδγ Tuu Ak  (15) 
 
Hence, the growth rate increases monotonically with sheared flow. As shown in Fig. 3, the 
increment in growth rate goes into the linear stage for sufficiently large shear. Therefore, 
sheared flow reinforces the RT instability and is the governing drive when 

gAAk TuT >>− /)1( 22 δ , which can be achieved when one of following conditions met. 1) Wave 
number is very large. 2) Flow shear is adequately strong. 3) Atwood number is small. When 
destabilizing effect of sheared flow dominates over that of gravity, the first term in the 
expression of growth rate γ  can be ignored and the RT instability acts much like a Kelvin-
Helmholtz instability. 
 

Thirdly, we would like to discuss the effect of density gradient on RT instability. It is 
easy to find out from Eq. (13) that 

 
 )2/()2(/ 2 γδγ uTT kAgkA −=∂∂  (16) 

 
which implies that the growth rate increases monotonically with TA  if )2/(0 2

uT kgA δ<< . 
Therefore, growth rate γ  reaches its maximum 2/122

1 )( ram vkgk −=γ  at 1=TA  if 
gkA uT <22 δ . Otherwise, it achieves a maximum 2/122222

2 )]()4/([ rauum vkg −+= δδγ at 
)2/( 2

uT kgA δ=  if gk u >22 δ . The dependence of growth rate γ on TA  is presented in Fig. 
4 where rav  is set fixed to 1.0. The solid line with 0.1=k  and 0.1=uδ  is the only curve 
increasing monotonically because the condition 22 ukg δ>  is satisfied. The dash line with 

0.1=k  and 0.3=uδ  and dot line with 0.2=k  and 0.3=uδ  are more unstable than the 
solid line due to the destabilizing effect of shear flow. Growth rate rises with TA  if 
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gkA uT <22 δ . However, the growth rate is mainly driven by the shear flow if gkA uT >22 δ , and 
will increase in the beginning and fall down as TA  increases. 
 

    
FIG. 4 Growth rate via the Atwood number TA   FIG. 5 Growth rate against wave number as  

for 0.1=rav .       5.0=TA  and 0.1=rav . 
 

Finally, we would discuss the dependence of growth rate on wave number. From the 
partial derivative of the growth rate, it is easy to obtain 

 
 γδγ /)])1((2/[/ 222

raTuT vAkgAk −−+=∂∂  (17) 
 
We can find out that the parametric curve described by 222 )1( raTu vA =−δ  divides the whole 
parametric space into two parts: one is the monotonically increasing part where 

0)1( 222 <−−≡∆ Tura Av δ , the destabilizing effect of sheared flow dominates, and growth rate 
increases with k  and uδ ; the other is the nonmonotonic part where 0>∆ , the stabilizing 
effect of magnetic field dominates, and the growth rate approaches its maximum 

)2/( 2/1
max ∆= TgAγ  at )2/( ∆≡ Tm gAk  and then falls down so that no instabilities occur in 

the short wave region when mT kgAk 2/ =∆> . As an example, the relationship between γ  
and k  is shown in Fig. 5 where 5.0=TA  and 0.1=rav . Solid line ( 0.0=uδ ), dash line  
( 8.0=uδ ), and dot line ( 0.1=uδ ) satisfy 0>∆  so that magnetic field dominates. Thick line 
( 1.1=uδ ), thick dash line ( 1547.1=uδ ) and thick dot line ( 2.1=uδ ) satisfy 0<∆  so that 
flow shear dominates. The thick dash line with 0=∆  corresponds to the classical RT 
instability that ignores effects of magnetic and sheared flow, which is equivalent to the case 
where magnetic stabilization is balanced by shear flow.  
 
3. The effects of magnetic filed and ablation velocity on RT instability 
 
For simplicity, suppose that the plasma motion is incompressible and with a ablation velocity 
across the ablation front, namely 0=⋅∇ u  and zz zu eu )(00 = . Consider that there is a 
magnetic field parallel to the ablation front, namely yyB eB 00 = , where yB0  is a constant. 
Assume the perturbation of velocity and magnetic filed respectively as zzu eu 11 = , and 

zzB eB 11 = ,  where zB1  and zu1  are constants. The scheme of quantities is drawn in Fig. 6. 
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The linearized version of Equations (1) - (5) for the perturbations can be combined as 
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Let γω i= , it is easy to obtain the dispersion relation as follows   
 
 0)'()'()'( 1

000
222

0 =+−+++ − γγγγ sguuuuku A  (19) 
 
where 1

00 )/'( −= ρρs  is the density scale length. If without magnetic filed, namely 02 =Au , 

Eq. (19) is reduced to '/)'( 0000 usguu −+=γ . Obviously, the growth rate decreases when 

the ablation velocity increases since we have 0)'(2/'/ 00000 <+=∂∂ guusuuγ  for 0'0 <u . 
 
It is straightforward to get a real solution from Eq. (19) as 
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In order to observe the dependence of growth rate on the ablation velocity and magnetic field, 
we take the partial derivative of growth rate with respect to 0u   
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Hence, the growth rate decreases as the ablation velocity increases. It is shown in Fig. 7 that 
the RT instability can be completely suppressed by the cooperated effect of ablation velocity 
and magnetic field. Solid line is for 022 == AVkb , dash line for 222 == AVkb , dash-dotted line 
for 622 == AVkb  and dotted line for 1022 == AVkb .   
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FIG. 6 The scheme of gravity, magnetic field,   FIG 7 Growth rate against ablation speed 

 ablation velocity and density.               for 1'0 −=zu , 1=s  and 10=g : 
 
The partial derivative of growth rate with respect to k is 
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Therefore, the growth rate decreases as the wave number increases. In other words, the 
stabilization effect becomes more significant for the short wavelength. We can observe that 
the magnetic field has a stabilization effect on the RT instability for any k value in Fig. 8 
where Solid line is for 1=raV , dash line for 2=raV , dash-dotted line for 3=raV  and dotted 
line for 4=raV . 
 
The partial derivative of growth rate with respect to s is 
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Thus, the growth rate decreases as the density scale length increases. We observe that the 
magnetic field has a stabilization effect on RT instability for any s value in Fig. 9 where Solid 
line is for 1=raV , dash line for 3=raV , dash-dotted line for 5=raV  and dotted line for 

7=raV . 
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Fig 8 Growth rate against wave number       Fig 9 Growth rate against density scale length 

 for 1'0 −=zu , 1=s  & 10=g .               for 10 =zu , 1'0 −=zu  and 9.8=g . 
 
4. Conclusion 
 
4.1 The effect of magnetic field and sheared flow 
 

An analytical growth rate is derived for the RT instability by taking into account the 
magnetic field and sheared flow. It is found that the magnetic field has a stabilization effect 
whereas the sheared flow has a destabilization effect on the RT instability in the presence of 
sharp interface.   

 
1. RT instability only occurs in the long wave region and can be completely suppressed 

if the stabilizing effect of magnetic field dominates. .  
 
2. The RT instability increases with wave number and flow shear, and acts much like a 

Kelvin-Helmholtz instability when destabilizing effect of sheared flow dominates. 
 

3. If the wave number and the flow shear are relatively small, the growth rate of RT 
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instability rises monotonically with TA . Otherwise, the growth rate firstly increases, 
achieves its maximum, and then falls down as density difference increases. 

 
4.2 The effect of magnetic field and ablation velocity 
 

By considering the effects of magnetic field and ablation velocity, an analytical growth 
rate is obtained for the Rayleigh-Taylor instability. It is shown that both of ablation velocity 
and magnetic filed have stabilization effect on RT instability in the presence of continued 
interface.  

 
1. The stabilization effect of magnetic field takes place for whole waveband and 

becomes more significant for the short wavelength.  
 
2. The RT instability can be completely suppressed by the cooperated effect of magnetic 

field and ablation velocity so that the ICF target shell may be unnecessary to be 
accelerated to very high speed. 

 
3. The growth rate decreases as the density scale length increases. The stabilization 

effect of magnetic field is more significant for the short density scale length h.  
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