Perspectives on Radioactive Waste Management Integration

Allison M. Macfarlane, Chairman

U.S. Nuclear Regulatory Commission

United States Nuclear Regulatory Commission

Protecting People and the Environment

International Atomic Energy Agency Scientific Forum RADIOACTIVE WASTE: MEETING THE CHALLENGE

> Science and Technology for Safe and Sustainable Solutions

23–24 September 2014, Vienna, Austria

Nuclear Waste: Fully Integrated Fuel-Cycle Planning Is Vital

- Final disposition plan essential for nuclear waste
- Nuclear waste requires careful management
- Best to have a plan developed at the beginning of a nuclear power program
- An unknown endpoint for waste is inefficient and raises additional safety and security issues that have to be addressed

Role of the Regulator

- A strong, independent regulator is needed "cradle-to-grave" to ensure safety and security of waste
- Politics or promotion of nuclear power will undermine public confidence

Final Disposition Plan Essential for Nuclear Waste

- Pursuit of nuclear power results in an irreversible commitment to maintain the longterm stewardship of its waste.
 - Long-lived byproducts of uranium enrichment
 - Contaminated and activated low-level waste
 - Spent nuclear fuel
 - Reprocessing byproducts
 - Reactor plant decommissioning
- While safe and secure waste management is a top priority, no temporary storage solution should take the place of a permanent repository for spent nuclear fuel.

The Need for a Plan

- Lessons from Fukushima
 - Spent fuel pools densely packed at the site; high source term
 - Need a working plan for longterm management and disposal
 - Need to monitor water levels in pools
 - Need to assure pool water level under potentially challenging conditions

Fukushima Dai-ichi Unit 4 spent fuel poolside

Nuclear Waste Requires Careful Management

- Fuel Design
- Reactor Use
- Discharge Cooling in Pools
- Long-Term Storage in Pools
- Long-Term Storage in Casks
- Transportation
- Decommissioning
- Low-Level Waste
- Disposal

Considerations Across the Fuel Cycle

Fuel design and fabrication

On-site storage

Transportation

Consolidated interim storage

Repository acceptance criteria

Considerations Across the Fuel Cycle

- Front-end fuel design:
 - Consider long-term performance, not just reactor performance
- Dry storage:
 - Compatibility of systems with transport and disposal
 - Impact of high burn-up fuel
 - Aging management

Considerations Across the Fuel Cycle

- Centralized Interim Storage
 - Closed and operating sites
 - Avoid permanence
- Transportation
 - Address safety/security
 - Long-term storage and disposal implications of transport canister
 - Need to address public concerns

Decommissioning

- Regulatory framework should address the decommissioning phase
- Sufficient funds must be established
 - Dismantle plant
 - Maintain spent fuel safely and securely

Low-Level Waste Considerations

- Physical form of wastes
- Volume and concentrations
- Short-term decay needs
- Long-term storage needs
- Transportation needs
- LLW disposal design
- Long-term and short-term environmental monitoring

Geologic Disposal: How to Be Successful?

IAEA Safety Standards for protecting people and the environment

Geological Disposal Facilities for Radioactive Waste

Specific Safety Guide No. SSG-14

IAEA

Siting Criteria: •tectonic stability •low groundwater flow •stable geochemistry •excavatable rock

- Spent fuel management options vary, international consensus on need for geologic disposal
- Iterative policy process achieving public acceptance can be more challenging than technical feasibility
- Countries are making progress

Repository Siting Prerequisites

- Organization to manage and disposition waste
 - Autonomous, long-term stability, diversity of expertise and perspectives represented
- Funding available when needed, at the amount needed
- Credible technical analysis, including
 - Siting criteria
 - Site evaluation methodology
- Socio-political/societal agreement
 - Consensus at local/higher government levels
 - Transparency, trust-building, and independent oversight
 - Economic Opportunity/Compensation

Completing the Totality: Emerging Countries

- Important to get it right from the beginning
 - A plan to site and manage final disposition of spent fuel and high-level waste should be formulated and accepted when a country embarks on a nuclear power program
 - Low-level waste facilities should be sited for the lifetime of the facility, including decommissioning
- IAEA "Milestones" document & peer reviews
- International assistance

Thank You