# **Treatment of Radioactive Waste**

#### **Session 2**

#### **Jan Deckers**



Belgoprocess

International Atomic Energy Agency Scientific Forum RADIOACTIVE WASTE: MEETING THE CHALLENGE

> Science and Technology for Safe and Sustainable Solutions

23–24 September 2014, Vienna, Austria

# contents

- Purpose of treatment
- Types of treatment
- New types of treatment

#### **Purpose of treatment**

- Operations intended to benefit safety and/or economy by changing the characteristics of the waste
- Three basic objectives:
  - Volume reduction
  - Removal of radio-nuclides
  - Change of composition

#### **Treatment of gases**


- Gases from nuclear facilities contain aerosols (dust particles) and/or gaseous radioactive isotopes
- Common techniques for cleaning gases:
  - Filtration whether or not containing absorbing agents (e.g. active charcoal for capturing I-131, I-129)
  - Scrubbing units for washing the gases
- Comprehensive info: IAEA TECDOC 1744

#### **Treatment of gases**

#### Hepa filter bank and extraction fan



Hepa filter

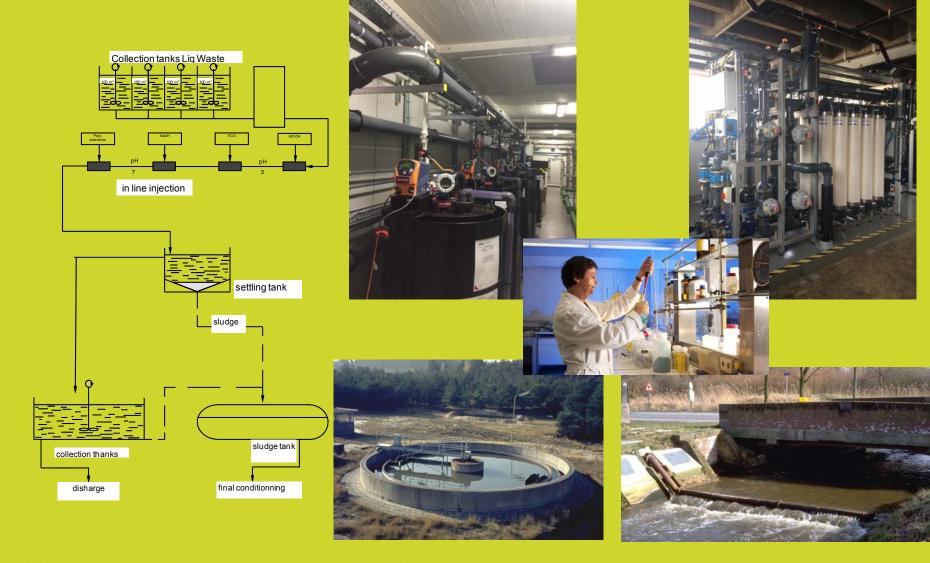


-Common technique: Filtration of air from controlled nuclear areas before releasing to the atmosphere

-Radioactivity is transferred to filters or liquids and has to be treated as radioactive waste:

-Used HEPA filters treated as solid waste

-Scrubber liquids as liquid waste


### **Treatment of liquid waste**

Most applicable technologies give supernantant or purified water which can be directly released

- Chemical treatment: addition of different chemicals
- Evaporation gives a purified distillate and concentrate containing the radioactivity.
- Ion exchange
- Membrane methods often in combination with chemical treatment and ion exchange

Evaporation and ion exchange also used for ILW

# Liquid Waste: Chemical Treatment LL Waste



#### **Treatment of organic liquid waste**

Typical organic liquid waste streams:

- spent oil from NPP's
- scintillation liquids, solvents from institutional waste producers
- Thermal treatment: incineration is common used; final product is ash
  - More used for LLW
- Wet oxidation using strong oxidising agents
- Absorbents to make a solid phase
  - Last two can be used for LLW and ILW

#### **Treatment of liquid waste**

- Radioactivity is transferred to the sludge, the concentrate or the spent ion exchange resins and has to be further treated or conditioned as radioactive waste.
- Treatment of sludge, concentrates and ion exchange resins by:
  - Mixing with grout
  - Drying and supercompaction or
  - Thermal technologies if dealing with LLW

#### **Treatment of solid waste ILW**

- Treatment of intermediate and even high level waste (ILW and HLW) in shielded infrastructures
- Most common techniques: cutting, sorting and supercompaction
- Final destination is mostly geological disposal

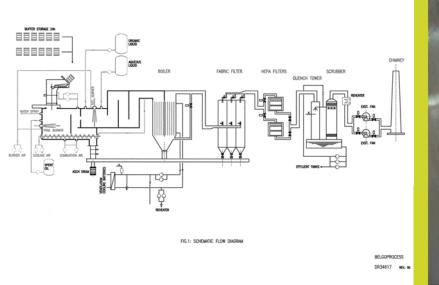


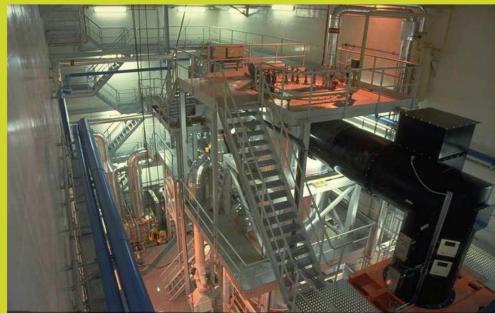
#### **Treatment of solid waste: LLW**

- Most used technologies for treatment of low level solid waste (LLW):
  - Compaction (Low force compaction and Supercompaction)
  - Incineration

#### **Treatment of solid waste:LLW**







Supercompaction (typical 2000ton; 8drums per hour): -HEPA filters, insulation material ,concrete debries, metal pieces, granulates such as dried sludge -Mixtures of organic (burnable) and inorganic (non burnable) waste

-Waste has to be packed in drums (e.g. 200l drums)



#### **Treatment of solid waste:LLW**



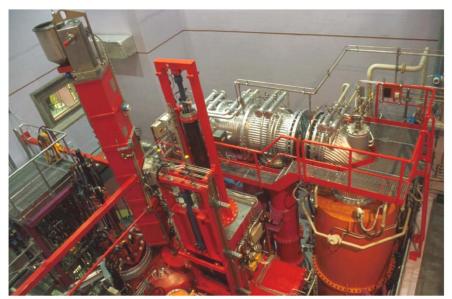


Incineration (typical 50 to 100kg/h; biggest units 500kg/h -Waste has to be sorted out or collected as packages with burnable waste (wood, paper, rags, clothing, gloves, synthetic material, etc) -Most incinerators can also treat liquids (organic and aqueuos liquids, spent oil) and spent resins

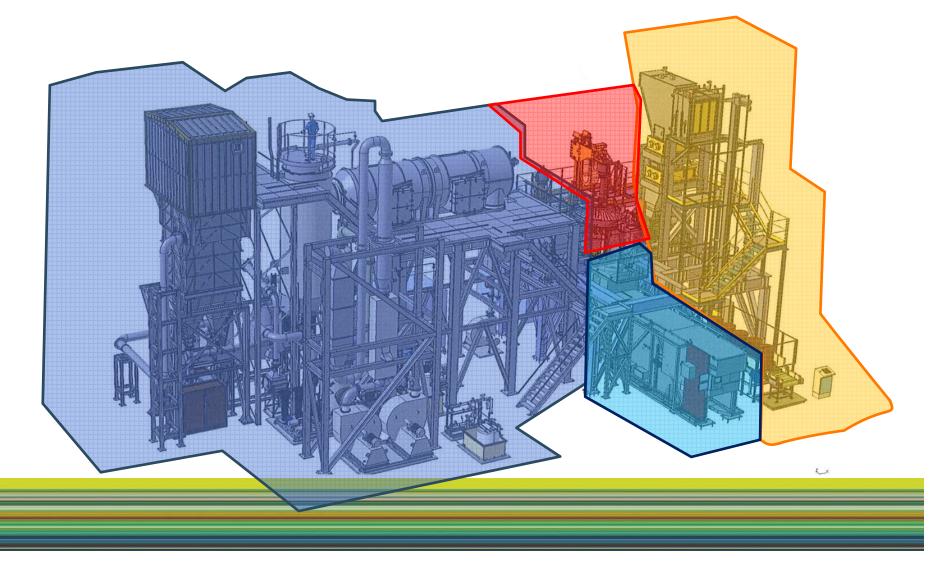
#### **Treatment of solid waste: LLW**

|                                    | Supercompaction  | Incineration               |  |  |
|------------------------------------|------------------|----------------------------|--|--|
| Investment Cost                    | low              | high                       |  |  |
| operation                          | Easy to operate  | More difficult             |  |  |
| Volume Reduction Factor            | 1.25 to 2,5      | 35 to 80                   |  |  |
| Quality final product for disposal | Poor to moderate | Good (mineralised product) |  |  |
|                                    |                  |                            |  |  |

Volume Reduction Factor: Volume of incoming waste Volume of conditioned waste


# New technologies: plasma treatment

- With plasma, the organic material is vaporised in volatile hydrocarbons, carbon monoxide, etc. while non-combustible and other inorganic constituents are melted and transformed into <u>glassy slag.</u>
- Typical temperature: 5000°C
- Suitable for complex waste mixtures: complete 200l drums containing plastics, wood, metal, insulation material, sludges, etc, can be treated as is.
- Suitable for reconditionning of historical waste which do not comply with actual Waste Acceptance Criteria.




- Nowadays: 2 campaigns of 10 weeks per year
- About 500 drums or 100 ton per campaign
- End 2013: Total 8000 drums or 1300 ton
- Run on a commercial base

Industrial facility which operates successfully by ZWILAG in Switserland from mid 2004



Plasma facility under construction for Kozloduy NPP in Bulgaria



| program 250 ton or 700m <sup>3</sup> per year                       | Plasma facility |        | Supercompaction |        |
|---------------------------------------------------------------------|-----------------|--------|-----------------|--------|
| Lifetime                                                            | 20              | years  | 20              | years  |
| Facility cost                                                       | 20.000.000      | €      | 2.500.000       | €      |
| Operational costs for 250 tons or 700m <sup>3</sup>                 | 3.000.000       | €/year | 770.000         | €/year |
| final package inclusieve cementation                                | 2.500           | €/m³   | 2.500           | €/m³   |
| Disposal cost                                                       | 15.000          | €/m3   | 15.000          | €/m3   |
| annual cost inclus 5% amortisation for 250 ton or 700m <sup>3</sup> | 4.000.000       | €/у    | 895.000         | €/у    |
| VRF                                                                 | 20              |        | 2,0             |        |
| final volume for incoming volume of 700m <sup>3</sup>               | 35              | m³     | 350             | m³     |
| cost final package inclusieve final cementation                     | 87.500          | €      | 875.000         | €      |
| cost disposal                                                       | 525.000         | €      | 5.250.000       | €      |
| annual cost plus cost final package                                 | 4.087.500       | €      | 1.770.000       | €      |
| total: annual cost plus cost final package plus disposal            | 4.612.500       | €      | 7.020.000       | €      |

Plasma: high investment costs, good final product with high VRF, low disposal cost

Supercompaction: low investment, poor to moderate final product with low VRF, high disposal cost





#### **Conclusions**

- Well proven technologies are existing for treating gas, liquid and solid wastes
- Promising alternative technologies are present for treating problematic wastes
- Not only <u>volume reduction</u> of radioactive waste but also the more strict <u>Waste Acceptance Criteria for disposal</u> are important in selecting a solid waste technology
- Supercompaction of organic/inorganic waste mixtures is an easy process and apparently cheap but the more expensive thermal treatment should be considered

# Thank you for your attention