Security and Safeguards Considerations in Radioactive Waste Management

Raoul Awad Director General, Directorate of Security and Safeguards

Canadian Nuclear Safety Commission

Canadian Nuclear Safety Commission Commission canadienne de sûreté nucléaire

International Atomic Energy Agency Scientific Forum RADIOACTIVE WASTE: MEETING THE CHALLENGE

> Science and Technology for Safe and Sustainable Solutions

23–24 September 2014, Vienna, Austria

Radioactive Waste Management

- What is waste?
- 1. From reactor operation
- 2. Decommissioning
- 3. Spent Fuel
- 4. Disused sealed radioactive sources
- 5. Other Radioactive sources
- 6. Contaminated items

Canada's Radioactive Waste Classification

- 1) High-level radioactive waste (HLW)
- 2) Intermediate-level radioactive waste (ILW)
- 3) Low-level radioactive waste (LLW)
 - o low-level short-lived radioactive waste (VSLLW)

LLW

Uranium mine & mill tailings

- o very-low-level radioactive waste (VLLW)
- 4) Uranium mine and mill tailings

ILW

HLW

Canadian Regulatory Approach for Waste

- Approach stems from the Nuclear Safety and Control Act (NSCA), Regulations, and CNSC regulatory policy document *P-290, Managing Radioactive Waste*
- Principles:
 - Plan for the complete life of the facility
 - Multi-barriers between radioactive material and people/the environment
 - Defence in depth never rely on a single system or process for protection
 - Measures to facilitate Canada's compliance with any applicable safeguards agreement

Safeguards – The Basics

- What?
 - measures through which the IAEA seeks to verify that nuclear material is not diverted from peaceful uses

• Why?

- to deter the proliferation of nuclear weapons

• Who?

- IAEA \rightarrow implements safeguards internationally
- − CNSC \rightarrow Canada's safeguards authority
- − Licensees \rightarrow subset of CNSC licensees

Safeguards and Deep Geological Repository (DGR)

- Canada-IAEA Safeguards
 Agreement: DGR containing spent
 fuel will be under IAEA safeguards
- Canada is required to report on DGR development early in the process
- Provision of draft design information begins the process of developing a 'safeguards approach' for the DG

DGR containing spent fuel will be under IAEA safeguards

Safeguards Approach

- A DGR safeguards approach will dictate
 - The types, locations of installed IAEA instrumentation at the DGR (Starting with the Encapsulation Plant)
 - The types, frequencies of inspections to be carried out by the IAEA
- DGR safeguards in Canada might encompass IAEA verification of Spent fuel at the reactor sites, at the encapsulation plant and the encapsulated spent fuel prior to emplacement underground

Short-Notice and Unannounced Inspections should be part of the DGR's Safeguards Approach

Safeguards Experience and DGR

- No one yet operates a safeguarded DGR for spent fuel; Finland and Sweden are most advanced
- DGR safeguards challenges include:
 - Finding the 'right' balance between instrumentation and live inspectors
 - Carrying out meaningful design verification underground (labyrinth)
 - Determining how to ensure that emplaced fuel is not clandestinely removed from a DGR

Finland – ONKALO: URL for Used Nuclear Fuel – may become part of final SF Repository

Source: "ASPO" Swedish Presentation at the 4th Review meeting of the Joint Convention

Application of Safeguards TO Deep Geological Repositories - ASTOR

- A forward-looking group to explore how safeguards at DGRs might look
- 12 States plus IAEA and Euratom
- Explored different safeguards approaches for DGRs
- Investigated various types of instrumentation for use at DGRs
- Reviewed/Commissioned research on application of novel technology at DGRs
- Optical satellite imagery widespread

RadarSat image of Onkalo

Canada actively participates through the Canadian Safeguards Support Programme

ASTOR - satellite imagery

'Simple' classification

Optical overlay

Security and DGR

- Basic Principles:
 - Protect against unauthorized removal of Nuclear Material
 - Protect against sabotage
 - Mitigate or minimize effects of sabotage
 - Characterization
 - Radiological consequences
 - Graded Approach
 - Low Level Waste and below (Safety Guide GSG-1)
 - High Level Waste

Security and DGR

- Existing Guidance:
 - Nuclear Security Series: Recommendations on
 Physical Protection of Nuclear Material and Nuclear
 Facilities -NSS No.13 (INFCIRC 225/Rev.5)
- Additional Guidance
 - Nuclear Security Series: Recommendations on Radioactive Material and Associated Facilities -NSS No.14
 - Nuclear Security Series: Security of Radioactive
 Sources-NSS No.11

Protection Of DGRs

- Physical Protection
 measures
 - Deterrence, Detection,Delay and Response

Graded Approach based on the DBT and Facility's TRA

Protection Of DGRs

- Prudent Management Practices:
 - Administrative procedures and controls that restrict access to authorized personnel
 - Security Clearance and other measures (two person rule)
 - Detection and surveillance systems to monitor all waste treatment and storage areas
 - Monitoring security systems are integrated in the facility design
- Inventory control measures
 - Timely, accurate (Encapsulation Plant)
- Vital Area and Protected Area
 - protection measures for each area that are implemented

Conclusion

- High level Radioactive Waste (RW) containing spent fuel will be under IAEA safeguards
- Specific Safeguards approach of high level RW should be developed (Verification, Inspection for all phases: Fuel transfer, encapsulation etc.)
- Unauthorized removal or sabotage of intermediate and high level RW shall be addressed:
 - Current work to establish a link between the nuclear security requirements found in NSS Nos.11 and 14, and the recommendations of NSS No.13.
 - RW must be characterized (Chemical and Physical) to determine the radiological consequences and the associated nuclear security protection requirements

THANK YOU

nuclearsafety.gc.ca