International Conference on Managing Soils for Food Security and Climate Change Adaptation and Mitigation, 23-27 July 2012, Vienna, Austria

Effect of elevated carbon dioxide on nitrogen dynamics in grain crop and legume pasture systems – FACE experiments and a meta-analysis

Deli Chen and Raymond Lam Melbourne School of Land and Environment The University of Melbourne

Global climate change

eCO₂ effects on photosynthetic and growth parameters

- Elevated [CO₂] increased photosynthetic carbon assimilation by 23–46%
- Increased dry mass production of various functional group (20–28%), but not for C₄ species
- Change in water use and C input (to soil)
- Consequent impact in soil N dynamics

(Ainsworth & Long 2005)

Possible eCO₂ effects on soil N dynamics

Adopted from National Sustainable Agriculture Information Service

FACE facility to study the eCO₂ agroecosystems

Experimental layout

16 experimental areas

- 12 m diameter in 2008;16 m in 2009
- $\begin{array}{l} & 8 \mbox{ elevated } [{\rm CO}_2] \ (550 \ \mu \mbox{mol mol}^{-1}); \\ & 8 \mbox{ ambient } [{\rm CO}_2] \ (390 \ \mu \mbox{mol mol}^{-1}) \end{array}$
- 8 normal sowing (NS);8 late sowing (LS)

- PVC microplot (diameter 0.24 m; height 0.25 m) inserted to 0.20 m depth
- ¹⁵N-enriched (10.22 atom%) granular urea applied at 50 kg N ha⁻¹
- ¹⁵N atom% analysis by IRMS

• Elevated [CO₂] increased total biomass and N uptake in a normal growing season.

• The removal of N in the grain under elevated $[CO_2]$ (75 -118 kg N ha⁻¹) > ambient $[CO_2]$ (63 -101 kg N ha⁻¹). Lam et al, 2012, Nutr Cycl Agroecosyst 92:133–144

• Elevated [CO₂] generally had no significant effect on fertilizer N recovery in plant or in soil.

	Fertilizer N recovery (%)						
-	plant	soil	plant	soil	plant	soil	
	2008NS		2008LS		2009NS		
Rainfed							
Ambient [CO ₂]	45.9	27.8	4.0	82.0	38.5	30.5	
Elevated [CO ₂]	47.2	25.8	4.1	77.9	42.3	26.5	
Irrigated							
Ambient [CO ₂]			24.5	60.5	47.5	22.5	
Elevated [CO ₂]			31.9	53.9	44.2	25.9	
_	Analysis of variance (ANOVA)						
[CO ₂]	ns	ns	ns	ns	ns	ns	
Irrigation regime			***	***	0.06	*	
$[CO_2] \times Irrigation regime$			ns	ns	ns	*	

Lam et al, 2012, Nutr Cycl Agroecosyst , 92:133–144

- Static chambers (diameter 0.24 m; height 0.25 m)
- N₂O, CO₂ and CH₄ were analysed by gas chromatography

- Elevated $[CO_2]$ increased the emissions of N₂O (92-134%) and CO₂ (16-46%), but had no significant effect on CH₄ flux.
- Supplementary irrigation appeared to reduce N₂O emissions (36%), suggesting the reduction of N₂O to N₂ in denitrification process (WFPS > 70%).

	N_2O (µg N m ⁻² h ⁻¹)	CO ₂ (mg C m ⁻² h ⁻¹)	CH ₄ (µg C m ⁻² h ⁻¹)
Ambient [CO ₂]			
Rainfed	27.7 (± 8.6)	259.7 (± 25.7)	-0.56 (± 0.97)
Supplementary irrigated	15.6 (± 3.8)	327.6 (± 37.3)	0.29 (± 0.71)
Elevated [CO ₂]			
Rainfed	53.3 (± 14.6)	379.7 (± 46.7)	7.06 (± 5.99)
Supplementary irrigated	36.5 (± 9.8)	378.7 (± 40.6)	-0.24 (± 1.37)

Lam et al, 2012, The Journal of Agricultural Science

Site location

Experimental layout – soybean N₂ fixation

12 experimental areas

- 4 m diameter
- 6 elevated [CO₂] (550 μmol mol⁻¹);
 6 ambient [CO₂] (415 μmol mol⁻¹)
- 6 plots for Zhonghuang 13 (ZH 13)6 for Zhonghuang 35 (ZH 35)

Biomass of soybean

Effect of eCO₂ on biological N₂ fixation

 Elevated [CO₂] increased %Ndfa for Zhonghuang 13 from 59 to 79%, but not Zhonghuang 35.

 Elevated [CO₂] increased the amount of N fixed by Zhonghuang 13 from 165 to 275 kg N ha⁻¹, but not for Zhonghuang 35.

Lam, et al, 2012. Effect of elevated carbon dioxide on growth and nitrogen fixation of two soybean cultivars in northern China. Biology & Fertility of Soils,48:603–606.

Meta-analysis of "N dynamics in grain crop and legume pasture systems under elevated CO₂" 366 observations from 127 studies

Lam et al, 2012, Globe Change Biology, doi: 10.1111/j.1365-2486.2012.02758.x

- Response metric: natural log of the response ratio (r = response at elevated [CO₂]/response at ambient [CO₂])
- Percentage change due to elevated $[CO_2]$: $(r-1) \times 100$
- Weighting function (by replication)
- Significant [CO₂] effects if the confidence intervals did not overlap with zero.
- Categorical variables: plant functional group (C₃ non-legume, legume or C₄) and legume type (grain legume or pasture legume)
- N input: low (<150kgN/ha) and high (>150kgN/ha)
- MetaWin 2.1

eCO₂ effects on grain parameters

THE UNIVERSITY OF

MELBOURNE

 eCO_2 effects on fertilizer N recovery and N₂O emission

[CO₂]-induced changes in N budget in various cropping systems

	[CO ₂]-induced changes in							
	grain N removal (I)		N ₂ O emission (II)		amount of N fixed (III)		net effect	
	mean	95% CI	mean	95% CI	mean	95% CI	(– –)	
			kg	N ha ⁻¹ season ⁻¹ –				
	40.4		0.00		0	N 1 A	10.0	
C ₃ non-legume	12.4	4.6 to 20.4	0.22	-0.06 to 0.50	0	NA	-12.6	
grain legume	59.6	35.8 to 86.7	0.60	0.13 to 1.06	25.0	5.3 to 53.0	-35.2	
pasture legume	0	NA	-0.04	-0.12 to 0.05	53.0	28.3 to 81.1	53.0	
C ₄	11.8	1.5 to 22.1	0.16	-0.04 to 0.36	0	NA	-12.0	

The estimation was made based on the assumption that elevated $[CO_2]$ does not affect ammonia volatilization, N leaching plus runoff, removal by grazing and N deposition. Although predicted shifts in human diets and increasing per-capita consumption from 2000 to 2050 are associated with increased atmospheric N deposition onto global agricultural land (14 Tg yr⁻¹), the increase will be counterbalanced by the corresponding increases in ammonia volatilization (12 Tg yr⁻¹) and N leaching plus runoff (3 Tg yr⁻¹) (Bouwman *et al.* 2011)

- Elevated [CO₂] reduced grain N concentration, but increased N removal in grain cropping systems.
- Extra N will be required to maintain soil N availability and sustain crop yield.
- The extra N could come from increased rates of fertilizer N application, or greater use of legume intercropping and legume cover crops.
- Increase in agricultural greenhouse gas emissions may negate part of the predicted increase in the entire terrestrial C sink.

Thank you.

