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Abstract. A novel global Alfvén eigenmode (GAE) has been predicted, with frequency well below the 
minimum of the Alfvén continuum. This GAE exists in the tokamak plasmas with broad low-shear central core 
and safety factor slightly exceeding unity in this region, and is capable of resonating with precession of the 
trapped energetic ions. This mode has the dominant numbers m=n=1, but the coupling with the upper toroidal 
sideband is crucial both for eigenmode formation and its excitation by energetic ions. The mode will be excited 
as the plasma pressure approaches ideal MHD stability limit, which minimizes the ion Landau damping. The 
properties of   novel GAE are consistent with observations of the low-frequency n=1 mode driven by energetic 
ions in the “hybrid” discharges with record plasma pressures and perpendicular neutral beam injection on the 
JT-60U tokamak [N.Oyama, A.Isayama, G. Matsunaga et al., Nucl. Fusion 49, 065026 (2009)]. 
  
1. Introduction 
 
The so called “hybrid” regime attracted much attention in tokamak research [1]. Such 
equilibria are characterized by the flat profile of the safety factor, q, in the wide central core, 
with q0 ≈ 1in this region. The main advantage of the hybrid shots is the absence of sawteeth, 
which are the main triggers of the harmful neoclassical tearing modes. For this reason the 
hybrid regime has been included as a third operational scenario for ITER [2]. 
 
Recently the n = 1 mode with extremely low frequency (few kilohertz in the plasma frame) 
has been observed in hybrid shots with record plasma pressures and perpendicular neutral 
beam injection (NBI) on the JT-60 upgrade tokamak [3]. At highest NBI powers, these modes 
not only deteriorate confinement of the energetic ions, but also destroy the H-mode pedestal 
[3]. Therefore, in order to avoid such detrimental effects, it is important to understand the 
nature of these modes and to estimate the fast ion pressure necessary for their excitation. This 
motivated the present work. 
 
It is well known that, in the general case, the spectrum of the Alfvén waves in the torus is 
continuous [4]. There are, however, few important examples for modes of the discrete 
spectrum, which can be easily excited by energetic ions provided proper resonance conditions 
are matched. These include the global Alfvén eigenmodes (GAE) [5-9], the toroidal Alfvén 
eigenmodes [10,11] (including the low-shear family [12-15]), the beta-induced Alfven 
eigenmodes (BAE) [16,17], and the Alfvén cascades [18-21]. GAEs considered so far are 
basically cylindrical modes with frequency, ω0, just below the minimum of the Alfvén 
continuum, ω0 ≤ (k||VA)min, and density inhomogeneity is the necessary condition for 
eigenmode existence [5]. In the present work it is shown that, when finite plasma pressure and 
toroidicity are taken into account, a novel GAE appears in the hybrid regimes. The frequency 
of the most unstable mode is quite low, ω0 << (k||VA)min, and the mode can exist in plasmas 
with VA( r) = const. Because of its low frequency, this mode can be excited by trapped 
energetic ions, such as α-particles in ITER, via precessional resonance. Due to the global 
character of this mode [m = n = 1 with m(n) the poloidal (toroidal) mode number] such 
excitation can strongly deteriorate confinement of resonant ions and affect fusion burn in the 
hybrid scenario. 
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In the next section we outline derivation of the GAE dispersion relation, which closely 
follows MHD stability analysis presented in Ref.[22]. In Sec.III we calculate the minimal fast 
ion drive necessary to overcome the GAE continuum damping. Finally, in Sec.IV we discuss 
similarities between the novel GAE and the experimental observations presented in Ref.[3].  
 
2. GAE Dispersion Relation 
 
We assume that (ω0 /ωA)2 << γsβ and q0 – 1~ ε, where ωA=VA /R with VA as the Alfvén speed 
and R as the major radius of the torus, ε=a /R with a the minor plasma radius, γs is the 
adiabatic index, and β is the plasma pressure normalized to the magnetic field pressure. Then 
the eigenmode equations in the central core take the form [22,23] 
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where radius r is normalized to the plasma minor radius a, ι=1/q, βp=2μ0(<p> - p)/Bp

2, with 

∫=
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2 ˆˆ)()/2( LL , p is the plasma pressure, Bp is the poloidal magnetic field, prime 

denotes radial derivative, , ξ1(2) is the amplitude of the m = 1(2) poloidal harmonic of 
the plasma radial displacement, and it has been assumed that VA( r)=const. The general 
solution of Eq.(2), which is regular on the magnetic axis, is given by 
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where C is an integration constant. Putting Eq.(3) into Eq.(1) and integrating, we find 
 

2
0

2

2
1

)/(3)1( A

pCr
dr
d

ωωι
βεξ

−−
=                                                                (4) 

 
The dispersion relation can be obtained by matching the solution of the inner (shear-free) 
region to the solution in the outer (sheared) region. This procedure is accurate provided the 
transition between these regions is sufficiently abrupt [22]. Then in the outer region |ι-1| ~ 1 
and ξ1 ~ ε2, as follows from Eq.(4). Therefore, in the outer region, we can neglect the toroidal 
coupling and write equation for the m = 2 harmonic in the form 
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Equation (5) has the following asymptotic solution in the shear-free region: 
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where q(r2)=2 and the constant σ can be determined by integrating Eq.(5) through the outer 
region. Matching Eq.(6) with the asymptotic form of Eq,(3) in the outer region, we obtain the 
dispersion relation as follows: 
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Note that, for 3(ω0 /ωA )2<(ι0 – 1)2 and q0 > 1, the integral on the right-hand side (RHS) of 
Eq.(7) converges, which justifies interpretation of the novel mode as GAE. 
 
The constant σ can be calculated analytically for the following model profile of the rotational 
transform: 
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where abruptness of the transition requires λ >> 1. Then the general solution of Eq.(5) is 
given by 
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where F(a,b;c;z) is the hypergeometric function. For r → r2 – 0, Eq.(9) yields [24] 
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where Γ(z) is the gamma function and ψ(z)≡Γ’(z)/Γ(z). Regularity of Eq.(10) at r=r2 yields 
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For the safety factor profile given by Eq.(8) and pressure profile given by p( r)=p0[1-(r/a)2ν], 
so that , one can obtain from Eq.(7) in the limit (ω0/ωA)2 << (ι0-1)2 22)( −∝ νβ rrp
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and σ is given by Eq.(11). Note that Eqs.(12,13) are valid only close to the ideal MHD 
stability limit.  
 
3. GAE Excitation by Trapped Energetic Ions 
 
The growth and damping rates of the GAE can be calculated perturbatively, using the lowest 
order eigenfunction and eigenvalue given by Eq.(4) and Eq.(12), respectively. The sum of the 
fluid and kinetic parts of the fast ion energy is given by [25] 
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where ωcα (ωdα) is the fast ion gyrofrequency (magnetic drift frequency), overbar denotes 
bounce average, dΓ is the velocity space volume element, Fα is the equilibrium distribution of 
the fast ions, and ξr is the radial component of the plasma displacement. 

To calculate GAE continuum damping, we need expression for the toroidal coupling operator, 
C+, near the q=2 surface, where the mode frequency crosses the m=2 cylindrical Alfvén 
continuum (see Fig.1). From Eq.(35) of Ref.[22] it follows that 
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where Δ is the Shafranov shift and we used the relation [25] 
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FIG. 1. Location of the GAE frequency with respect to the m=1 and m=2 cylindrical Alfvén continua 
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with s=rq’/q and αp= - q2Rβ’. Using Eq.(15), we can rewrite the equation for the m=2 
harmonic near the q=2 surface in the form 
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where on the left-hand side we retained only the term with second derivative and we assumed 
(ω0 /ωA)2 << γsβ(r2). Note that only the first term on the RHS of Eq.(17) contributes to the 
continuum damping. 
 
Treating the fast ion drive and continuum damping perturbatively, we obtain the following 
expression for the corresponding shift of the eigenvalue, δω: 
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In calculating the fast ion drive [the first term on the RHS of Eq.(18)], we have chosen Fα in 
the form of a slowing down energy, E, distribution with a δ-function in the pitch angle 
Λ=μB0/E, and we retained only the imaginary part of the fast ion response, which is 
associated with precessional resonance αωω d=0 . Furthermore, βα is the fast ion beta, angular 
brackets denote the flux surface average, I(κ0)=2E(κ0)/K(κ0)-1, E and K are the complete 
elliptic integrals, κ0=κ(Λ0) with κ2(Λ)≡(R/2r)(1/Λ-1+r/R), )()/( 01 κωω ααα IRrmE cdm =  with 
Eα the injection energy, rAi are the radii of the Alfvén resonance given by 
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AAir ωωι /5.15.0)( 0±=

( )

, and ξ1(ω0) is given by Eq.(4) [Eq.(12)]. Using Eq.(17), we obtain for 
the GAE excitation threshold 
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Using Eq.(4) with boundary condition ξ1(a)=0, one can obtain from Eq.(19) for the model fast 
ion pressure profile <βα >(r)=βα0[1-(r/a)2]2, 
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where we have taken into account that ι(a)=0. 

As a particular example, we consider the following set of parameters: ε=1/3, β0=0.1, ι0=0.9, 
ν=1 [βp(r)=const], λ=3, 0ω ω=

3−th
dm

210−×

, and κ0=0 (deeply trapped particles). From Eq.(12) it 
follows that and Eq.(20) yields , a fairly low value. 0 2.3/ ≈Aωω 0 108.2 ×≈αβ
 
4. Discussion and Summary 
 
In the present work we ignored the ion diamagnetic drift effects. This is consistent with the 
ordering (ω0 /ωA)2 << β provided ρi /Lp << ε, where ρi(Lp) is the thermal ion gyroradius 
(pressure gradient scale length). The frequency ordering implies also that ω0 << ωti, where 
ωti is the thermal ion transit frequency. This means that the ion Landau damping of the 
present GAE should be weak due to the small gradient in velocity space of the resonant ions, 
and the electron Landau damping can be neglected.  
 
The following properties of the described GAE are consistent with recent observations in JT-
60U tokamak [3]: (i) the mode certainly driven by trapped energetic ions and its frequency 
correlates with precession frequency of the injected ions; (ii) the mode structure shown in 
Fig.14 of Ref.[3] is peaked on axis and decreases abruptly at the boarder between shear-free 
and finite shear regions [see Fig.6(c) of Ref.[3] for the q-profile], consistent with Eq.(4); (iii) 
the multi-harmonic excitation at the highest NBI power shown in Fig.11 of Ref.[3] is 
consistent with excitation of GAEs with m=n>1, which can be shown to have 
eigenfrequencies (for the parabolic pressure profile) 
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where Km decreases with m. The reason why higher harmonics are excited only at highest NBI 
power is clear: the pair of the Alfvén resonances around the q = (n+1)/n surface is located 
much closer to the shear-free core, so that modes with n > 1 suffer from higher continuum 
damping. The abrupt disappearance of higher harmonics when one of the beams slanted in the 
co-current direction is replaced by the beam slanted counter to the plasma current, as shown 
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in Fig.11 of Ref.[3], can be explained by smaller fast ion content inside the shear-free core 
(for the same NBI power) in the latter case due to orbital effects. 
 
In summary, it is shown that, in the hybrid tokamak discharges, the low-frequency global 
Alfvén eigenmode with dominant m=n=1 can be easily excited by the trapped energetic ions. 
Except in the vicinity of the q=2 surface, the mode structure is identical to that of the quasi-
interchange mode investigated in Ref.[22]. The analysis is restricted to plasmas slightly below 
the ideal MHD stability limit. The general case of plasmas well below this limit requires 
several complications, such as coupling to sound waves and geodesic compressibility effects 
[17, 21]. Although study of such BAE with m=n=1 would be interesting, one should bear in 
mind that for q0 ≈ 1 the condition (ω0 /ωA )2 ~ (q0 -1)2 ~ β is equivalent to ω0 ~ ωti. Therefore, 
such modes should be suppressed by strong ion Landau damping. This is consistent with 
mentioned experiment [3], where the m=n=1 modes are observed only in hybrids with 
highest plasma pressure (note that, due to sub-critical injection, Ti > Te in the shots described 
in Ref.[3], which further enhances the ion Landau damping at lower plasma pressure). 
 
This work was carried out in the framework of Project No.4588 of the Science and 
Technology Center in Ukraine.  
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