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The internal kink (fishbone) modes, driven by barely passing energetic ions (EIs), are 
numerically studied with the spatial distribution of the EIs taking into account. It is found that 
the modes with frequencies comparable to the toroidal precession frequencies are excited by 
resonant interaction with the EIs. Positive and negative density gradient dominating cases, 
corresponding to off- and near-axis depositions of neutral beam injection (NBI), respectively, 
are analyzed in detail. The most interesting and important feature of the modes is that there 
exists a second stable regime in higher hβ  (=pressure of EIs / toroidal magnetic pressure) 
range, and the modes may only be excited by the barely passing EIs in a region 
of 21 thhth βββ << ( thβ is threshold or critical beta of EIs). Besides, the unstable modes require 
minimum density gradients and minimum radial positions of NBI deposition. The physics 
mechanism for the existence of the second stable regime is discussed. The results may provide 
a means of reducing or even preventing the loss of NBI energetic ions and increasing the 
heating efficiency by adjusting the pitch angle and driving the system into the second stabile 
regime fast enough. 
 
1. Introducion 

The effects of energetic ions (EIs) on plasma instability and confinement in toroidal 
devices have been a major subject of theoretical and experimental studies in recent decades. 
The fish-bone like internal kink modes excited by trapped EIs have been observed in 
perpendicular neutral beam injection (NBI)1 as well as ion cyclotron resonance heating (ICRH) 
experiments.2-3 These modes have been analytically and numerically investigated in detail and 
shown to be resonantly excited by precession of deeply trapped EIs.4-7 Besides the low 
frequency fish-bone modes, high frequency internal kink modes, being resonantly destabilized 
by passing EIs, have also been observed in tangential NBI experiments.8 These instabilities 
usually result in loss of the EIs, and consequently degradation of confinement and efficiency 
of plasma heating. Therefore, it is crucially important to control and to avoid the instabilities 
in advanced tokamak experiments. On the other hand, experimental and theoretical studies 
have shown that a population of energetic trapped ions can result in plasma completely stable 
to both sawtooth oscillations and the fishbone mode.9-11 In this work, the unstable modes 
driven by barely passing EIs are investigated, taking the spatial density distribution of EIs into 
account. The frequency of the modes is found to increase dramatically when the radial profile 
of the EI density changes from off-axis peaking to near-axis peaking. The mode growth rate 
as a function of hβ , has a maximum and, therefore, there exits a second stable regime in 
higher hβ range. 
 
2. Dispersion relation 

A larger-aspect-ratio tokamak plasma consisting of core and hot (energetic) components 
is considered. The inverse aspect ratio is 1/ <<= Raε  (here a and R are minor and major radii 
of the torus, respectively). The following orderings are assumed in this paper in accordance 
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with tokamak experiments: )1(~ Opcβ , )(~ εβ Oph , ( pcβ is the poloidal beta value of the core 
component), and the temperature ratio between the core and hot components, . 
Therefore, the density ratio between the energetic and the core components is estimated 
as . By making use of these assumptions, a dispersion function is obtained as ,
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)//()/( //// ∫∫= vdlvAdlA  is an average over a field line, E/μα = (μ is magnetic moment) and 

0ω are the pitch angle and cyclotron frequency of the EIs, respectively, 
and 0( , , ) ( ) ( ) ( )F r E n r g Eα δ α α= − is the distribution function of the EIs. In addition, the transit 
frequency tω  is neglected in Eq. (3) due to the fact that barely passing EIs are considered only. 

The radial density profile is assumed to be and a slowing-down energy 
distribution is employed for the EIs. 
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12-13 here, and s=rdq/qdr is 
magnetic shear. The average beta value of the EIs inside the q=1 flux surface may be 
expressed as 
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right hand side in Eq.(2) indicates that the contribution of the hot particles to 
MHDWδ  is 

. In order to minimize the dispersion function Eq.(1), an 
appropriate trial function is constructed as
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vectors as well as the radial structure of the mode under consideration are all fixed with this 
trial function. Following the minimizing procedure described in Refs.4-5, the dispersion 
relation is obtained as following from Eqs.(1-3), 
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Here, the responses and are damping and driving terms and given by the following 
two equations, respectively, 

0
ˆ

kWδ 1
ˆ

kWδ

∫′
+−

Κ
Ε

′
=

1

0
0 ˆ

ˆ
1)ˆ(ˆ

2
)12(

2
)(ˆ rd

r
rnC

ar
R

ar
rRn

W
s

h

s

sh
k

ββ
δ                   (8) 

)9(ˆ)
ˆ

11ln(ˆ)ˆ()ˆˆˆ(
2

)]11ln(1[)12(
2

ˆ
1

0

2
1 ∫ Ω

−
Ω∂
∂

Ω−−Ω
′

+
Ω

−Ω+
Δ

−
Κ
Ε

′
−= rd

r
rrnBBA

ar
R

qK
n

ar
R

W
s

h

cs

h
k

ββ
δ

with ∫=′
1

0

ˆˆ)ˆ( rdrrna , dsωω /=Ω , )0()( nrnn s −=Δ . We can evaluate the threshold beta of EIs 

by letting γir +Ω=Ω , 0→γ . Considering that πixx += ln)ln(  when ,0<x  an expression for 
the threshold beta can be easily obtained as following by letting 0)(Im =ωD ,  

∫
Ω

Ω∂
∂

Ω−−

′
=

r

rdrrnBBAR

ar

r
rA

dss
crith /1

0

,

ˆˆ)ˆ()ˆˆˆ(

2

πω

ω
β ,           (10) 

where has to be determined by substituting Eq. (10) back into the real part of Eq. (7). 1rΩ >
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3. Numerical results 

We consider a neutral beam injection experiment (injection energy Eb=60KeV) on the 
HL-2A tokamak15 with a circular cross section equilibrium configuration. The other 
parameters are the toroidal magnetic field BBt=1.68T, the major radius R=165cm, the minor 
radius a=40cm, the magnetic shear s=0.003, the Alfven frequency s , 

=0.72/0.25 corresponding to the cases that positive/negative radial gradient of the energetic 
ion density dominates (i.e. off-axis/near-axis NBI heating, respectively).  (i.e. 
MHD is stable) and the q=1 surface is located at r

61031.4 ×=Aω -1

0̂r
003.0ˆ =cWδ

s=a/2. Under these conditions, the particles 
with Rrs /10 0 −<< α (or k>1) are passing particles. 

The dispersion relation, Eq. (7) is numerically solved and an unstable mode is found to 
be driven by barely passing EIs. The real frequency rω and growth rate γ of the mode 
versus hβ are given in Fig.1 where the lines with open circles denote modes in the high 
frequency range whereas the lines without symbols do that in the low frequency range. 
Meanwhile, the dashed, the dash-dotted and the solid lines correspond to σ =6, 7, 7.5, 
respectively, with 0α =0.8, =0.25 for the modes with higher frequencies, and0̂r 0α =0.8, 0.78, 
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0.76, respectively with σ =2.5, =0.72 for the modes with lower frequencies. Generally 
speaking, the modes are unstable in the lower and higher frequency ranges for off-axis 
peaking and near-axis peaking density profiles, respectively. The striking feature of the modes 
studied here is that there exists a second stable regime in the higher

0̂r

hβ parameter range and, 
therefore, there are two threshold beta values, 1thβ and 2thβ . The instability is excited by barely 
passing energetic ions when the condition 1thh ββ > is satisfied. The growth rate increases first, 
and then decreases gradually after reaching a maximum when hβ  increases. Finally, the 
mode becomes stable when 2thβ β> . The real frequency of the mode is comparable to the 
toroidal precession frequency dω indicats that the resonant excitation is dominant. The 
expression of dω above indicates that it is inversely proportional to radial position r. 
Therefore, the modes in high and low frequency ranges are driven unstable, respectively, 
when the radial profile of the EI density changes from near-axis peaking to off-axis peaking. 
This figure also indicates that the higher the σ  value, the wider the unstable range of hβ  
for fixed 0α =0.8, and =0.25. On the other hand, the lower the 0̂r 0α  value, the wider the 
unstable range for fixed σ =2.5, =0.72 and the parameter 0̂r 0α  domain studied here.  
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FIG. 1. The mode real frequency rω and growth rate    FIG. 2. The real frequency rω and growth  
γ as functions of hβ , the lines with circles and without   rate γ as functions of the beam energy Eb  
symbols denote the modes in high frequency and low    for off-axis heating and near-axis heating. 
frequency ranges, respectively. 

Shown in Fig. 2 are the real frequency rω and growth rate γ as functions of beam 
energy  withbE 002.0=hβ and 8.00 =α . The lines with circles correspond to near-axis heating 
with =0.25, 0̂r σ =7 and the other lines correspond to off-axis heating with =0.72,0̂r σ =2.5. It 
is clear that the growth rate increases monotonically with increasing beam energy when hβ is 
kept constant. Consequently, there exists a critical for both near-axis and off-axis heating 
cases. In addition, the critical beam energy for near-axis heating case is about 3/5 of that for 
off-axis heating case.  

bE

 
Given in Fig.3 are the dependences of the real frequency (the solid lines) and the growth 

rate (the dash-dotted lines) on the deposition position (the lines with triangles) of NBI 
for

0̂r
σ =7.5 and on the density gradient parameter σ (the lines with circles) for =0.25. The 

results clearly indicate that there exists a critical value, = . When > , the mode is 
excited and the growth rate increases first, reaches a maximum value, and then decreases with 

0̂r

0̂r 0̂critr 0̂r 0̂critr



5                                                                                    THS/P7-01 

further increase of . The real frequency monotonically decreases with increasing of from 
high frequency range to low frequency range. The formula 

0̂r 0̂r

0̂~ /r c rω−  (here c is a scaling 
constant) fits the numerical results quite well as shown by the dotted line, showing the same 
scaling with  as the precession frequency 0̂r dω  does. The growth rate and the real 
frequency of the mode for =1.0 are both much lower than the maxima reached at ~0.3 
and 0.2, respectively. This indicates that the mode is easier to be destabilized for 

0̂r 0̂r
0/ <∂∂ rF  

dominating (near-axis heating) case than for 0/ >∂∂ rF  dominating (off-axis heating) case. 
For both off-axis and near-axis heating cases, the resonant energy exchanging between the hot 
ions and the modes plays an essential role in excitation of the mode with frequency 
comparable to dω . 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

ω
r / 

γ 
(1

04 se
c−

1 ) 

−ω
r
 

−ω
r
 

∧
r
0
 / σ (×10)

    

0 2 4 6 8
2

3

4

5

6

7

8

σ 

1 
3 β

h0

2 

β
h
 (10−3) 

III

I II

 
FIG.4. The stability diagrams in 
the hβ σ− plane. The solid and dotted 
lines are for the modes in off-/near-axis 
heating cases with r =0.72/0.25 
and

0̂

0α =0.80. 

FIG. 3. The real frequency rω (the solid 
lines) and growth rate γ  (the dash-dotted 
lines) as functions of r  (the lines with 
triangles) and density gradient parameter 

0̂

σ (the lines with circles) with 0α =0.8, 

hβ =0.002. =0.25 for the lines with circles 
and 

0̂r
σ =7.5 for the lines with triangles. The 

dotted line is a fit of 0̂~ /r c rω−  

 
In addition, the lines with circles indicate that a minimum ~ 6critσ is also necessary to 

drive the mode unstable while the real frequency /s does not vary much up to 5102.1~ ×rω
~ 10σ  for =0.25. The minimum0̂r ~ 2.5critσ is also required to drive the mode unstable and 

the real frequency /s does not vary much up to 4104~ ×rω ~ 10σ  for =0.72 (not shown 
here).  

0̂r

Shown in Fig.4 are the stability diagrams in the hβ σ− plane. The solid and dotted lines 
correspond to =0.72 and =0.25, respectively, with0̂r 0̂r 0α =0.80 for both cases. The hβ σ− plane 
is divided into unstable and stable regions by each curve. The mode is unstable and stable 
above and below the corresponding line, respectively, in each case. Beta values on the curves 
are critical beta values  for each case. There are two critical beta values for a givencrith,β σ in 
each case. The ranges in Fig.4 marked with numbers 1, 2 and 3 for off-axis heating case (I, II 
and III for near-axis heating case) are called the first, the second stable ranges and the 
unstable ranges, respectively. In each first stable range, the mode can be driven on the 
condition that the hot particle beta is higher than the critical value. On the contrary, the mode 
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becomes stable when beta is higher than the second critical value and enters into the second 
stability range. From Fig.4 we can see that the first threshold beta value of energetic ions 
decreases with increasingσ whereas the second one increases with increasingσ for both near- 
and off-axis heating cases. This indicates that the mode is difficult to be driven unstable but 
easy to enter the second stability regime for flat density profiles of EIs. It is the opposite for 
peaked density profiles. In addition, steeper density profiles are needed to drive the modes in 
high frequency range (i.e. in near-axis heating case) than that in low frequency range (i.e. 
off-axis heating case). 

Furthermore, it is numerically found that there exist minimum values of density gradient 
parameterσ = minσ in the vicinity of for the both. The barely passing EIs can 
destabilize the modes through wave-particle resonance only when

3
0 100.1~ −×= hh ββ

σ > critσ . 
Nyquist technique is employed to further check the results presented above. Shown in 

Fig. 5 are the Nyquist diagrams plotted in the complex )(ωD plane. The dashed and the 
dash-dotted lines are for two hβ values in the first and second stable regions, whereas the 
dotted line is for one hβ in the unstable region. The diagrams clearly demonstrate that there is 
indeed an unstable mode (the curve encircles the original point once) only when hβ  is higher 
than the first threshold beta value and lower than the second one. Otherwise, there are no 
unstable modes (the curve does not encircle the original point). Therefore, results in Fig.(1) 
are confirmed. 
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FIG.5 the Nyquist diagrams plotted in the complex D plane. The dashed, dash-dotted and dotted lines 
are, respectively, for the first, the second stable regions and the unstable region. 
 
4. The possible physical mechanism 

It is worthwhile to discuss the physical mechanism for the formation of the second stable 
regime of the modes more in detail. Taking an off-axis heating case withσ =2.5, =0.72 as 
an example, shown in Fig.6 (a) is the damping term in Eq. (7) as a function of

0̂r

0
ˆ

kWδ 0α covering 
both passing and trapped ranges for hβ =0.002. The results indicate that the damping effect 
of in the passing range (the solid line) is much stronger than that in the trapped range (the 
broken line). This may mean that the modes excited by passing EIs are easier to enter into the 
second stability region than that done by trapped EIs. On the other hand, roughly speaking, 
the real part of the driving term in Eq.(7) provides necessary free energy for inducing the 
unstable modes. The exciting condition for the unstable modes to develop may be estimated 
as from Equation (7). That is, the free energy provided by the driving 
term is greater than the damping term plus core MHD term . Shown in Fig.6 (b) is the 
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dependence of on)ˆRe(ˆˆ
10 kkc

R
k WWWW δδδδ ++= hβ . The solid and broken lines are for barely 

passing ions with 0α =0.76 and barely trapped ions with 0α =0.93, respectively. R
kWδ  

decreases monotonically, meaning the mode becomes more unstable, with increasing of hβ for 
barely trapped EIs of 0α =0.93. In contrast, R

kWδ  decreases first, reaches a minimum and then 
increases with increasing of hβ for barely passing EIs of 0α =0.76. In addition, we learn from 
equation (8) that the damping term depends on hβ  linearly and is independent of the mode 
frequency and growth rate. Consequently, the contribution of damping term is trivial for 
small hβ and predominant for large hβ . This is the reason why the absolute value of R

kWδ in Fig.6 
(b) increases with increasing hβ in the small hβ range and decreases in the large hβ range. As a 
result, the mode is driven unstable for small hβ . On the other hand, the destabilizing effect of 
energetic ions can be greatly weakened by the damping term for large beta. Therefore，it 
is understandable that the growth rate in Fig.1 increases for small beta and decreases after 
reaching a maximum

0
ˆ

kWδ

γ for large beta when hβ increases. It is also clear that there is not a 
second stable regime for the internal kink (fishbone) modes driven by deeply trapped EIs 
since the free energy monotonically increases withR

kWδ hβ for trapped EI case. The main 
features of the modes, such as possessing second stable regime, remain for radial density 
profile, , which provide zero density gradient at the original point of 

and prevents non-physical factors.  
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FIG. 6. (a) as a function of pitch angle

0
ˆ

kWδ 0α for trapped (the broken lines) and passing ions (the solid 
lines) with hβ =0.002 and (b) as a function ofR

kWδ hβ with 0α =0.76 for barely passing ions and 0α =0.93 
for barely trapped ions. The other parameters areσ =2.5, =0.72. 0̂r
 
5. Conclusions 

the internal kink (fishbone) mode induced by barely passing energetic ions is 
investigated numerically. It is found that the mode is resonantly excited by the energetic ions 
and the mode frequency is comparable to the toroidal precession frequency dω . Therefore the 
mode frequency is low in the case of positive density gradient 0/ >∂∂ rF dominating case 
(off-axis NBI deposition) whereas is high in the case of negative density gradient  
dominating (near-axis NBI deposition), corresponding to the fact that the toroidal precession 
frequency is inversely proportion to radial position r. The most interesting result found in this 

/ 0F r∂ ∂ <
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work is that there exists a second stable regime for the mode in the higher hβ parameter range 
and there are two threshold beta values, 1thβ and 2thβ . The mode may be excited by barely 
passing energetic ions in the range of 21 thhth βββ <<  only. The results are also confirmed with 
Nyquist technique. The positive free energy (i.e. the damping term in the dispersion relation) 
increases with increasing beta of EIs and drives the plasma into the second stabile regime near 
the second stability threshold beta value. The physics mechanism for the existence of the 
second stability range is the competition between the driving and damping forces related to 
magnetic gradient and curvature drifts as well as density gradient. Besides, there exist a 
minimum density gradient parameter and a minimum deposition position of NBI for the mode 
to be unstable. 
The results of this work may provide a way to reduce or even prevent the loss of NBI 
energetic ions through fishbone modes and to increase the NBI heating efficiency by adjusting 
the pitch angle and driving the system into the second stable regime fast enough. 
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