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Abstract. Error fields and resistive magnetohydrodynamic (MHD) modes are ubiquitous in real tokamaks. 
They break the toroidal symmetry in |B| in tokamaks. Here, B is the magnetic field. The broken toroidal 
symmetry leads to enhanced neoclassical toroidal plasma viscosity and consequently the rate of the toroidal 
flow damping. The neoclassical toroidal plasma viscosity also results in a steady state toroidal plasma flow 
even without toroidal momentum sources. The same physics mechanisms and phenomena are also applicable 
and can be observed in the vicinity of the magnetic islands.  All these physics consequences are of interests to 
tokamak devices such as International Thermonuclear Experimental Reactor (ITER). ITER is expected to 
have low toroidal rotation. Thus, understanding viscosity becomes crucial in predicting rotation in ITER. 
 
1 Introduction 
 
Real tokamaks have error fields and magnetohydrodynamic (MHD) modes that break 
toroidal symmetry[1-3]. There are two mechanisms that break the symmetry on the 
perturbed magnetic surface: one is the perturbed field itself [1,2] and the other results from 
the distortion of the magnetic surface due to the perturbed field [3,4]. The broken symmetry 
enhances the toroidal plasma viscosity and the rate of the toroidal flow damping. It also 
results in a steady state toroidal plasma flow [3,4]. 
 
A comprehensive theory has been developed to extend the existing theory of the 
neoclassical toroidal plasma viscosity [3,4] to the low collisionality regimes relevant to 
tokamak experiments [5]. The theory extends the stellarator transport theory [6,7] to 
include multiple perturbed modes. Specifically, we have extended the theory by solving the 
bounce averaged drift kinetic equation in the low collisionality regimes to obtain various 
asymptotic limits: besides the 1/ν regime, the collisional boundary layer 

€ 

ν  regime, the 
superbanana plateau regime, the collisionless detrapping/retrapping regime, and the 
superbanana regime. Here, ν is the collision frequency. The transport fluxes in these 
regimes can be categorized as mainly due to resonant and non-resonant particles. The 
resonant transport fluxes in the superbababa plateau regime and the superbanana regime 
involve the resonance between the E×B drift and the 

€ 

∇B  drift. Here, E is the electric field 
and B is the magnetic field. The resonance results in enhanced particle and energy losses 
for high energy particles. The non-resonant transport fluxes in the collisional boundary 
layer 

€ 

ν  regime and the collisionless detrapping/retrapping regime involve mainly the low 
energy particles in the vicinity of the trapped and circulating boundary. When collision 
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frequency is high enough to destroy boundary layer physics, the non-resonant transport 
fluxes enter the 1/ν regime. All these fluxes are nonlinear function of the radial electric 
field except the ones in the 1/ν regime. For the resonant transport fluxes, they decrease 
exponentially as the appropriately defined E×B Mach number exceeding unity, similar to 
the nonlinear plasma viscosity [8] that is responsible for the L-H transitions observed in 
tokamaks and stellarators. For the non-resonant transport fluxes, they decrease 
algebraically when the respective Mach numbers are larger than one. Qualitative results of 
the theory can be understood from the random walk argument. An approximate analytic 
expression that joins all these asymptotic limits has been constructed for modeling purposes 
[5] and is in good agreement with the numerical results [9]. This expression can also be 
used to determine the steady state toroidal plasma flow. The theory has been tested in 
NSTX [10], JET [11], MAST [12] and DIII-D [13]. 
 
It is known that the neoclassical toroidal plasma viscosity results in a steady state toroidal 
rotation even without momentum sources. The same phenomenon has also been observed 
in stellarator experiments [14]. It can be used to control toroidal plasma rotation in fusion 
grade tokamak experiments such as ITER. However, enhanced energy loss that comes with 
the enhanced momentum loss should impose a constraint on such control schemes by 
limiting the magnitudes of the error fields and the mode numbers.  The heat fluxes in the 
theory together with the tolerable energy loss can be used to calculate maximum values of 
the error fields that can be used in such schemes. 
 
The theory is extended to include the finite gradient B drift effects on the boundary layer 
analysis, the boundary effects on the superbanana plateau resonance, and to the region in 
the vicinity of a magnetic island. 
 
2 Theory for Neoclassical Toroidal Plasma Viscosity 
 
We refine the theory for the neoclassical toroidal plasma viscosity to include the finite 
gradient B drift effects in the boundary layer analysis, and the boundary effects on 
superbanana plateau resonance. 
 
2.1 Magnetic Coordinates and Magnetic Field Spectrum 
 
We adopt Hamada coordinates here [15]. The contravariant representation for the magnetic 
field B in these coordinates is B  = ψ′∇V×∇θ - χ′∇V×∇ζ, where 

€ 

θ  is the poloidal angle, 

€ 

ζ  
is the toroidal angle, 

€ 

′ χ = B•

€ 

∇θ , 

€ 

′ ψ = B•

€ 

∇ζ , and V is the volume enclosed inside the 
magnetic surface. The inverse Jacobian is ∇V×∇θ •∇ζ = 1. For doubly periodic toroidal 
plasmas, the magnetic field spectrum can be expressed as  

 B = 

€ 

B0  

€ 

1−ε cosθ( )  - 

€ 

B0  

€ 

[bmnc cos(mθ − nζ ) + bmns sin(mθ − nζ )]m,n∑ , (1) 
where 

€ 

B0  is the strength of the magnetic field on the magnetic axis, m is the poloidal mode 
number, n is the toroidal mode number, ε is the amplitude of the cosθ mode, 

€ 

bmnc  and 

€ 

bmns 
are the Fourier amplitudes for the (m,n) mode. We are interested in cases where the 
magnitudes of perturbed field amplitudes 

€ 

bmnc  and 

€ 

bmns are small so that there are no new 
classes of trapped particles besides those trapped in the equilibrium magnetic field variation 

€ 

εcosθ( ) .  For shaped equilibria, ε is not necessarily equal to 

€ 

r R , where r is the minor 
radius and R is the major radius.  The spectrum in Eq.(1) can be expressed as B/

€ 

B0  
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=

€ 

1−ε cosθ( )  -

€ 

An θ( )cosnζ 0 + Bn θ( )sinnζ 0[ ]
n∑ , where is 

€ 

ζ0 = qθ -ζ, q is the safety factor, 

€ 

An θ( ) =

€ 

bmnc cos[(m − nq)θ]+ bmns sin[(m − nq)θ]{ }
m∑ , and 

€ 

Bn θ( )  

=

€ 

−bmnc sin[(m − nq)θ]+ bmns cos[(m − nq)θ]{ }
m∑ . 

 
2.2 Linear Bounce Averaged Drift Kinetic Equation   

 
We are interested in the collisionality regime where the effective collision frequency 

€ 

ν /ε  
for trapped particles, i.e., bananas, is less than their bounce frequency 

€ 

vt ε / Rq( ) . Here, 

€ 

vt  
= 

€ 

2T /M  is the thermal speed of particles, T is the temperature, and M is the mass of the 
species. In this collisionality regime, the dominant physics for the transport fluxes caused 
by the broken toroidal symmetry in B are bananas wobbling off the magnetic surface to 
form drift orbits, which have a typical width, e.g., superbananas, of the order of the local 
minor radius. Thus, they cause significant transport losses over the conventional transport 
losses in ideal axisymmetruc tokamaks [16,17]. To develop theory for the bananas 
wobbling off the magnetic surface, it is nature to bounce average the drift kinetic equation. 
The linear version of the bounce averaged drift kinetic equation is [3,4,6,7] 

€ 

vd •∇ζ0 b

€ 

∂f10
∂ζ 0

+ 

€ 

vd •∇V
b

€ 

∂fM
∂V

 = 

€ 

C f10( )
b
,   (2) 

where 

€ 

f10 V ,ζ0,E,k( )  is the perturbed distribution function, 

€ 

fM  is the Maxwellian 
distribution function, E = 

€ 

Mv2 /2  is the energy, v is the speed, 

€ 

k 2= 

€ 

E − µB0 1−ε( )[ ] 2µB0ε( ) is the pitch angle parameter,  µ = 

€ 

Mv⊥
2 / 2B( ) , 

€ 

v⊥  is the speed of 
the particles perpendicular to B, for low β plasmas the drift velocity 

€ 

vd  [16] is

€ 

vd= -

€ 

v||n×

€ 

∇(v|| /Ω), n = B/B, 

€ 

Ω = 

€ 

eB / Mc( ) , c is the speed of light,

€ 

v||  is the speed of the 
particles parallel to B, β is the ratio of the thermal energy to the magnetic field energy, 

€ 

C f10( )  is the Coulomb collision operator, the bounce averaging operation in Eq.(2) is 

defined as 

€ 

A b= 

€ 

( dθAB∫ | v|| |) /( dθB∫ | v|| |) ,  

€ 

∫ =
−θ t

θ t∫ , and 

€ 

±θ t  are the turning 
points of the trapped particles where |

€ 

v|| | = 0. Note that the bounce averaging operation is 
performed in between turning points of the trapped particles because only the terms that are 
even functions of 

€ 

v||  survive the original bouncing averaging operation 

€ 

A b= 

€ 

dθAB∫ | v|| |( ) dθB∫ | v|| |( )σ
∑ , where σ =

€ 

v|| /|

€ 

v|| | denotes the sign of 

€ 

v|| . The pitch angle 
parameter 

€ 

k 2  separates circulating particles with 

€ 

k 2  > 1 from trapped particles, i.e. 
bananas, with 

€ 

k 2  < 1. Note that the notation E without an argument k denotes particle 
energy and with an argument k represents the complete elliptic integral of the second kind. 
The explicit expressions for bounce averaged toroidal drift speed 

€ 

vd •∇ζ0 b
, radial drift 

speed 

€ 

vd •∇V
b
, and collision operator 

€ 

C f10( )
b
 are  

€ 

vd •∇ζ 0 b= 

€ 

c ′ Φ 
′ χ 

 - 

€ 

cµB0
e ′ χ 

€ 

′ ε 

€ 

2E(k)
K(k)

−1
 

  
 

  
,   

€ 

vd •∇V b=

€ 

cµB0
e ′ χ 

€ 

1
4K(k)

€ 

dθ An (θ)(−n sinnζ 0) + Bn (θ)(ncosnζ 0)[ ] k 2 − sin2 θ 2( )∫n∑ ,  

and  
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€ 

C( f01) b = 

€ 

νD

εK(k)

€ 

∂
∂k 2

E(k) − (1− k 2)K(k)[ ]∂f01
∂k 2

 
 
 

 
 
 
.    

The prime denotes 

€ 

d /dV  in section 2. The deflection collision frequency 

€ 

νD  is defined in 
[18]. The curvature drift is neglected by invoking large aspect ratio expansion. Thus, we 
treat 

€ 

µB0

€ 

≈ E. We use the pitch angle scattering operator because it has an enhancement 
factor of 1/ε. 
 
2.3 Finite Gradient B Drift Effects on Boundary Layer Analysis 
 
The gradient B drift speed in the toroidal direction is often neglected in the transport theory 
for non-axisymmetric large aspect ratio tori except in the superbanana plateau and 
superbanana regimes because the typical magnitude of the E×B drift is larger than that of 
the gradient B drift for thermal particles. However, to improve the accuracy of the theory, 
we include the finite gradient B drift effects in the boundary layer analysis.  
 
Following the procedure developed in Ref.[19], the solution for Eq.(2) is  

€ 

f10 = -

€ 

cµB0
e ′ χ vd •∇ζ0 b

€ 

∂fM
∂V

€ 

1
4K(k)

× 

{

€ 

dθ

k 2 − sin2 θ
2
 

 
 
 

 
 

An (θ) 1− e
− |n |y cos | n |y( ) +σωBn (θ)e

− |n |y sin | n |y[ ]cosnζ 0∫
n
∑  +  

€ 

dθ

k 2 − sin2 θ
2
 

 
 
 

 
 

Bn (θ) 1− e
− |n |y cos | n |y( ) −σωAn (θ)e

− |n |y sin | n |y[ ]sinnζ 0∫
n
∑ }, (3) 

where 

€ 

σω  = ± 1 indicates the direction of the toroidal drift frequency

€ 

vd •∇ζ0 b
, y is the 

stretch variable defined as y = 

€ 

1− k 2( )  

€ 

νD ν t( )−1/ 2

€ 

Δk 2( )
−1

, 

€ 

ν*d= 

€ 

4ν t /ε( ) vd •∇ζ 0 b 1−Δk 2[ ] , and 

€ 

Δk 2 = 

€ 

ν*d ln 16 ν*d( )[ ]
1/ 2

. The subscript 1-

€ 

Δk 2  indicates 
that the quantity is evaluated at the edge of the boundary layer, if the quantity diverges at 

€ 

k 2=1, and evaluated at 

€ 

k 2=1 if it converges. The collision frequency

€ 

ν t  is defined as νi = 

€ 

2 πNiei
4lnΛ/(Mi

1/2Ti
3/2) for ions, and νe =

€ 

2 πNi Zi
2ee

4lnΛ/(Me
1/2Te

3/2) for electrons, 
where Zi

 is the charge number of ions. Using the distribution in Eq.(3) to calculate the flux 
surface averaged particle flux yields 

€ 

Γ•∇V  = - N

€ 

vt
4 π 3 / 2( )  

€ 

M (e ′ Φ )[ ]2

€ 

ν t 32ε( )

€ 

η1 ′ p / p + e ′ Φ /T( ) +η2 ′ T /T[ ] ,  (4) 

where

€ 

η j=

€ 

(1/2)

€ 

dxx 5 / 2 x − 5 /2( ) j−1e−x νD ν t( )∫

€ 

dk 2
0

1
∫

€ 

E(k) − 1− k 2( )K(k)[ ]

€ 

α n
2 + β n

2( )n∑  
for j =1-3, 

€ 

α n=

€ 

∂
∂k 2

€ 

dθ
(−1/2)

k 2−sin2(θ /2)
∫

€ 

Fb
K(k)

€ 

[An (θ)(1− e
− |n |y cos | n |y) +σωBn (θ)e

− |n |y sin | n |y]

  

€ 

β n =

€ 

∂
∂k 2

€ 

dθ
(−1/2)

k 2−sin2(θ /2)
∫

€ 

Fb
K(k)

€ 

[Bn (θ)(1− e
− |n |y cos | n |y) −σωAn (θ)e

− |n |y sin | n |y] 
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€ 

Fb =

€ 

1−σ e ′ Φ x / xmin( ) 2E(k) /K(k) −1[ ]{ }
−1

, 

€ 

xmin=

€ 

2 ′ Φ e Mvt
2 ′ ε ( ) , and 

€ 

σe ′ Φ =1 if both e and 

€ 

′ Φ  
have the same sign otherwise 

€ 

σe ′ Φ =-1,. The flux surface averaged normalized heat flux 

  

€ 

 q •∇V /T  is the same as 

€ 

Γ•∇V  except 

€ 

η1 is replaced by 

€ 

η2 and 

€ 

η2 by 

€ 

η3. 
 

2.4 Boundary Effects on Superbanana Plateau Resonance 
 
It is customary to neglect the boundary effects on the superbanana plateau resonance 
[6,7,20]. However, when the resonance pitch angle is close to either 

€ 

k 2=1 or 

€ 

k 2= 0, the 
boundary conditions at these points become important [9] and the physics of the 
superbanana plateau resonance is modified.   
 
The flux surface averaged particle flux resulting from the modified superbanana plateau 
resonance becomes   

€ 

Γ•∇V  = - 

€ 

π
4

€ 

CpN

€ 

vt
2

π 3 / 2

€ 

2ε

€ 

2
′ ε 

€ 

cM
| e | ′ χ 

€ 

| n | αn
2 + βn

2( )n∑

€ 

K k0( )

€ 

η1
′ p 

p
+

e ′ Φ 
T

 

 
 

 

 
 +η2

′ T 
T

 

 
 

 

 
 ,  (5) 

 where 

€ 

Cp= 0.1667 ≈ 1/6 when the resonant pitch angle 

€ 

k0
2 , defined as the resonance pitch 

angle at which the E×B drift speed cancels the gradient B drift speed, is close 1, 

€ 

Cp= 0.25 
when resonance occurs at 

€ 

k0
2= 0, 

€ 

η1 = 

€ 

Γ 5 /2( ), 

€ 

η2= 

€ 

Γ 7 /2( ) - (5/2)

€ 

Γ 5 /2( ) and 

€ 

Γ  is the 

gamma function. The parameter 

€ 

αn= 

€ 

1 4K(κ)[ ] dθ An (θ) k 2 − sin2 θ 2( )
−θ t

θ t

∫ , and 

€ 

βn = 

€ 

1 4K(κ)[ ] dθ Bn (θ) k 2 − sin2 θ 2( )
−θ t

θ t

∫ . When 

€ 

k0
2  is close to unity, we evaluate 

€ 

K k0( )  at the 

edge of the resonance layer, thus, 

€ 

K k0( )  ≈ 

€ 

1/2( ) ln 16 / ˆ ν 1/ 3( ), where 

€ 

ˆ ν  

=

€ 

2ν t /ε( ) cMvt
2 | ′ ε || n | 2 | e | ′ χ ( )[ ]{ } . When 

€ 

k0
2  is close to zero, 

€ 

K k0( )  ≈ 

€ 

π /2 . The 
normalized heat flux 

€ 

q •∇V /T has the same form as 

€ 

Γ •∇V  except 

€ 

η1 is replaced by 

€ 

η2  
and 

€ 

η2  by 

€ 

η3  = 

€ 

Γ 9 /2( )-5

€ 

Γ 7 /2( )

€ 

+ 25 /4( )Γ 5 /2( ) .  
 
2.5 Flux-Force Relation 
 
The transport fluxes calculated here are related to either the toroidal or the poloidal 
component of the viscous forces in Hamada coordinates [21]:  

€ 

Γ•∇V = - 

€ 

c
e ′ χ ′ ψ 

〈Bp •∇•π〉 = 

€ 

c
e ′ χ ′ ψ 

〈Bt •∇•π〉,    (6) 

where Bp = - χ′∇V×∇ζ, Bt = ψ′∇V×∇θ, and π  is the Chew-Goldberger-Low viscous tensor. 
Note that the charge e in Eq.(6) is species dependent.  The subscript that denotes plasma 
species is suppressed in Eq.(6). Thus, they can be used in the toroidal momentum evolution 
equation to model toroidal flow or the radial electric field. 

 
3 Neoclassical Toroidal Plasma Viscosity in the Vicinity of a Magnetic Island 
 
The theory for the neoclassical toroidal plasma viscosity in the vicinity of the magnetic 
island has been developed in Ref.[4] and the results have been used to calculate the island 
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rotation frequency [22]. The theory is extended to include the boundary layer effects here. 
We adopt the representation of B = I

€ 

∇ζ  + 

€ 

∇ζ×

€ 

∇ ψ +δψ( )  in section 3, where I = R

€ 

Bt , 

€ 

Bt  
is the toroidal magnetic field, 

€ 

ψ  is the equilibrium poloidal flux function, 

€ 

δψ  = 

€ 

˜ ψ 

€ 

cosmα  
is the perturbed poloidal flux resulting from the presence of the magnetic island with an 
amplitude 

€ 

˜ ψ , 

€ 

α= 

€ 

θ  - 

€ 

ζ /qs is the helical angle, 

€ 

qs=m/n is q at the resonant radius r = 

€ 

rs. 
The |B| on the island magnetic surface is [4] 

€ 

B
B0

 = 1 - 

€ 

rs
R

±
rw
R

Ψ + cosmα
 

  
 

  

€ 

cosθ ,  (7) 

in the vicinity of a magnetic island, where 

€ 

Ψ = -

€ 

Ψ/ ˜ ψ , 

€ 

Ψ is the helical flux function, 

€ 

rw=

€ 

2qs
2 ˜ ψ /( ′ q sB0rs)  is proportional the width of the island, and 

€ 

′ q s=

€ 

dq /dr |rs . In the vicinity 
of the magnetic island, the parameter 

€ 

k 2= 

€ 

2 1+ Ψ ( ) delineates the regions outside, 
where

€ 

k 2  

€ 

≤1, and inside, where

€ 

k 2

€ 

≥ 1, the separatrix at which 

€ 

k 2=1.   
 
The linear bounce averaged drift kinetic equation for the island magnetic 
geometry

€ 

Ψ,α,θ,E,µ( ) , using constant-

€ 

ψ  approximation, is, for trapped particles, 

€ 

vd •∇α
b

€ 

∂f01
∂α

 + 

€ 

vd •∇Ψ
b

€ 

∂fM
∂Ψ

 = 

€ 

C( f01) b
,  (8) 

When 

€ 

ν /ε >> 

€ 

vd •∇α
b
, the solution of Eq.(8) yields the well-known 1/ν scaling of the 

transport fluxes [4,6,7]. Here, we are interested in the limit where 

€ 

ν /ε << 

€ 

vd •∇α
b
∼ 

€ 

vE •∇α  with 

€ 

vE , the E×B drift velocity by neglecting the 

€ 

∇B , and the curvature drift 
velocity. When the 

€ 

∇B  drift velocity, and the curvature drift velocity are comparable to the 
E×B drift velocity, the solution of Eq.(8) yields superbanana plateau regime and 
superbanana regime [6,7,21,23]. We will address the physics of these two regimes 
separately. The appropriate expressions for the components of the drift velocity are 

€ 

vd •∇α
b
≈ 

€ 

Ic ′ Φ 
B2

€ 

B •∇θ

€ 

∂Ψ
∂ψ

,    (9) 

and, in a large aspect ratio tokamak, 

   

€ 

vd •∇Ψ
b
≈ 

€ 

IB •∇θ
BΩ

€ 

∂Ψ
∂ψ

€ 

v2

2

€ 

∂Δ
∂α

€ 

2E(k)
K(k)

−1
 

  
 

  
,   (10) 

where 

€ 

Δ= 

€ 

±

€ 

rw /R( )

€ 

Ψ + cosmα( )1/ 2 . In section 3, prime denotes 

€ 

∂ ∂Ψ . 
 

The solution of the perturbed distribution outside the island is,  

€ 

f010=  

€ 



€ 

B
c ′ Φ Ω

€ 

v2

2

€ 

2E(k)
K(k)

−1
 

  
 

  

€ 

∂fM
∂Ψ

€ 

rw
R

€ 

Ψ +1

€ 

2π
K k ( )

×

€ 

qn

1+ q2n
1− e− ny cos ny( )cosnη − e− ny sin ny sinnη[ ]

n=1

∞

∑ ,   (11) 

where q = 

€ 

e−π ′ K /K , 

€ 

′ K k ( )=

€ 

K 1− k 2( ), 

€ 

η = 

€ 

πu K k ( ) , u = 

€ 

dx 1− k 2 sin2 x
0

ϕ

∫ , 

€ 

ϕ = m

€ 

α /2, 
the stretch variable y is defined as 

y= 

€ 

1− k 2( )

€ 

Ic | ′ Φ | /B( )( ˆ n • ∇θ ) ′ q srw /qs( )m Ψ +1 (π /2) /K(k )[ ]
νD 2ε( ) /ln 4 Δk 2( )

 

 

 
 
 

 

 

 
 
 

1/ 2

.  (12) 
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The layer width

€ 

Δk 2 defined in Eq.(12) is obtained by setting y = 1 in Eq.(12). Using the 
distribution in Eq.(11), we calculate the island magnetic surface averaged particle flux: 

€ 

Γ•∇Ψ =-

€ 

2ε

€ 

Nvt
4

π 3 / 2

€ 

rw
R

 

 
 

 

 
 
2

€ 

B
Ic ′ Φ 

€ 

I
Ω

 

 
 

 

 
 
2

€ 

n • ∇θ
′ q srw
qs

m

€ 

ν∗dc
t ln 16

ν∗dc
t

 

 
 
 

 

 
 
 

 

 

 
 

 

 

 
 

1/ 2

×  

€ 

π
k K(k )
 

  
 

  

3

€ 

n
n=1

∞

∑ qn

1+q2n
 

 
 

 

 
 

2

€ 

λ1
′ p 

p
+

e ′ Φ 
T

 

 
 

 

 
 + λ2

′ T 
T

 

 
 

 

 
 ,   (13) 

where 

€ 

λ j = 

€ 

(1/2)

€ 

dxx 5 / 2 x − 5 /2( ) j−1e−x νD ν t( )
0

∞

∫  for j = 1-3 and 

€ 

ν∗dc
t  = 

€ 

ν t 2ε( )[ ]× 

€ 

Ic ′ Φ B( )(n •∇θ) ′ q srw qs( )m Ψ +1 π 2( )K−1(k )[ ]
−1

. The normalized heat flux 

€ 

q •∇Ψ /T has the same form as 

€ 

Γ•∇Ψ  except 

€ 

λ1 is replaced by 

€ 

λ2  and 

€ 

λ2 by 

€ 

λ3.  
 
The perturbed distribution function inside the magnetic island is 

€ 

f010=  

€ 



€ 

B
c ′ Φ Ω

€ 

v2

2

€ 

2E(k)
K(k)

−1
 

  
 

  

€ 

∂fM
∂Ψ

€ 

rw
R

€ 

2

€ 

2π
K ˆ k ( )

×

€ 

qm−1/ 2

1+ q2m−1
1− e− 2m−1z cos 2m −1z( )cos(2m −1)ξ − e− 2m−1z sin 2m −1zsin(2m −1)ξ[ ]

m=1

∞

∑ , (14) 

where 

€ 

ξ  = 

€ 

πu 2K ˆ k ( ) , u = 

€ 

dx ˆ k 2 − sin2 x
0

ϕ

∫ , 

€ 

ˆ k =1/

€ 

k , the stretch variable z is defined as 

z = 

€ 

1− k 2( )

€ 

Ic | ′ Φ | /B( )( ˆ n • ∇θ ) ′ q srw /qs( ) m 2( ) (π /2) /K( ˆ k )[ ]
νD ε( ) /ln 4 Δk 2( )

 

 

 
 
 

 

 

 
 
 

1/ 2

.   (15) 

The q in Eq.(14) is defined in terms of K(

€ 

ˆ k ) and 

€ 

′ K = K(

€ 

1− ˆ k 2 ).  The layer width 

€ 

Δk 2  can 
be estimated by setting z = 1 in Eq.(15). The island surface averaged particle flux is 

€ 

Γ•∇Ψ =-

€ 

2ε

€ 

Nvt
4

2 2π 3 / 2

€ 

rw
R

 

 
 

 

 
 
2

€ 

B
Ic ′ Φ 

€ 

I
Ω

 

 
 

 

 
 
2

€ 

n • ∇θ
′ q srw
qs

m

€ 

ν∗dt
t ln 16

ν∗dt
t

 

 
 
 

 

 
 
 

 

 

 
 

 

 

 
 

1/ 2

× 

€ 

π

K( ˆ k )

 

 
 

 

 
 

3

€ 

n −
1
2n=1

∞

∑ q
n -1
2

1+q2n -1

 

 

 
  

 

 

 
  

2

€ 

λ1
′ p 

p
+

e ′ Φ 
T

 

 
 

 

 
 + λ2

′ T 
T

 

 
 

 

 
 ,  (16) 

where 

€ 

ν∗dc
t  = 

€ 

ν t 2ε( )[ ]× 

€ 

Ic ′ Φ B( )(n •∇θ) ′ q srw qs( )m π 2 2( )K−1( ˆ k )[ ]
−1

. Replacing 

€ 

λ1  by 

€ 

λ2  and 

€ 

λ2  by 

€ 

λ3 in Eq(16) yield the normalized heat flux 

€ 

q •∇Ψ /T . The gradients of 
plasma pressure and temperature inside the island are not necessary zero due either to 
plasma fueling or to finite transport processes along the field line. Because the gradient 
scale length of the radial electric field is of the order of the island width, the turbulence 
fluctuations are suppressed and the plasma confinement is improved [8,24]. 
 
4 Bounce-Transit and Drift Resonance  
 
In the low collisionality regime, there can be resonances between the bounce frequency of 
the trapped particles and the toroidal drift frequency [25] and between the transit frequency 
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of the circulating particles and the toroidal drift frequency [26].  Because the mechanisms 
of the resonances involve bounce and transit motions they can only be described by the 
non-bounce averaged drift kinetic equation [26]. An Eulerian approach to solve the drift 
kinetic equation including the physics of these resonances has been developed to calculate 
the enhanced plasma viscosity [26]. Transport consequences, including the modification on 
the bootstrap current and plasma flows, have also been calculated [27]. 
 
5 Discussions and Concluding Remarks 
 
We have developed a comprehensive theory for the neoclassical toroidal plasma viscosity 
for real tokamaks that have error fields or MHD activities present. The refinement of the 
theory to include the finite gradient B effects on the boundary layer analysis and the 
boundary effects on the superbanana plateau resonance is presented. The theory is also 
extended to the region in the vicinity of the magnetic island. The theory can be used in 
modeling the toroidal plasma rotation or the radial electric field in ITER. 
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