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Abstract. Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning
instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the
Hall MHD equations are carried out. A moderate parallel heatconductivity plays an important role both in
the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively
suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison
to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth
of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall
MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure
profile, and that we may need a further extension of the model.We also find by a comparison between two
Hall MHD simulations with different numerical resolutionsthat sub-grid-scales of the Hall term should be
modeled to mimic an inverse energy transfer in the wave number space.

1 Introduction

A magnetohydrodynamics (MHD) instability has been one of the most important subjects to
understand hot plasma dynamics in a torus device. An aspect of MHD instability of the Large
Helical Device, LHD[1, 2], can be characterized by the position of the vacuum magnetic axisRax.
The standard position of the axis isRax = 3.75m. WhenRax is shorter than 3.75m, we call its
magnetic configurationinwardly shifted. On one hand, the pressure-driven instabilities such as
the interchange instability and the ballooning instability are considered to be a key factor of the
beta-limit in operations. Such an unstable nature is stronger for a shorterRax. On the other hand,
an experimental fact is that high-beta values have been achieved under inwardly shifted magnetic
configurations[3, 4, 5]. For the purpose of understanding how the hot plasma could overcome the
dangerous instabilities, nonlinear evolutions of the pressure-driven instabilities have been studied
numerically[6, 7, 8, 9]. An understanding is that some nonlinear processes such as the pressure
profile modification help a mild saturation of the instability. It has also been pointed out that the
compressibility effect, generation of flows parallel to themagnetic field lines and the parallel heat
conduction can contribute to the saturation significantly[8, 10, 11].

Although some insights are given by the numerical works, we have not reached to a conclusive
understanding on some aspects of the saturation of the pressure-driven instability yet. For exam-
ple, an importance of the short-wave pressure-driven modeson the mild saturation still remains
unclear. While the pressure-driven modes have a property that their growth rates are larger for
shorter wavelength, we are not able to resolve infinitely short wavelength in a numerical simula-
tion and need to truncate/damp scales shorter than its numerical resolution. A physical justification
of the artificial truncation was that a local flattening of thepressure profile, caused by the nonlinear
coupling of unstable modes, could suppress growth of other unstable modes. However, our recent
simulations have revealed that it could not suppress at least when the ballooning modes grow in
a very unstable profile[11]. A physical dissipation can dampthe small scales but the dissipative
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length scale in the direction perpendicular to the magneticfield lines is usually quite shorter than
a numerical resolution. Another possibility is that the growth of the short-wave unstable modes
are suppressed by a sort of a parallel dissipation such as theparallel heat conduction, and we do
not need an infinite resolution to resolve them. We have reported that the parallel heat conduction
works quite effectively, and the moderate and high wave number ballooning modes are suppressed
even when the initial equilibrium is very unstable[11]. However, it is also reported that the sup-
pression of the growth is not sufficient even with the help of the parallel heat conduction, and we
need further survey on this subject.

The purpose of this article is twofold. The first one is to report a recent progress on the nu-
merical study of the nonlinear evolution of the ballooning modes. The second one is to obtain
some basic information to construct sub-grid-scale modelsof the equations. This is motivated
to compromise a time-consuming nature of a three-dimensional (3D) extended MHD simulation
associated with fast waves of two-fluid systems and increasing requirements for quick numerical
experiments by so-called large eddy simulations of extended MHD models.

This paper is organized as follows. In§2, the initial equilibrium which is used as the initial
condition of our simulations is shown. In§3, numerical results of our recent MHD simulations
are shown. In§4, numerical results of the Hall MHD simulations are shown. In §5, sub-grid-scale
effects of the Hall term is studied, referring to some numerical results of the Hall MHD turbulence.
The concluding remarks are in§6.

2 Initial equilibrium and linear stability

We solve fully 3D single-fluid MHD/Hall MHD equations by the use of the MHD In Non-
Orthogonal System (MINOS) code[8, 9, 11]. The equations have four dissipative coefficients, the
resistivity η, the perpendicular heat conductivityκ⊥, the parallel heat conductivityκ‖, and the
viscosityµ. In addition to the dissipative coefficients, the Hall parameterε controls the ion skin
depth. By settingε = 0, the single-fluid MHD equations are recovered. See Refs.[8, 9, 11] for
the details of the normalization of the MHD equations, numerical techniques and parameters. All
of our 3D simulations are carried out for the inwardly shifted LHD configuration of the magnetic
axis positionRax = 3.6m. The initial equilibrium is computed by the use of the HINT code[12].
This equilibrium has a peaked pressure profilep(ψ) ≃ P0(1−ψ)2 and the uniform mass density
ρ(ψ) = 1. The peak beta value at the magnetic axisβ0 ≡ P0/(B2

0/2) is 3.7%, and the averaged
beta value is〈β 〉 ≃ 1.2% where〈 〉 is the volume average over the finite-β region, over which we
construct the Boozer coordinate later. In Fig.1, the peak beta valueβ0, the rotational transform
ι/2π and the Mercier indexDI with positive value (multiplied by 1/20) are plotted as the function
of the normalized minor radius

√ψ . The valueDI ≃ 0.4 in Fig.1 indicates that the equilibrium
is fairly unstable according to the linear analysis[4]. This initial equilibrium has been used as the
initial condition of 3D simulations in Ref.[11]. Readers refer to the reference for details of the
initial equilibrium and its linear stability properties. In the reference, the unstable modes which
grow from the initial equilibrium are identified as the ballooning modes.

In this article we provide two sets of grid points (H)193× 193× 640 and (L)97× 97× 640
for the same initial equilibrium. We construct the Boozer coordinates(ψ,θ ,ζ ), whereψ, θ and
ζ are the toroidal flux divided by 2π , the poloidal and the toroidal angles, respectively, so that
we can project a physical quantityA(xxx) on the Boozer coordinate asA(ψ,θ ,ζ ) and compute its
Fourier coefficients. A Fourier coefficient ofA(xxx) is denoted asAmn(ψ), wherem andn are the
poloidal and toroidal wave numbers, respectively. A 3D vector fieldVVV is decomposed into the three
components, normal, parallel and binormal for the three orthogonal directionseee∇ψ = ∇ψ/|∇ψ|,
eeeb = BBB/|BBB|, andeee∇ψ×b = eee∇ψ × eeeb, respectively, whereBBB is the magnetic field vector. Then we
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FIG. 1: Radial profiles of the pressureP00, the rotational transformι/2π and the Mercier
indexDI of the initial equilibrium are plotted. In order for later use, the two resolutions
97×97×640 and 193×193×640, are provided.

transform the three components to the Fourier coefficients.

3 MHD simulations

Our recent MHD simulations (ε = 0) show that a moderate parallel heat conductivityκ‖ = 1×
10−2 helps the saturation of the ballooning modes through both linear and nonlinear stages in
comparison to a simulation with a small parallel heat conductivity κ‖ = 1×10−6[11]. In Fig.2, the
mean pressure profilesP00(

√ψ) of the two simulations with different values ofκ‖, 1×10−2 and
1×10−6, are shown. When the moderate valueκ‖ = 1×10−2 is adopted, the generation of the flow
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FIG. 2: A comparison of the mean pressure profilesP00(
√ψ) between simulations with

and withoutκ‖.

parallel to the magnetic field lines is enhanced because of the lack of the parallel pressure gradient
∇‖P. Consequently, the parallel heat conduction works not onlyto reduce the linear growth rates
of the ballooning modes but also to release the free energy into the parallel kinetic energy and help
a mild saturation. We find in Fig.2 that the saturatedP00 profile in the simulation ofκ‖ = 1×10−2

is much better than that of the other one.
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Although the simulation with the moderateκ‖ provides a relatively mild saturation, it does not
coincide with an experimental result satisfactory. For example, a pressure profileP00 observed
in the course of the time evolution in Fig.2 (’a state similar to the experiment’, in a thin dashed
line) is similar to that reported by Sakakibara et al.[13], because of the local flattening of the
profile at

√ψ ≃ 0.3 where theι/2π = 0.5 rational surface exists. In the experimental report,
the beta value was limited when theι/2π = 0.5 rational surface was observed, and was raised
when the rational surface disappeared. We consider that thelimited profile in the experiment can
be the counterpart of the saturated profile of our numerical simulation. However, in the MHD
simulation (κ‖ = 1×10−2, the deformation is not terminated ina state similar to the experiment
but is continued until the saturated profile of thick dotted line in Fig.2. It suggests that we need
further stabilizing effects other than the parallel heat conduction. However, so far, we do not
find a sufficient stabilization mechanism for the unstable equilibrium profile in the framework of
the classical single-fluid MHD model. (Off course we could stabilize the instability by raising
the perpendicular heat conductivity,κ⊥ = 10−4 for example. However, we consider that such a
largeκ⊥ cannot be justified within the single-fluid MHD model and needan extended model.) A
possible candidate of the stabilizing effects might be found in some two-fluid effects. For example,
Huba[14] reported that the moderate wave number Rayleigh-Taylor instability could be suppressed
by the Hall effect. It motivates us to carry out simulations of an extended model in order to clarify
how a coincidence between the experimental and numerical results can be obtained.

4 Hall MHD simulations

Here we study the Hall MHD dynamics in the same magnetic configuration as in the above. In the
Hall MHD equations, the Ohm’s lawEEE = −uuu×BBB+ηJJJ is replaced byEEE = −(uuu− εJJJ)×BBB+ηJJJ,
whereuuu andJJJ = ∇×BBB are the vectors of the velocity and the current density, respectively. An
advantage of adopting the Hall MHD model is that the initial MHD equilibrium is an equilibrium
of the Hall MHD model, too, in the ideal limit (that is, null dissipative coefficients). Consequently,
it can give a good starting point to an extended MHD study, even though some other terms compa-
rable to the Hall term are omitted from the equations. We do not expect the Hall term to suppress
the ballooning modes solely by itself, but aim to clarify roles of the Hall term and provide basic
information to carry out further extended simulations.

In Fig.3, the time evolution of the Fourier energies (that isthe amplitude squared and integrated
in the radial directionψ) of the parallel velocity component are shown for both the Hall MHD and
MHD simulations with the same dissipative coefficients (η = µ = κ⊥ = 1×10−6,κ‖ = 1×10−2).
The Hall term is set asε = 0.05. The time series of 0≤ m ≤ 9 Fourier energies are plotted
in Figs.3(a)(n = 0) and (c)(n = 1). The growth of the Fourier energies in the MHD simula-
tion are also shown in Figs.3(b) and (d) the comparison with (a) and (c), respectively. The
n = 0 Fourier energies grow rapidly just in the beginning of the Hall MHD simulation (Fig.3(a)),
while they stay relatively small in the MHD simulation (Fig.3(b)). The difference may be un-
derstood as follows. In the MHD equations, the magnetic fieldis driven by∇ × (uuu×BBB), and
the induction is initially small because of the smalluuu. In the Hall MHD simulation, the induc-
tion equation is governed by∇× [(uuu− εJJJ)×BBB]. The Hall term does not work while the force
balance∇P = JJJ × BBB is kept perfectly because∇× (εJJJ × BBB) = ∇× (ε∇P) = 0. However, the
Hall term can become large once the magnetic field is perturbed because the fluctuation com-
ponent of the current can be larger than the velocity fluctuation in the initial perturbed field.
Once the magnetic field is perturbed, the parallel heat conduction works to smooth the pressure
field along the perturbed magnetic field lines and cause a tentative and a large imbalance be-
tween∇P andJJJ ×BBB. We consider that the intrinsic nonlinearity of the parallel heat conduction,
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∇ ·
[

κ‖(∇‖P)
]

= ∇ ·
[

κ‖(eeeb ·∇P)
]

= ∇ ·
[

κ‖ ((BBB ·∇P)/|BBB|)
]

, which doe not necessarily suppress a
perturbation but can perturb the equilibrium stronger, appear cooperatively with the Hall term in
this simulation. As the consequence, somen = 0 energies of the parallel flow are generated rapidly.
In contrast to then = 0 energies, then = 1 Fourier energies in the Hall MHD simulations grow
almost exponentially (Fig.3(c)). The growth of energies ofm/n = 2/1 (the main Fourier coeffi-
cient of then = 1 mode) and a few other Fourier coefficients (side-bands of the mode) in Fig.3(c)
is brought about by the ballooning instability, as we can seein their MHD counterparts in Fig.3(d).
However, othern = 1 energies such asm = 5,6,7 and so on grow because of the nonlinear couplings
of the unstable Fourier coefficients with then = 0 coefficients in Fig.3(a). Then = 0 energies in
Fig.3(a) reach a finite-amplitude state before the linear modes begin to grow att ≃ 60τA whereτA

is the toroidal Alfén unit. (Hereafter, we assume the time unit τA in this article, and the symbol
is omitted.) Then couplings of then = 0 coefficients with the unstablen = 1 coefficients such as
m/n = 1/1 and 2/1 cause growth of the non-resonant Fourier coefficients (m/n = 5/1, 6/1 and so
on) with the same growth rates as that of them/n = 2/1 energies. The time evolution of the ener-
gies of then ≥ 2 energies are essentially mixtures of the non-resonant growth associated with the
rapid growth associated with the moderateκ‖ and the growth of linearly unstable modes. (Figures
are omitted.) These observations show that the Hall term andthe parallel heat conduction work
cooperatively to generate parallel flow and enhance nonlinear couplings in the time evolution.
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FIG. 3: Time evolutions of the Fourier energies in the Hall MHD and the single-fluid MHD
simulations.(a)n = 0(Hall MHD), (b)n = 0(MHD), (c)n = 1(Hall MHD), and (d)n = 1(MHD) en-
ergies.

In Fig.4, we plot the mean pressure profileP00 of the Hall MHD simulation. The beta value in
the saturated pressure profile (t = 135) of the Hall MHD simulation is lower than that in the MHD
simulation in Fig.2. The reduction of the beta value should be attributed to the strong velocity
generation which we have seen in Fig.3. It suggests that the existence of the Hall term does not
necessarily improve the saturated pressure profile, at least when the moderateκ‖ is adopted.
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5 Effects of sub-grid-scales

As we have mentioned in§.2, we do not necessarily expect a stabilization of the ballooning modes
solely by the Hall effect because such a stabilization effect often depends on the detailed plasma
profile. Furthermore, since the moderateκ‖ causes a large difference from an ideal stability anal-
ysis, the stabilization by the Hall term in the sense of an ideal MHD system is less expected. We
rather intend to study basic natures of the Hall term in the growth of unstable modes. For this
purpose, we compare two Hall MHD simulations with the same parameter but the different grid
numbers, (H)193×193×640 and (L) 97×97×640. In the latter run, the coarsest grid width in the
real space and the ion skin depth is comparable to each other.The high resolution run (H) resolves
the ion skin depth scale reasonably while the low resolutionrun (L) does not necessarily resolves
it. In Fig.5, the time evolutions of the energies of the main Fourier coefficients of (a)n = 1,(b)2,(c)3
and (d)4 unstable modes are compared between the two runs. Although the time evolutions in the
two runs are qualitatively similar to each other, the some Fourier energies are almost 100 times
different. (See for example, them/n = 4/2 coefficient of the normal and binormal velocity com-
ponents, and them/n = 5/3 coefficient of the parallel velocity component between thetwo runs.)
By investigating time evolutions of many Fourier energies we find that the low-resolution simu-
lation underestimate the energies over many wave numbers incomparison to the high-resolution
simulation.

We can understand these numerical results as follows. Sincethe low-n Fourier coefficients
are well resolved even with the smaller number of grid points97× 97× 640, it is difficult to
attribute the underestimate of the Fourier energies to a numerical viscosity associated with the
limited numerical resolution. We should rather attribute the difference to the Hall term. It is
conjectured that the Hall term causes the energy transfer from the scales around the ion skin depth
to the larger scales, that is an inverse energy transfer in the wave number space. Since the ion skin
depth is not sufficiently resolved, the inverse energy transfer is not well expressed, and the large
scales of the magnetic field are not enhanced by the inverse transfer sufficiently. The consequence
is that theJJJ×BBB term in the momentum equation term does not enhance the flow field sufficiently.
This understanding is consistent with numerical results onthe homogeneous Hall MHD turbulence
simulation, in which the Hall term causes the energy transfer from the scales around the ion skin
depth to both the lower and higher scales[15]. Although the 3D Hall MHD simulation in LHD and
the homogeneous Hall MHD turbulence are different to each other in many aspect, a comparison
between them can make a sense because the plasma flows and magnetic field fluctuations in the
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FIG. 5: A comparison of Fourier-energy evolutions between the two Hall MHD simulations.

LHD simulations are fully developed and behave turbulent asthe consequence of the enhanced
nonlinear couplings in§4. The study in the homogeneous turbulence suggests that thesub-grid-
scales can be modeled as to cause the inverse energy transferwhen the grid width (or filter width
of a large eddy simulation) is comparable to the ion skin depth, or can be modeled by a typical
eddy/current diffusivity when the grid with or the filter width is quite smaller than the ion skin
depth.

6 Concluding Remarks

We study the Hall MHD dynamics from a fairly unstable MHD equilibrium of the LHD, as the first
step to extend our study to extended MHD simulations. Our Hall MHD simulations show that the
time evolution of the Hall MHD system can be governed not onlyby the growth of the unstable
ballooning modes but also by the rapid generation of the parallel flow due to the cooperative work
of the Hall term and the moderateκ‖. In such a case, the stabilization mechanism of the Hall term
does not necessarily improve the saturated pressure profile. We also study sub-grid-scale effects
of the Hall MHD term. In our study, the Hall term works to causethe inverse energy transfer from
the scales around the ion skin depth to the larger scales. According to the numerical results of
the homogeneous Hall MHD turbulence, we might be able to model the sub-grid-scale of the Hall
term by a typical eddy/current diffusivity when the numerical simulation well resolves the ion skin
depth scale. Such a modeling will be required to carry out extended MHD simulations quickly.

Numerical simulations in this article are carried out in theNEC SX-8 “LHD numerical analy-
sis system”, and the HITACHI SR16000 “Plasma Simulator” of the National Institute for Fusion
Science (NIFS), Japan. The authors would like to thank members of the Numerical Experiment
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