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Abstract. Recent experiments observed that plasma edge stability can be improved by external mag-
netic perturbations. The general problem of plasma response to external magnetic perturbations is
investigated. Different (vacuum, ideal, and resistive) plasma response models are considered and com-
pared. Plasma response in the edge stability experiments is obtained through computation using the
MARS-F code, with a plasma model that includes both plasma resistivity and rotation. The resultant
magnetic field line stochsticity is much reduced from that obtained formerly using the vacuum plasma
model. This reduced stochasticity is more consistent with the observations during edge stabilization
experiments. Examples are given for response of an ITER plasma to perturbations generated by the
correction coils; and response of a plasma to external coils (antenna) up to the Alfvén frequency.

1. Introduction and Motivation

Recent experiments in DIII-D [1] and JET have shown that by imposing magnetic per-
turbations from outside the tokamak, the plasma behavior at the edge can be improved,
i.e. the edge localized mode (ELM) stabilized. Vacuum field model of plasma response [2]
predicts that field lines on the outside (>90%) flux surfaces of tokamak become stochastic;
indirectly supported by the measurment of the splitting of the heat deposition footprint
on the divertor plate. However, it resulted in a puzzle because the edge temperature gra-
dient in the experiment was not reduced — which indicated that the heat transport was
not much enhanced. This is in direct contradiction with modeling of edge transport using
a stochastic edge [3]. On the other hand, the density gradient was slightly reduced in the
experiment. An improved magnetic field line structure other than that of the perturbed
vacuum field is needed. We propose that the plasma response is essentially ideal and use
the MARS-F code [4] to show that the field lines would not become stochastic except at
the very edge. We conjecture that this filed line structure will lead to negligible increase
in heat transport while slightly increasing the particle transport.

Magnetic perturbations generated by external coils are utilized for various purposes
in the study of the tokamak plasmas. At high (Alfvén range ) of frequency, they are used
to excite plasma waves, whereas at lower frequencies, they are utilized for the correction
of error fields and/or for the feedback stabilization of various instabilities including the
RWM [5]. One of the intriquing aspect of the above mentioned edge stabilization exper-
iments is that stabilization depends very critically not only on the configuration of the
external magnetic coils (and perturbations), but also on the plasma state to which the
magnetic pertubation is applied. To extrapolate these effects reliably to future devices,
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we need to have a comprehensive understanding of the underlying physical phenomenon
and also a simulation capabilty for the combined system of plasma and external coils.

In this work, we compare the plasma response from different (vacuum, ideal, resistive)
plasma models and discuss their validity. We showed that the plasma response can be
studied through minimizing the free energy of the plasma together with the external coils.
In particular, we found that without pitch resonant surfaces, the magnetic plasma response
is expected to be slightly paramagnetic with respect to the “response” from the vacuum
field. With a pitch resonant surface, the plasma response inside of the resonant surface
remains paramagnetic and can be highly amplified; however the magnetic field normal to
the flux surface is constrained to be zero at the resonance and thus becomes a diamagnetic
response if the ideal plasma model is adopted. Including plasma resistivity relaxes the
ideal MHD constraint and brings the response towards the vacuum solution; while rotation
reinforces the MHD constraint. To take into account the resistivity and rotation in present
day tokamaks, the response is obtained by directly solving the resistive MHD equations
using the MARS-F [4] code which also includes the geometry of the external coil(s).
Results from MARS-F indicate that the plasma response is very close to being ideal for
experimental-like conditions, with only very small amount of flux reconnection over the
bulk of the plasma except at the very edge ∼2% of the flux surface. The resultant field line
topology is not expected to affect the heat transport yet would allow a modest increase
to the particle transport, consistent with the experimental observation. Two examples
of utility of the magnetic perturbations in understanding the plasma are shown. The
first is the perturbation of an equilibrium in ITER by currents in the external correction
coils, which can be utilized to counter the effect of the intrinsic error field. The second
is obtaining the excitation spectrum and the comparative strength of the excitation by
different configurations of the external coils for a plasma and for frequencies up to the
Alfvén frequency.

2. Formulation

In present and future tokamaks, plasma resistivity η and equilibrium toroidal rotation Ω
are relatively small, i.e. the magnetic Reynolds number S = τη/τH >> 1 and ΩτH << 1.
(Here τH = R

√
µ0ρ/B is the hydrodynamic time and τη = r2µ0/η is the resistive diffusion

time, with R being the major radius, r the minor radius, ρ equilibrium plasma density
and B the magnetic field strength.) Therefore, we anticipate that an ideal plasma with
no toroidal rotation should be a good first approximation in understanding the response
of the plasma to an external magnetic perturbation.

A Response of an Ideal Plasma to External Magnetic Perturbations

The nature of the response of an ideal plasma to external magnetic perturbations may be
studied by extending our previous work [6] to include finite perturbation frequency ω. It
was shown in Ref. [6] that in the presence of external magnetic perturbations generated by
external coils with current Ic, the plasma dynamics obeys the extended MHD functional

δWg = δKp(~ξ
+, ~ξ) + δWp(~ξ

+, ~ξ) + δWv(~b
+
v ,
~bv) + δEc = 0 . (1)

In Eq. (1), δKp = 1
2
γ2

∫
dV ~ξ+ · ~ξ is the perturbed plasma kinetic energy; δWp the per-

turbed plasma potential energy; δWv the perturbed magnetic energy in the vacuum region;
and δEc the interaction energy between the coils and the unperturbed equilibrium. The
superscript + indicates the adjoint quantity.



3 THS/P5-04

For the “natural oscillations” of an ideal plasma in the absence of the external per-
turbation coil(s), it is well known that the plasma dynamics satisfy the self adjoint func-

tional δWI = δKp(~ξ
+, ~ξ) + δWp(~ξ

+, ~ξ) + δWv(~b
+
v ,
~bv) = 0. At the plasma vacuum in-

terface, the plasma displacement ~ξ and the vacuum magnetic perturbation ~bv satisfies
the connection formula ~∇ × (~ξ × ~B) · n̂ = ~bv · n̂. Here n̂ is the outward pointing nor-
mal to the edge plasma surface. Without loss of generality, we consider only plasma
perturbations with finite perturbation amplitudes at the plasma surface. These pertur-
bations form a set of normal modes {~ξi,~bvi} with the property that

∫
dV ~ξ+

i · ~ξj = δij; and

δWp(~ξ
+
i ,
~ξj) + δWv(~b

+
vi,
~bvl) = −δijγ2

i . We adopt the magnetostatic representation for the

perturbed vacuum magnetic field and express ~bi = ~∇Φi. Now we consider the effect of the
magnetic perturbation produced by the external coils. The external magnetic perturba-
tion will excite the set of normal modes {~ξi,~bvi} of the plasma to amplitude {αi}. Then,
the perturbed state of the plasma and the vacuum region can be represeted by

~ξ =
∑
i

αi~ξi ; ~bv =
∑
i

αi~∇Φi + Ic~∇Φc . (2)

In Eq. (2), Φc is the magnetostatic potential of the external coil and satisfies ∇2Φc = 0.
We assume the external coil is located on a coil surface Sc and carrying current Ic. On
the surface Sc, the coil current δ~jc can be expressed as δ~jc = ~∇z × ~∇K with z being a
coordinate perpendicular to the coil surface. Then the magnetostatic potential Φc of the
coil current satisfies Φ+

c − Φ−
c = µ0

∫
Kdz across the coil surface. Because the system of

eigenfucntions {~ξi,~bvi} is complete, the boundary condition for Φc is ~∇Φc · n̂ = 0. We can
evaluate the extended energy functional δWg to give

δWg =
∑
i

[
−1

2
(ω2 + γ2

i )α
+
i αi + Ic(α

+
i Eci + αiE

+
ci)

]
+

I2
c

2µ0

∫
~∇Φ+

c · ~∇ΦcdV . (3)

The minimization of δWg in Eq. (3) with respect to αi gives

αi =
IcEci

(ω2 + γ2
i )

; Eci =
1

2µ0

∫
~∇Φ+

i · ~∇ΦcdV . (4)

Thus, the ampltiude of each mode is proportional to both the current in the external
coil and Eci and inversely portional to the frequency difference between the external
perturbation and the natural frequency of the mode. It is interesting to note that in
Eq. (4), the characteristics of the external coils enter only through ω and Eci. Eci depends
on the property of the plasma through Φi, and it depends on the configuration of the
external coils only through Φc. We may design to modify the excitation spectrum {αi}
through a judicious arrangement of the configuration of the external coil through Φc. We
note that the ideal plasma model has been found to be a good representation of the linear
plasma response for the tokamak over a wide range of plasma operating conditions [7].
Of course, the formula is not applicable to a naturally unstable mode, i.e if γi > 0. Also
when the excitation frequency ω coincides with the eigenfrequecy of the plasma ωi = iγi,
additional physics needs to be included to resolve the singularity [8, 9].

B Response of a Resistive Plasma to External Magnetic Perturbations

With the inclusion of a small resistivity, it is well known that the crucial changes occur at
the pitch resonant surfaces in the plasma. At these locations, the ideal MHD constraint of
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“frozen in flux” breaks down. The plasma dynamics has to be supplanted by the relaxed
constraint of flux reconnection. The essence of this change can be formulated in terms
of the generalized energy functional for a force free resistive plasma δWpt [10]. With the
substitution of the tearing mode energy functional δWpt for the δWp, the plasma dynamics
can still be cast in the same formalism of δWg given in Sec. 2A. δWpt is a self-adjoint

gauge invariant variational expression with respect to the vector potential ~A. It reduces
to that of δWp when the ideal MHD constraint of ~A = ~ξ× ~B is imposed. δWpt is given by

δWpt( ~A
+, ~A) =

∫
dV [(~∇× ~A+) · (~∇× ~A)− σ ~A+ · ~∇× ~A− s ~B · ~A+] . (5)

Here ~∇ × ~A = ~b is the perturbed magnetic field; ~J = σ ~B is the equilibrium current
(parallel to the magnetic field). The coefficient of perturbed parallel current s is given by

( ~B · ~∇)s = −~∇σ · ~∇× ~A. with the solution (in Hamada cooridates V,θ,ζ)

s = −P ( ~B · ~∇)−1~∇σ · ~∇× ~A− δnmδ(V − Vn,m)( ~B · ~A)n,mexp(inζ + imθ) . (6)

In Eq. (6), P stands for the principal part; Vn,m the volume enclosed by the pitch resonant
(singular) flux surface where nq = m, with n being the toroidal mode number and m the
poloidal mode number of the perturbation; and δn,m is a given constant proportional to
the reconnected flux at the singular flux surface.

For tokamaks, σ is of the order of 1/(qR). Therefore, in Eq. (5) σ ~A+ · ~∇× ~A is of the

order of r/(qR) relative to the stabilizing perturbed magnetic energy ~∇ × ~A+ · ~∇ × ~A.
If nq = m is never satisfied, then the term proportion to s can be transformed away by
choosing a gauge (such as the ideal MHD gauge) for the vector potential ~A. In this case,
the perturbed potential energy will be dominated by the term of perturbed magnetic
energy. Therefore, we obtain the important conclusion that if the external perturbations
do not have resonant surfaces in the plasma, the plasma response can be approximated
very well by the vacuum response. Also, because the energy of the perturbed magnetic
field (even in the plasma region) is always positive, whereas the sign of the σ term is
indefinite, the plasma when responding to the external perturbations, will always choose
to produce a slightly larger or a paramagnetic reponse than the vacuum response.

However, when the plasma has surfaces that can resonate with the external perturba-
tions, the situation is totally changed. The behavior of the solution actually are separated
by the singular surface. Inside and far away from the singular surface, the behavior starts
out to be similar to the case of non-resonance and due to the first term on the RHS of
Eq. (6), can grow to a very large amplitude. When getting very close to the resonance,
the second term of Eq. (6) acts as a constraint on the solution, i.e. it provides a stabi-
lization energy to the solution. The perturbed response is suppressed. In the special case
of an ideal plasma, the suppression is complete. We will obtain a smaller or diamagnetic
response than that of the vacuum.

The above discussion on the effect of resistivity was for a force free plasma, mainly
because the form of the perturbed potential energy can be expressed in an explicitly
tractable form as given in Eq, (5). For plasma with finite pressure gradients, the distribu-
tion of equilibrium current in the plasma changes from more concentrated on the inboard
side of the torus to the outboard side. This will significantly affect the marginal stability
of the plasma, i.e. the most unstable mode will change from a kink mode with the largest
perturbed amplitude on the inboard side of the torus to a kink-ballooning mode with
its perturbed amplitude protruding out on the outboard side. The constrained solution
given by Eq. (6) becomes more complicated [11]. Yet, the general discussion of the plasma



5 THS/P5-04

response relative to that of the vacuum response remains valid. In other words, we still
expect the plasma response to be slightly amplified (paramagnetic) from the vacuum re-
sponse when there are no resonances in the plasma. Whereas the response is suppressed
(diamagnetic) at the singular surfaces when the plasma has a resonance. The suppression
is incomplete where plasma resistivity has to be taken into account [10, 11].

C Effect of Rotation and Resistivity —Solution Using MARS-F

Because equilibrium rotation Ω is small, the effect of rotation on the linear plasma response
is small when there are no resonances. When there is a resonance, it affects the behavior
of the tearing mode and thus the amount of flux reconnection given by δnm in the previous
Sec. 2.B. The analytic behavior of this dependence has been expounded by many authors,
see for instance Fitzpatrick [12] for tearing island in cylindric geometry and Smolyakov [13]
and Hegna [14] in toroidal geometry. These studies assumed that the coupling of the
tearing mode with the rest of the plasma can be cast in terms of simple parameters,
such as ∆′, the free energy available to drive the tearing mode. In our study, we need
to obtain results based on self-consistent values of these parameters and not treat them
as unknown. It can only be achieved by detailed modeling through computer simulation
using the resistive MHD equations. The MARS-F code[4] solves the following set of
resistive MHD equations for the plasma with a sub-sonic toroidal rotation Ω [15].

ρ(γ̃ + inΩ)~v = −~∇p+~j × ~B + ~J ×~b− ~∇ · ~π − ρ~u(~v)

(γ̃ + inΩ)~b = ~∇× (~v × ~B − η~j) + (~b · ~∇Ω)R2~∇φ
~j = ~∇×~b

(γ̃ + inΩ)p = −(~v · ~∇)p− ΓP ~∇ · ~v . (7)

In Eq. (7), (upper, lower) case symbols are used for the (equilibrium, perturbed) quan-

tities; (~v,~b,~j, p) is the perturbed (velocity, magnetic field, current, pressure). We also
used ∂

∂t
= γ̃ = γ − iω, and ∂

∂φ
= in. The viscous stress tensor term ~π results from fluid

approximations to the ion Landau damping and the ρ~u(~v) is the Coriolis force term.
In the vacuum region external to the plasma, the perturbed magnetic field satisfies

~∇ ·~b = 0 and , ~j = ~∇×~b/µ0 with µ0 normalized to 1. ~j is given by the external current
source at the location of the external coil and 0 everywhere else.

3. Simulation Results at Zero Frequency

A Verification of MARS-F with SURFMN

One of the most important results from previous studies on the plasma response to external
perturbation during the ELM stabilization experiment was obtained by the SURFMN
code [2]. SURFMN computes B field from real 3D coil geometry by integrating the Biot-
Savart formula for the currents and its helical Fourier harmonics. Due to its simplicity and
versatitily in modeling the coil structure, SURFMN was extremely useful in correlating
a number of experimental observations. From the discussion in Sec. 2B, we see that it is
also a good approximation for the non-resonant response. Over the whole cross-section
of the plasma, the results from SURFMN can be represented by Fig. 1.

Figure 1(a) is the contour plot of bm3 for the perturbed magnetic field. The horizontal
axis is the poloidal mode number m. Negative m are left- and positive m are right-
handed helical harmonics. Figure 1(b) shows the calculated magnetic island widths. For
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FIG. 1. (a) Contour plot of bm3 for the perturbed magnetic field in a DIII-D ELM suppression
experiment. The horizontal axis is the poloidal mode number m. Negative m are left- and
positive m are right-handed helical harmonics. (b) Calculated magnetic island widths. Note
that the outermost 12% of the plasma satisfies the island overlap criterion and the field becomes
stochastic.

any resonant plasma surface, the width of the magnetic island in poloidal flux is computed
using the formulae

wmnψ =

√
16
q

q′
ψ̃mn ; ψ̃mn =

Sbmn⊥
2mπ2

; bmn⊥ =
2
∫
b⊥exp(i(mθpest − nφ))da∫

da
(8)

In Eq. (8), da is the surface area element of the flux surface; S the surface area. ψ̃mn

is the usual perturbed flux. It is noted that the outer most 12% in poloidal flux of the
plasma satisfies the island overlap criterion and field lines become stochastic.

Because many experimental phenomea have already been compared against results
from SURFMN, the first step of our study was to verify that results from MARS-F,
neglecting the effect of plasma, agrees with that from SURFMN.

We proceed by formulating the vacuum response problem independently by using an
analytic method and test it against the the two numerical codes. Results from MARS-F
and SURFMN are found to give excellent agreement with the analytic method. This
validated results from both codes.

B MARS-F Results with the Inclusion of Resistivity and Rotation

Next the same plasma analyzed in Sec. 3A is tested for various resistivity and flow profiles
(including the profiles in the experiment) and external coil configurations. The results
are shown in Fig. 2, where we compare the amplitudes of the resonant and non-resonant
harmonics of the perturbed normal magnetic field bn for various levels of plasma resis-
tivity (with magnetic Reynolds number ranging between S = 106 to 108) and also with
cases of an ideal plasma (blue) and with vacuum (red). The non-resonant harmonics of
m = 10 and m = 12 are shown in Fig. 2(a); and the resonant harmonics of m = −10
and m = −12 are shown in Fig. 2(b). We note that overall, the resistive plasma response
is very similar to an ideal plasma and deviates from the vacuum. For the non-resonant
components, the ideal response is slightly larger (paramagnetic) than the vacuum solution
and almost independent of resistivity. Whereas for the resonant components, the response
is suppressed at the resonant surfaces, with complete suppression (or shielding) for the
ideal plasma. With added plasma resistivity, the shielding becomes imperfect. But with
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FIG. 2. Comparison of the amplitude
of the resonant harmonic components of
the pertubed normal magnetic field for a
DIII-D plasma with an n = 3 perturba-
tion field for a range of the resistivity with
that of an ideal plasma (blue) and vacuum
(red). It is seen that the plasma response
behaves more like an ideal plasma and de-
viates quite subatantially from a vacuum.
In (a) are the resonant harmonics and in
(b) the non-resonant harmonics.

experimentally measured rotation profile and
with a wide range of plasma resistivity, the
shielding remains substantial. The presented
physical picture is very similar to the conclu-
sion by Izzo and Joseph [16]. These results also
agree with the qualitative analysis presented in
the previous section. In comparison to the vac-
uum response, the size of magnetic island, which
is proportional to

√
bn at the resonant surfaces

is much reduced and would not expect to lead to
field line stochasticity, except at the last 2% of
the flux surfaces.

Similar results were found for different
plasma shapes with various plasma elongations
and triangularities. We thus conclude that with
the level of rotation observed in DIII-D, we
would not expect the edge to be stochastic.

C Application to Error Correction
in ITER

Complete axisymmetry is an idealization. There
will be inherent non-axisymmetry from the
non-perfect alignment of the equilibrium pro-
ducing and maintenance coils. These non-
perfections have to be minimized to en-
sure successful operation of the experiments.
In ITER, correction coils have been de-
signed for error field correction. The cor-
rection coils should produce external mag-
netic fields with an effect on the plasma

FIG. 3. (a) n = 1 perturbed magnetic field on the plasma surface for a low β ITER plasma.
Here, the external magnetic field is produced by the side correction coil. (b) n = 1 perturbed
displacement on the plasma surface. Correction coils are represeted by the external blue lines.

opposite to that of the intrinsic error field. Therefore, by studying the effect of the per-
turbations on the plasma by these correction coils, we will be able to know the kind of
intrinsic error fields that can be corrected by them. Shown in Fig. 3 is, on the left, the
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perturbed normal magnetic field on the plasma surface produced by the side-correction
coils on a low β plasma in ITER. On the right, the corresponding induced plasma dis-
placement. It is interesting to note that although the magnetic perturbations from the
external fields are achiral, the plasma displacements do have a net helicity content.

4. Plasma Response at Higher Frequencies
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FIG. 4. Q = δK
P where δK is the total kinetic

energy of the plasma and P is the Poynting
flux from the excitation coils for the plasma vs
excitation frequency for current arrangement
in the I-coils in DIII-D. Qs for up-down sym-
metric currents and Qa for up-down asymmet-
ric currents.

At higher frequencies, the plasma response
is relevant for the study of various plasma
eigenmodes such as the TAE, RSAE etc.
We applied the MARS-F code to study the
plasma response as a function of freqeuncy
ω. We found that at a certain set of frequen-
cies {ωi}, the plasma will respsond with very
large amplitude, measured for instance by a
large kinetic energy δK. As mentioned in
Sec. 2A, we need to introduce artificial damp-
ing to resolve these singularities. We follow
the work in Ref. [8] by introducing a com-
plex frequneny into the driving frequency,
these response peaks become broadened and
resolved. The width of these response peaks
can be related to the continnum damping [8].
They can also be obtained by using the
method of adding plasma resistivity [9]. We
used two different configurations for the external coils in this study. The ratio of the
kinetic energy response from the plasma to the energy input from the external coils is
plotted as a function of frequency in Fig. 4. It is seen that the set of frequencies {ωi}
at which the plasma responds with large kinetic energy δK is independent of the excita-
tion geometry of the external coils, but the amplitude could be very different. This is in
agreement with the results presented in Sec. 2A.

Work Supported in part by US DOE under DE-FG02-95ER54309 DE-FG02-
89ER53297 and by the ITER Organization uner Task Agreement C19TD31FU.

References

[1] EVANS, T.E., et al., Nucl. Fusion 45 (2005) 595
[2] SCHAFFER, M.J., et al., Nucl. Fusion 48 (2008) 024004
[3] JOSEPH, I., et al., , J. Nucl. Mater. 363-365 (2007) 591
[4] LIU, Y.Q., et al., Phys. Plasmas 7 (2000) 3681
[5] CHU, M.S. and OKABAYASHI, M., Plasma Phys. Control. Fusion, accepted(2010)
[6] CHU. M.S., et al., Nucl. Fusion 43 (2003) 441
[7] LANCTOT, M.J., et al., Phys. Plasmas 17 (2010) 030701
[8] VILLARD, L., et al., Compter Phys. Reports 4 (1986) 95
[9] KERNER, W., et al., J. Comp. Phys. 142 (1998) 271

[10] CHU, M.S., et al., Phys. Fluids B1 (1989) 62
[11] CHU, M.S., et al., Phys. Fluids B5 (1993) 1593
[12] FITZPATRICK, R. and HENDER, T.C., Phys. Fluids B3 (1991) 644
[13] SMOLYAKOV, A.I., Plasma Phys. Control. Fusion 35 (1993) 657
[14] HEGNA, C.C., Phys. Plasmas 6 (1999) 3980
[15] CHU, M.S., et al., Phys. Plasmas 2 (1995) 2236
[16] IZZO, V. and JOSEPH, I., Nucl. Fusion 48 (2008) 11504


