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Abstract. The dissipation mechanism of collisionless reconnection is analyzed, and the effects of anisotropy
pressure gradient and guide field gradient on tearing mode are also analyzed in electron magnetohydrodynamics.
It is found that either pressure-based dissipation or inertia-based dissipation dominates, has a great relation with
the relative scaling orders between the electron thermal Larmor radius and electron inertia skin depth. The effects
of pressure gradient also depend on the relative magnitude between parallel and perpendicular equilibrium pres-
sure gradients. When the pressure-based dissipation is dominant, the condition that pressure drives or suppresses
tearing mode instability also depends on the relative magnitude between parallel and perpendicular equilibrium
pressure gradients. It is also shown that the guide field gradient has a significant influence on tearing mode. When
the guide field gradient is smaller than the magnetic field shear at the magnetic null plane, the growth rate of
tearing mode instability is enhanced by the guide field gradient and has no oscillatory component. When the
guide field gradient is larger than the magnetic field shear, the guide field gradient can destabilize tearing mode
instability dramatically. In this case, the growth rate is proportional to the guide field gradient.

Magnetic reconnection is one of the universal plasma phenomena in space and laboratory plas-
mas. It is a fundamental transport mechanism, and can support large scale transport by local-
ized diffusive effects. Since the Sweet-Parker model [1, 2] and resistive tearing mode theory [3]
were established in 1960s, there have been lots of work devoted to investigating reconnection.
In collisional plasmas, resistivity is the only diffusive effect, which supports resistive magnetic
reconnection. However, in space and high temperature plasmas, reconnection is always col-
lisionless, so that other terms except resistivity term in generalized Ohm’s Law [4], such as
electron inertia and pressure tensor terms, become important.

Recently, the electron magnetohydrodynamics (EMHD) theory was developed to study fast col-
lisionless reconnection conveniently [5, 6, 7, 8, 9, 10, 11], which describes plasma phenomena
with a characteristic frequency in the whistler frequency regime and with spatial scale shorter
than the ion skin depth scale. In this model, the ions can be assumed as an immobile neu-
tralizing background, and the fluid dynamics is completely determined by electrons in EMHD
frame. EMHD theory has been applied in many regimes, such as magnetic vortices [12, 13]
and EMHD turbulence [14, 15]. In particular, EMHD theory has been employed to analyze
reconnection [6, 7, 8, 9, 10, 11]. Recently, a series of experiments [16, 17] was carried out to
investigate this phenomena in the parameter regime of EMHD.

It is known that electron inertia term and electron pressure tensor term both can break the
frozen-flux constraint and cause reconnection. It has been shown that either electron inertia or
pressure anisotropy can support collisionless reconnection electric field and cause fast recon-
nection [18, 19, 20]. So which is the dominant mechanism in collisionless reconnection? A
series of papers was devoted to investigate the effects of electron inertia and pressure anisotropy
[21, 22, 23, 24, 25]. It was shown that reconnection electric field is determined primarily by
nongyrotropic pressure effects and less by electron inertia without guide field. Without mag-
netic guide field, the nongyrotropic pressure tensor is generated by the bounce motion of elec-
trons in the reversal field region. But a large guide magnetic field will magnetized electrons and
tends to generate gyrotropic distribution. Hesse et. al. [24] pointed out collisionless magnetic
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reconnection was still primarily provided by electron pressure nongyrotropy when electron mo-
tion is strongly affected by guide field. But Pritchett et. al. [23] showed that inertia-pressure
dissipation is dominant. Hence, it still leaves a question whether the pressure-based dissipation
or inertia-pressure dissipation is dominant if guide magnetic field is large?

In EMHD frame, guide field gradient also can generate electron shear flow. It is known that
shear flow plays an important role at tearing mode in MHD frame. In EMHD frame, all current
is carried by the motion of electron. In MHD, the direct connection between electron velocity
and current density does not exist. Thus, the electron shear flow is generated by guide field
gradient, meaning that the equilibrium transverse current density exists. Hence, it can be pre-
supposed that guide field gradient will enhance tearing mode instability in EMHD frame, since
tearing mode is driven by current density. Recently, the effect of electron velocity gradient in
EMHD frame was investigated by simulation [26]. It was shown that both the tearing and the
bending branches were driven by the electron velocity gradient in EMHD model.

In this article, following our two articles [9, 10](one can refer the detail), we will review the
effects of electron pressure anisotropy and guide field gradient on tearing modes in EMHD.

1. BASIC EMHD EQUATIONS.

A set of EMHD equations [5, 6] is
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where me and ve are the electron mass and velocities, respectively, ne is the electron density, J
is the current density, and E, B are the electric and magnetic fields, respectively. ∇ ·Pe is the
divergence of the electron pressure tensor. By deriving the Vlasov equation, the evolution of
pressure tensor Pe in the center-of-mass system of the electron fluid can be obtained [24, 27]
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, (4)

where the electron heat flux tensor is neglected. The subscript T denotes the transpose matrix.
Next, we study tearing mode in a two dimensional slab configuration with homogenous density,
where the plasma parameters are independent of the coordinate z, and the dominant magnetic
field is along ez. Consequently, the form of magnetic field can be written as B = ∇ψ × ez +
Bz ez, Bz0 À By0 and the homogeneous density are assumed. Thus, based on Eqs.(1)-(4), we
will analyze the dissipation mechanism of collisionless reconnection and the effects of guide
field gradient on tearing modes, respectively.

2. The dissipation mechanism of collisionless reconnection
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In this section, we will analyze the dissipation mechanism of collisionless reconnection. It is
assumed that the diagonal elements of the pressure tensor are much larger than the non-diagonal
components, namely Peii0 À Peij0 (i 6= j), which means that the electron distributions are
nearly gyrotropic. Due to the profile of equilibrium magnetic field, Peyy0 ' Pexx0 = P⊥0,
Pezz0 = P‖0, Pexy0 = Peyx0 = Pexz0 = Pezx0 = 0 and Peyz0 6= 0 can be assumed. Here, the
parallel and perpendicular equilibrium pressures are anisotropic due to the dominant parallel
magnetic field. The growth rate γ ¿ ωce is also assumed, which is reasonable in EMHD frame,
where ωce = eBz0/(me c) is the electron gyrofrequency. Thus, by assuming two dimensional
perturbations of the type f̃ = f1 exp (i k y + γ t), the evolution of perturbative pressure tensor
Pe1 can be derived. Hence, based on Eqs.(1)-(4), one can obtain
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where the variables have been normalized as: γ → τ−1
w γ, x → Lx and ρ = vthe/ωce is the

thermal electron Larmor radius, τw = L2/(ωce d2
e) is the characteristic time of whistler wave,

vthe = [P0/(nme)]
1/2 is the electron thermal velocity and P0 = nT0 is the reference value

of pressure. One can see that there are two scales: electron inertia skin depth de and thermal
electron Larmor radius ρ, which depends on the magnitudes of guide field and electron thermal
velocity. The dissipation mechanism of reconnection strongly depends on the relative magni-
tude between these two scales. In the inner region, the familiar “constant-ψ” approximation
can be applied for EMHD tearing mode [6], which implies the scaling order d2

e ∼ O(δ), where
δ is the singular layer width. Then by a series of derivations, the linear dispersion relation can
be gotten as
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[
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where g⊥0 = P−1
0 (dP⊥0/dx)x=0, g‖0 = P−1

0 (dP‖0/dx)x=0, γ̂ = γ/γ0 and ρ̂2 = ρ2/(γ0 d2
e).

γ0 is the growth rate without pressure gradient. g‖0 and g⊥0 represent the effects of parallel
pressure gradient and perpendicular pressure gradient, respectively. Due to fractional power
appearing in the dispersion relation (7), there are four branches and the mode structure be-
comes complex, so that the physical branch must be picked up by analyzing the property of
eigenfunctions. WKB analysis indicates that Y (x) ∼ exp(−x2/(2 δ2)) for |x| > |δ|. Thus, the
reasonable roots of the dispersion relation (7) must satisfy the condition Re(δ2) > 0, in order
that the corresponding eigenfunction can satisfy the boundary condition. Next, based on this
principle, the roots of Eq.(7) will be picked up.

When ρ̂2 g⊥0 ¿ γ̂, namely the electron thermal Larmor radius is much smaller than the
electron inertia skin depth, the electron inertia effect is dominant. Consequently, the recon-
nection electric field is sustained by electron inertia effect. By making Taylor expansion
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γ̂ = γ̂0 + γ̂1 + γ̂2 + . . ., one has
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From the expression of γ̂2, if the condition g‖0/g⊥0 < (2
√

3 − 3)/3 is satisfied, γ̂2 < 0,
namely the pressure gradient reduces the growth rate in this case. Here, we only consider the
parallel and perpendicular pressure gradients have the same direction. While the condition is
not satisfied, the pressure gradient enhances the growth rate. It can be explained roughly as
follows: the second term of the right hand of Eq.(5) decreases reconnection electric field when
g‖0 < g⊥0; while the other terms of the right hand enhance reconnection electric field. Thus, if
the value of g‖0/g⊥0 is small enough, namely g‖0/g⊥0 < (2

√
3− 3)/3, the second term can be

dominant, so that the pressure gradient would play a stable role in magnetic reconnection.

When the electron thermal Larmor radius becomes large, the variable γ̂d = γ̂−i k ρ̂2 g⊥0 (g‖0/g⊥0−
1) is introduced. Then Eq.(7) becomes
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When k ρ̂2 g‖0 À |γ̂d| and k ρ̂2 g⊥0|(g‖0/g⊥0 − 1)| À |γ̂d|, meaning that electron thermal
Larmor radius is much larger than the electron inertia skin depth, the pressure gradient effect
dominates over electron inertia effect. Thus, pressure gradient sustains the reconnection electric
field, and the pressure-based dissipation is dominant. Hence, by making Taylor expansion, one
can obtain
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where only the physical branch is retained and the root satisfies the condition Re(δ2) > 0. It
can be seen that the pressure gradient effects are completely different in the cases of g‖0 > g⊥0

and g‖0 < g⊥0. If g‖0 > g⊥0, the unstable mode is driven by pressure gradient. If g‖0 < g⊥0,
tearing mode is suppressed completely. It can be known that the pressure tensor is the primary
dissipative effect when the pressure gradient dominates over electron inertia. Then the behavior
of tearing mode depends on the relative magnitude between the parallel and perpendicular
pressure gradients. Actually, it depends on the competition of the three terms of the right hand
of Eq.(5). As mentioned above, the effect of the second term of the right hand of Eq.(5) plays
a stable role if g‖0 < g⊥0. Hence, this term can be dominant when the electron thermal larmor
radius is large enough, so that the tearing mode is suppressed. Next, one can see the effect of
pressure gradient more explicitly in one special and simple case g⊥0 = g‖0.

When g⊥0 = g‖0, meaning that the parallel and perpendicular pressure gradients are identical,
Eq.(7) can be reduced to

γ̂
(
γ̂ + i k ρ̂2 g⊥0

)−1/2
= 1, (11)

so that the growth rate can be obtain
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1 +

√
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2
. (12)
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Fig. 1. : The growth rate Re(γ̂) against the pressure gradient
k ρ̂2 g⊥0 with different values of g‖0/g⊥0. The solid and dashed
curves are plotted for g‖0/g⊥0 = 1 and g‖0/g⊥0 = 4, respec-
tively. The dash dotted and dash dot dotted curves are plotted for
g‖0/g⊥0 = 0.5 and g‖0/g⊥0 = (2

√
3− 3)/3, respectively.

When k ρ̂2 g⊥0 ¿ 1, γ̂ ' 1+ i ρ̂2 g⊥0 +
ρ̂4 g2

⊥0, which is consistent with Eq.(8).
When k ρ̂2 g⊥0 À 1, namely the
pressure gradient is dominant, γ̂ '
exp (i π/4) (k ρ̂2 g⊥0)

1/2, which satis-
fies Re(δ2) > 0. It can be distinctly
seen that the unstable mode is driven
by pressure gradient. The above ana-
lytical results also can be justified in
Fig.1. The curve with g‖0 = g⊥0 is
a separatrix. When g‖0 ≥ g⊥0 (above
and including the separatrix), the pres-
sure gradient drives reconnection by
supporting the reconnection electric
field if it dominates over electron iner-
tia. When [(2

√
3 − 3)/3] g⊥0 < g‖0 <

g⊥0 (below the separatrix), the growth
rate of tearing mode is enhanced if
k ρ̂2 g⊥0 is small, while the growth rate
decreases if k ρ̂2 g⊥0 exceeds a definite
value. The tearing mode will even be
suppressed if k ρ̂2 g⊥0 is large. When
g‖0 < [(2

√
3 − 3)/3] g⊥0, the growth

rate is reduced by pressure gradient, and can be reduced to zero as the pressure gradient in-
creases. Hence, it can be known that the pressure gradient effects have great relations with
the value of g‖0/g⊥0, namely the relative magnitude between the parallel and perpendicular
pressure gradients.

3. The effects of guide field gradient on tearing modes

In this section, the effects of guide field gradient on tearing modes will be analyzed. Here, the
pressure anisotropy is neglected, namely pe = pe(ne) is assumed to be an appropriate closure
relation for the electron pressure. The guide field Bz0 = Bz0(x) is assumed. Thus, by assuming
two dimensional perturbations of the type f̃ = f1 exp (i k y + γ t), Eq.(1)-(3) can be derived
as
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where the parameters have been normalized: x → Lx,t → τwt, where τw = L2/(α B0) is the
characteristic time of whistler mode and L is the characteristic scale length of the equilibrium.
Now, Eqs.(13) and (14) compose a set of basic equations for reconnection instability, including
the gradient of guiding field.

Following the standard singular perturbation technique for resistive instabilities, the boundary-
layer theory will be used, and the external and inner regions are separated. In the external



6 THS/P5-03

region, the terms with respect to the small parameters γ and d2
e can be neglected. Then the

external equation is the same as the case without guide field gradient dBz0/dx. Hence, the
matching condition between the solutions in external and inner regions does not change, namely
the guide field gradient does not influence the solution in external region. In inner region,
∂/∂x À k, and the small parameters γ and d2

e become important. For tearing mode in the
electron magnetohydrodynamics (EMHD tearing mode) [6], the scaling order d2

e ∼ O(δ) is
assumed, where δ is the singular layer width. Here, the wave number k ∼ O(δ0) is taken.
Consequently, the familiar ’constant-ψ’ approximation is still valid. If dBz0/dx ∼ const, it
can be easily justified that guide field gradient only contributes Doppler shift to EMHD tearing
mode, which was investigated in Ref. [26]. Then dBz0/dx ∼ R x can be expanded near the
singular layer in the inner region. Making a transform

Bz1 − R

µ0

ψ1(0) =
i

4 k µ0 δ
ψ

(0)
1 Y (X),

One can derive
(

γ d2
e

2 k µ0 δ2
+ i

R
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d2
e

2 δ
X

)2
d2Y

dX2
= X

(
γ +

1

4
X Y

)
. (15)

where µ0 = d2ψ0(0)/dx2. Next, we will investigated the effects of guide field gradient in two
limits.

3.1. Small guide field gradient

In this section, the small guide field gradient R/µ0 ¿ γ/(k µ0 δ) will be discussed. Introducing
the small parameter λ = i(R/µ0) [d2

e/(2 δ)], Y (X) and γ can be expanded as

Y = γ0

∑
n=0

λn Yn, γ =
∑
n=0

λn γn,

where γ0 = 2 k µ0δ
2/d2

e. Accordingly, the instability criterion ∆′ also has an expansion in λ,
∆′ = ∆′

0 + λ ∆′
1 + λ2 ∆′

2 + · · · . As was shown in the external solution (??), the effects of
equilibrium guide field gradient can be neglected in the external region. Consequently, ∆′

n = 0
for n > 0. By some derivations (one can refer detail in Ref. [10]), the linear growth rate for
small guide field gradient can be obtained

γ = γ0 + λ2 γ2 = γ0

[
1 +

π

8

k µ0 d2
e

γ0

(
R

µ0

)2 ]
. (16)

where

γ0 = 2 k µ0 C−2
0 ∆′2 d2

e, (17)

C0 = 23/2π Γ(3/4)/Γ(1/4). γ1 = 0 is also obtained. It can be easily seen that the linear growth
rate is enhanced by guide field gradient in the small λ approximation, and has no oscillatory
component due to the reasonable neglect of d3ψ0/dx3. These results are independent of the
gradient direction of guiding magnetic field.

3.2. Large guide field gradient
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In this section, the large guide field gradient will be considered. For simplicity, the variables
σ = γ d2

e/(2 k µ0 δ2), λ = i R d2
e/(2 µ0 δ) are introduced. Then Eq.(15) can be rewritten as

(σ + λX)2 d2Y

dX2
= X

(
γ +

1

4
X Y

)
. (18)

The case of large |λ| indicates that the instability growth rate scales with a significant guide
field gradient when ∆′ > 0. As |λ| is large, the following new scaled variables are introduced:
X = λ ξ, γ = λ γ̂, then Eq.(18) becomes

(
σλ−1 + ξ

)2 d2Y

dξ2
= ξ

(
γ̂ +

1

4
ξ Y

)
. (19)

As |ξ| → ∞, the asymptotic behavior of Y is described by the following equation,

ξ
d2Y

dξ2
− 1

4
ξ Y = γ̂. (20)

Then, by some derivation (one can refer detail in Ref. [10], the growth rate can be obtained
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e ∆′ R

µ0

=
1

8 π

C2
0 γ0

∆′
R
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, (21)

where γ0 is the growth rate of tearing mode without guide field gradient. It can be seen that the
linear growth rate γ ∝ γ0 R/µ0 in the large |λ|, which is consistent with the scaling orders in
Eq.(15). It can be seen that guide field gradient, namely electron shear flow, enhances tearing
mode instability effectively. This is different from shear flow at tearing mode for large flow
shear in MHD model. In MHD model, it was shown that tearing mode is stabilized when the
flow shear is larger than the magnetic field shear at the magnetic null plane [28]. In EMHD
frame, electron shear flow and the gradient of equilibrium current density exist simultaneously,
which can drive bending instability [26]. Consequently, it is reasonable that electron shear flow
can drive tearing mode instability which is also driven by current density.

4. conclusions

We have review the process of tearing modes in electron magnetohydrodynamics from our two
papers. The dissipation mechanisms of reconnection and the effects of pressure gradient on
tearing mode are analyzed. It is found that the conditions either pressure-based dissipation or
inertia-based dissipation dominates depend on the relative magnitude between electron thermal
Larmor radius and electron inertia skin depth. It also can be concluded that the dissipation
mechanisms have a great relation with the guide field, since electron thermal Larmor radius
depends on the magnitude of guide field. Moreover, the effects of pressure gradient depend on
the relative magnitude between parallel and perpendicular pressure gradient.

The effect of guide field gradient at tearing mode instability in EMHD frame has been analyzed
in small and large guide field gradient limits, respectively. In the small guide field gradient
limit, it was found that guide field gradient increases growth rate of tearing mode, and does
not arise an oscillating mode. In the large guide field gradient limit, tearing mode instability is
enhanced dramatically by guide field gradient. Since the guide field gradient and the gradient
of current density are equivalent in EMHD frame, and can drive bending instability which is
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similar to Kelvin-Helmholtz instability. In this case, the growth rate is proportional to guide
field gradient.
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