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Abstract. The control of transport barrier relaxation oscillations by resonant magnetic perturbations (RMPs)
is investigated with three-dimensional turbulence simulations of the tokamak edge. It is shown that single har-
monics RMPs (single magnetic island chains) stabilize barrier relaxations. In contrast to the control by multiple
harmonics RMPs, these perturbations always lead to a degradation of the energy confinement. The convective
energy flux associated with the non-axisymmetric plasma equilibrium in presence of magnetic islands is found to
play a key role in the erosion of the transport barrier that leads to the stabilization of the relaxations.

1. Introduction

Transport barriers in tokamak plasmas are key ingredients of improved confinement regimes.
These barriers are thin layers in which turbulent transportof heat and matter is reduced signifi-
cantly and a strong pressure gradient builds up. At the plasma edge, the barrier typically is not
stable but exhibits relaxation oscillations associated with intermittent high energy flux peaks.
These barrier relaxations are an essential characteristics of the so called edge localized modes
(ELMs) [1]. The control of such ELMs is a crucial issue for thenext generation of tokamak
experiments such as ITER. Experimental studies on a varietyof different tokamaks such as
DIII-D [2, 3], JET [4], and TEXTOR [5, 6] reveal that a qualitative control of ELMs can be
obtained by imposing resonant magnetic perturbations (RMPs) at the plasma edge. Such a per-
turbation has the same helicity as the magnetic field line on aparticular (resonant) magnetic
surface, and leads to a perturbation of this surface by the formation of magnetic islands [7].

The control of ELMs by RMPs is generally attributed to a reduction of the pressure gradient
by a radial energy flux associated with the strong collisional heat flux along perturbed field
lines [8]. In particular, it has been found that when increasing the perturbation amplitude,
ELMs control becomes efficient when field line stochasticityappears, induced by overlapping
magnetic islands [8]. However, the actual amplitude of the magnetic perturbation inside the
plasma is not precisely known yet, as the penetration of the perturbation depending on the
plasma response is a complex issue [9, 10]. It is therefore interesting to investigate, whether a
control of transport barrier relaxations can also be achieved with a single harmonic perturbation
only, i.e. one island chain localized at one resonant surface and therefore no island overlap and
no stochasticity. In the same framework, it is also important to study the possible mechanisms
that can lead to an increase of the radial energy flux in presence of a magnetic island, as well
as their relative importance.

In previous works, barrier relaxations have been studied bymeans of three-dimensional turbu-
lence simulations [11, 12] and the possible control of theserelaxations by externally induced
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Figure 1:Imposed rotation velocityU (top) and amplitudesψm of the different harmonics of the
prescribed poloidal magnetic flux perturbation (bottom), as a function of the normalized radial
coordinatex. Circles indicate the amplitudesψm on the corresponding resonant surfaces
q = m/n0.

resonant magnetic perturbations has been investigated [13, 14]. In this framework, it has also
been shown recently that a single harmonic resonant magnetic perturbation localized at the bar-
rier position can also lead to a stabilization of the relaxations [15]. However, in this geometry,
the confinement is always degraded.

As shown in these turbulence simulations, a key element for the stabilization of barrier relax-
ations is the convective energy flux associated with the non-axisymmetric plasma equilibrium
in presence of magnetic islands. In fact, when a magnetic island chain is externally imposed
inside the plasma, the modified equilibrium pressure and electric potential give rise to a con-
vective flux that plays an important role in the local erosionof the transport barrier and the
stabilization of its relaxations. The magnetic island chain can either result from a single har-
monic resonant perturbation [15] or from a multiple harmonic resonant perturbation leading to
a complex geometry with stochastic regions and residual islands [13, 14].

2. Turbulence model and transport barrier relaxations

2.1. Turbulence model

The three-dimensional turbulence model studied here consists of the normalized reduced MHD
equations for the plasma pressurep and the electric potentialφ [12],

∂t∇
2
⊥φ+

{

φ,∇2
⊥φ

}

= −∇2
‖φ−G p+ ν∇4

⊥φ+ µ∇2
⊥

(

φimp − φ̄
)

, (1)

∂tp+ {φ, p} = δcGφ+ χ‖∇
2
‖p+ χ⊥∇

2
⊥p+ S . (2)

In toroidal coordinates(r, θ, ϕ) and in a slab geometry(x, y, z) in the vicinity of a reference
surfacer = r0 at the plasma edge, i.e.x = (r − r0) /ξbal, y = r0θ/ξbal, z = R0ϕ/Ls, the
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Figure 2: Time evolutions of the convective fluxQconv at the barrier centerx = 0, q = 3
(left) and of the edge energy confinement timeτEedge (right) for different amplitudesψ0 of the
multiple harmonics magnetic perturbation (5). Here,Qtot = 10, ωEmax = 6, d = 11.7 =
0.15 (xmax − xmin).

normalized operators are

∇‖ = ∂z +

(

ζ

q0
− x

)

∂y − {ψRMP, · } with ζ =
Lsr0
R0ξbal

,

G = sin θ ∂x + cos θ ∂y , ∇2
⊥ = ∂2

x + ∂2
y , {φ, · } = ∂xφ∂y − ∂yφ∂x ,

whereψRMP represents the externally imposed perturbation of the poloidal magnetic flux (see
section 3). Here,q0 = q(r0) is the safety factor at the reference surface,R0 is the major
radius of the magnetic axis andLs is the shear length used as the scale length in the direction
parallel (‖) to the unperturbed magnetic field. The normalization length in the perpendicular
(⊥) direction is the resistive ballooning lengthξbal which for a collisional tokamak plasma
edge typically is of the order ofρs, the ion Larmor radius at electron temperature. Time is
normalized to the interchange timeτint which typically is one order of magnitude larger than
the characteristic inverse drift frequencyLp/cs, wherecs andLp are the sound speed and
the pressure gradient length, respectively. Note that the perpendicular ion viscosity (ν) and
heat conductivity (χ⊥) coefficients in (1) and (2) are normalized using the perpendicular scale
lengthξbal, whereas the parallel heat conductivity coefficientχ‖ is normalized with the parallel
scale lengthLs. In the present simulations, we useν = χ⊥ = 0.93 andχ‖ = 1, and the ratio of
χ‖/χ⊥ ∼ 1 of the normalized coefficients corresponds to a ratio of the dimensional coefficients
of L2

s/ξ
2
bal ∼ 107 − 108. Finally, δc = 5

3
2Lp/R0 is a curvature parameter set toδc = 0.01.

In the present model, resistive ballooning turbulence is driven by an energy sourceS located
close to the inner boundary of the main computational domain. The latter corresponds to the
volume delimited by the toroidal surfaces characterized byq = 2.5 andq = 3.5, respectively,
and including the reference surfaceq = q0 = 3. Here, a linear1/q profile is assumed, and
ξbal/r0 = 1/500, Ls/R0 = 1. The complete computational domain is slightly larger and
delimited byxmin < xq=2.5 andxmax > xq=3.5. The sourceS gives rise to a constant incoming
(from the plasma center into the main computational domain)energy flux,Qtot =

∫ xq=2.5

xmin

S dx.
The pressure profilēp(x, t) = 〈p〉y,z evolves self consistently according to the energy transport
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Figure 3: Pressure profiles for different amplitudesψ0 of the multiple harmonics magnetic
perturbation (5) (left) and the single harmonic magnetic perturbation (8) (right).

equation [the toroidal and poloidal average〈·〉yz of (2)],

∂tp̄ = −∂x (Qconv +Qcoll +QδB) + S , (3)

with Qconv = 〈p ∂yφ〉y,z
, Qcoll = −χ⊥∂xp̄, QδB = −χ‖

〈

∂yψRMP∇‖p
〉

y,z
. In a statistically

stationary state, averaging (3) in time and integrating in the radial direction leads to the energy
flux balance

Qconv(x) +Qcoll(x) +QδB(x) = Qtot for x ≥ xq=2.5 . (4)

2.2 Transport barrier relaxations

When a poloidalE×B flow Uey = dxφimpey with radially localized velocity shear is imposed
via an artificial friction term in (1) (with friction coefficientµ, andφ̄ = 〈φ〉y,z), the turbulent
radial energy fluxQconv is reduced in the velocity shear region. According to the fluxbalance
(4), when no magnetic perturbation is present (ψRMP = 0 ⇒ QδB = 0), the pressure gradient
steepens in the shear layer, i.e. a transport barrier forms [16]. Figure 1 (top) shows the profile
of the rotation velocityU = ωEd tanh (x/d) used in the present simulations. The shear is
maximalmax (dxU) = ωE at the reference surfaceq = 3 leading to a transport barrier at that
position. The parameterd characterizes the width of the velocity shear layer. Typically, such
barrier is not stable but exhibits relaxation oscillations[11, 12]. Time traces of the convective
flux Qconv at the barrier center and the edge energy confinement time

τEedge =

∫ xq=3.5

xq=2.5

p̄ dx

Qtot

are shown in Figure 2 (left, top) and (right), respectively.Quasi-periodic relaxations of the
transport barrier are characterized by drops in the energy confinement time associated with
strong flux peaks.

3. Effect of resonant magnetic perturbations on barrier dynamics

3.1. Multiple harmonics perturbation



5 THS/P5-02

−20 0 20

0

2

4

6

8

x

Q
co

nv
tu

rb

(c)

−20 0 20

0

2

4

6

8

x

Q
co

nv
eq

(d)

0

2

4

6

8

Q
δB

(b) ψ
0
=0 

ψ
0
=13

0

2

4

6

8

Q
co

ll

(a)

Figure 4: Radial profiles of the different contributions to the energyflux balance (4), with
and without the multiple harmonics magnetic perturbation (5). According to (6) and (7), the
convective flux is decomposed into two parts, one associatedwith the equilibrium and one
associated with fluctuations. Parameters are the same as in Figure 2.

In the electrostatic model (1), (2), we now impose a static resonant magnetic perturbation
described by the normalized poloidal magnetic flux

ψmultiple
RMP = ψ0

∑

m

(−1)mψm(x) cos (mθ − n0ϕ) (5)

with ψm(x) = C
sin

[

(m−m0)
∆θc

2β1

]

m (m−m0)π
exp

[

m

β1rc

(r0 + ξbalx− rc)

]

.

Here,(m0, n0) = (12, 4), ∆θc = 2π/5, β1 = 0.6, andrc/ξbal = 590 are parameters typical
for the DED device in the TEXTOR tokamak [17, 18] and the constantC is chosen such that
ψm0

(x = 0) = 1. The radial profiles of the amplitudesψm(x) are shown in Figure 1 (bottom)
for the five harmonics that are resonant in the main computational domain. Note that the am-
plitude of each harmonicm is increasing with radius but that the sizes of the magnetic islands
induced by each harmonicm is determined by its amplitude at the corresponding resonant
surfaceq(x) = m/n0 (these amplitudes are indicated by circles in Figure 1).

For sufficiently high amplitudes (ψ0 ≥ 6.5), the perturbation (5) leads to a stabilization of
the barrier relaxations [Figure 2 (left, middle and bottom)]. Except for very high perturbation
amplitudes (ψ0 ≥ 19), the control of barrier relaxations is accompanied by onlya slight degra-
dation of the energy confinement time [Figure 2 (right)]. This behavior can be attributed to an
erosion of the transport barrier and a steepening of the pressure gradient next to the barrier (on
the outward side) [13, 14], as can be seen from Figures 3(left) and 4a.

Although the radial energy fluxQδB, i.e. the radial component of the collisional parallel heat
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Figure 5:Time evolutions of the convective fluxQconv at the barrier centerx = 0, q = 3 (left)
and of the edge energy confinement timeτEedge (right) for different amplitudesψ0 of the single
harmonic magnetic perturbation (8). Parameters are the same as in Figure 2.

flux on perturbed magnetic surfaces, is increasing with the perturbation amplitudeψ0 (Figure
4b), the erosion of the transport barrier is mainly caused bythe convective flux

Qeq
conv = 〈peq∂yφ

eq〉
y,z

(6)

associated with the non-axisymmetric plasma equilibrium in the presence of the magnetic
perturbation. Here

peq(x, y, z) = 〈p〉t , φeq(x, y, z) = 〈φ〉t ,

where〈·〉t is the time average in a statistically stationary state [19]. The convective energy flux
associated with fluctuations,

Qturb
conv = Qconv −Qeq

conv , (7)

is decreasing with the perturbation amplitudeψ0 (Figure 4c), but the convective flux associated
with the equilibriumQeq

conv is strongly increasing, especially in the barrier center (Figure 4d),
where residual islands are present even for high perturbation amplitudesψ0 (when field line
stochastisation occurs between the barrier and the outer plasma edge) [13, 14].

3.2. Single harmonic perturbation

As the stabilization of barrier relaxations is mainly due toan erosion of the barrier associated
with a magnetic island chain localized at the barrier position, we expect a similar effect when
restricting the perturbation (5) to the single harmonic that is resonant atq = 3,

ψsingle
RMP = ψ0ψm0

(x) cos (m0θ − n0ϕ) with ψm0
(x) = exp

(

m0ξbal

β1rc

x

)

(8)

This magnetic perturbation is indeed stabilizing the barrier relaxations [Figure 5 (left, middle
and bottom)], however, even for relatively low perturbation amplitudesψ0, this stabilization is
accompanied by a significant reduction of the edge energy confinement time [Figure 5 (right)].
In fact, as shown in Figures 3(right) and 6a, the erosion at the barrier center is similar com-
pared to the one observed with the multiple harmonics perturbation, but the single harmonic
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Figure 6:Radial profiles of the different contributions to the energyflux balance (4), with and
without the single harmonics magnetic perturbation (8). According to (6) and (7), the convec-
tive flux is decomposed into two parts, one associated with the equilibrium and one associated
with fluctuations. Parameters are the same as in Figure 2. Theisland width corresponding to
the perturbation amplitudeψ0 = 13 isW = 14.4. We recall the shear layer widthd = 11.7.

perturbation does not affect the pressure profile far from its resonant surface. In particular,
the steepening of the pressure gradient between the barrierand the outer edge, observed in the
case of the multiple harmonics perturbation, and compensating for the erosion of the barrier,
is not present in the case of the single harmonics perturbation [15]. In both cases, however, the
erosion of the transport barrier is mainly due to the convective flux Qeq

conv associated with the
helical plasma equilibrium induced by the magnetic island chain (Figures 4d and 6d).

4. Conclusions

Transport barrier relaxation oscillations observed in three-dimensional turbulence simulations
can be controlled by multiple harmonics or single harmonic RMPs. This stabilization is due
to an erosion of the barrier. In the first geometry, for intermediate perturbation amplitudes,
the overall confinement is nearly unchanged because the erosion of the barrier is compensated
by an increase of the pressure gradient outside the barrier.This steepening of the pressure
gradient occurs in a layer where magnetic field lines stochasticity leads to a reduction of tur-
bulent energy flux which is not completely compensated by theradial energy flux due to the
collisional heat transport along perturbed magnetic field lines. Consequently, the single har-
monics RMP always leads to a degradation of the confinement. The barrier erosion is due to
an enhanced radial energy flux in the presence of magnetic islands. Two different mechanisms
are at the origin of this enhancement. One is the radial energy flux due to the collisional heat
transport along perturbed magnetic field lines. The second is a convective flux associated with
the non-axisymmetric equilibrium in the presence of the magnetic island.
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