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Abstract. The study is aimed to clarifying the balance between the sinks and sources in the problem of the 
intrinsic plasma rotation in tokamaks recently reviewed in [deGrassie J.S., Plasma Phys. Control. Fusion 51 
(2009) 124047]. The integral torque on the toroidal plasma is calculated analytically using the most general 
MHD plasma model with account of plasma anisotropy and viscosity. The contributions due to several 
mechanisms are separated and compared. It is shown that some of them, though, possibly, important in 
establishing the rotation velocity profile in the plasma, may give small input into the integral torque. This gives 
a key to the judicious choice of the directions of necessary studies. The role of the boundary conditions in the 
problem is discussed. This is a step to relate the plasma rotation to the physical characteristics measured outside 
the plasma. The analysis shows that an important contribution can come from the magnetic field breaking the 
axial symmetry of the configuration. In stellarators, this is a helical field which is needed for producing the 
rotational transform. In tokamaks, this can be the error field, the toroidal field ripple or the magnetic 
perturbation created by the correction coils in the dedicated experiments. The estimates for the error-field 
induced torque show that the amplitude of this torque can be comparable to the typical values of torques 
introduced into the plasma by the neutral beam injection. Therefore, this torque must be considered as an 
important part of the integral torque balance. The obtained relations allow to quantify the effect that can be 
produced by the existing correction coils in tokamaks on the plasma rotation, which can be used in experiments 
to study the origin and physics of the intrinsic rotation in tokamaks. Several problems are proposed for 
theoretical studies and experimental tests. 
 
1. Introduction 
 
Experiments show that plasma rotation in tokamaks is useful in suppressing the Resistive 
Wall Mode (RWM) and error-field-induced instabilities [1, 2], but the desired level of 
rotation is difficult (if not possible) to maintain. On the other hand it is observed in many 
experiments that the tokamak plasma can rotate ‘spontaneously’ even in the absence of any 
auxiliary momentum source [3]. This is called intrinsic rotation. The plasma rotation in 
tokamaks, existing with no known torque injection, still remains a mystery though several 
models and approaches are proposed to identify the origin of the toroidal momentum and its 
transport [3, 4]. Our study is aimed to clarifying the integral balance between the sinks and 
sources in the problem of the plasma toroidal rotation in tokamaks. Attention is paid to 
formulations with proper treatment of possible toroidal asymmetry, though a deviation from 
axisymmetry in tokamaks is small. This is known to affect the plasma rotation, but there is no 
yet reliable predictive theory of the error-field induced braking. Here an approach is proposed 
allowing evaluation of the integral effects from different physical mechanisms, including the 
plasma response to the error field, and separation of the dominating contributions. Finally, 
estimates and proposals to further studies in theory and experiment are given. 
 
2. Momentum equations 
 
The analysis is performed within the single-fluid MHD model incorporating the plasma 
viscosity, anisotropy and momentum exchange with the neutral beams. This covers a wide 
area of experimental conditions and different models of the momentum transport. In 
particular, the Neoclassical Toroidal Viscosity (NTV) effects, which became a popular 
subject recently [3, 4], can be naturally included.  
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In a general case the momentum evolution is described by the equation  

fv =Γ+
∂
∂ �

divρ
t

,      (1) 

where ρ  is the mass density of the plasma, v  is its velocity, Γ
�

 is the tensor of the 

momentum flux, and f  is the force not included into Γ
�

div . Here we apply (1) to the toroidal 
plasmas such as that in tokamaks and stellarators. In this geometry we use cylindrical 
coordinates ),,( zR ζ  related to the main vertical axis, ζ  is the toroidal angle and ζe  will 

denote the unit vector along ζ∇ . Momentum equation in the form (1) contains, as particular 
cases, all the basic equations used for analysis of the plasma rotation in tokamaks, see [4–8] 
and references therein. 
 
We consider the integral toroidal force balance obtained from (1) by integrating it, multiplied 
by ζeR , over the plasma volume. The result is 

T
t

L =
∂
∂

,       (2) 

where 

dVvRL ∫≡ ζρ        (3) 

is the total (or global) toroidal angular momentum of the plasma,  

fTTT += Γ        (4) 

is the total torque on the plasma with 

dVRT ∫ Γ⋅−≡Γ

�

divζe       (5) 

and 

dVRT f ∫ ⋅≡ feζ .      (6) 

Equation for L  similar to (2) was used in [7–11] for studying the momentum confinement 
and intrinsic rotation in the DIII-D and NSTX tokamaks. The main and well determined part 
of the total torque was the torque from the neutral beams, NBIT . It was found that the 

experimental observations [3, 7, 9–11] could not be explained by assuming NBIT  as the only 
source of the torque, though this was the only known source in those cases. Adding the torque 
modeling the effect of non-resonant magnetic fields did not help to describe the rotation 
evolution [7]. The results [7, 9–11] were interpreted as indicating a presence of some 
additional (or anomalous [7, 9, 11]) torque aT  which was estimated as NBIa TT −≈  [7, 9].  
 
This is not a minor correction, but an unknown effect of the leading order. Therefore, a step 
to solution of the intrinsic rotation mystery could be done by analysing the integral (global) 
torque balance (2). For example, in a steady state with 0/ =∂∂ tL  without variations of 
plasma density and velocity. To move in this direction, we have to calculate ΓT  in (5) and fT  

in (6). 
 
3. Physics model 
 
A good starting point for the plasma in the magnetic field (and not only for the cases 
considered here) can be 

πρ �

���

+++−=Γ II
2

2

p
B

BBvv ,     (7) 
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where B  is the magnetic field, I
�

 is the identity or unit tensor (unit dyad), p  is the pressure, 

and π�  is the viscous stress tensor ( π�
�

+Ip  can also include the case with anisotropic 

pressure). With this Γ
�

 the momentum (force balance) equation (1) takes the form 

ρπρ Sp
dt

d
vfBj

v −+−×+−∇= �

div ,     (8) 

where 

∇⋅+
∂
∂= v
tdt

d
,      (9) 

Bj ×∇=  is the current density and 

vρρ
ρ div+

∂
∂=

t
S .      (10) 

 
Equation (8) covers a wide range of models. In the most simple case with 0=π� , 0=f  and 

0=ρS  it gives a standard magnetohydrodynamic (MHD) equation for isotropic magnetically 

confined plasma without additional force sources and mass production. Effects of the plasma 
anisotropy and viscosity can be accounted for in (8) by keeping a symmetric tensor π� , such 
as described in [12]. Then Γ

�

 given by (7) is also symmetric. 
 
At the moment we do not need to specify f  and ρS . It is sufficient to note that f  can contain 

the force on the plasma due to its interaction with the background neutral gas and/or the 
injected beam of neutral atoms. The term with ρS  may represent the effects related to the 

plasma production/decay, for example, due to ionisation/recombination at the background 
gas, the pellet injection or gas puffing. 
 
One can find an equation of motion in a form similar to (8) in a great number of papers, see, 
for example, [4] and references therein. In addition to the mentioned effects, relevant to 
contemporary fusion experiments, it can also contain the momentum transfer to the plasma 
due to the collisions with alpha particles, interaction with the charged dust particles and the 
gravity [13] (then gf ρ=  or grΦ−∇=f ). Therefore, the validity of (8) is more general than 

the emphasized here for the toroidal systems with magnetic confinement such as tokamaks, 
stellarators and pinches. 
 
With symmetric Γ

�

 given by (7) equation (5) reduces to  

πTTTTT pEMR +++=Γ ,     (11) 

where 

∫ ⋅−=
S

R dvRT Svζρ       (12) 

is the torque due to the Reynold stress vvρ , 

∫∫∫ ⋅−⋅=×⋅=
SSV

EM dRdRBdVRT Se
B

SBBje ζζζ 2
)(

2

   (13) 

is the electromagnetic torque due to Maxwell stress /2I 2BBB
�

−  (the electric field is ignored 
here, the conversion factor to SI units is 0/1 µ ) 

∫ ⋅−=
S

p dRpT Seζ ,      (14) 
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and 

∫ ⋅⋅−=
S

dRT Se )( ζπ π�       (15) 

is the viscous torque. 
 
These general formulas, all expressed through the surface integrals, are a convenient basis for 
discussion of the integral torque balance (2), also containing fT  given by the volume integral 

(6). With definition (7), a part of fT  (or fT  itself) must be the torque NBIT  due to the neutral 

beams, which must be known in experiments. 
 
The contributions (12)–(15) are completely determined by the plasma parameters at S , 
which means that these torques depend on the boundary conditions only. This is an important 
conclusion that points to the best strategy in calculations and experimental studies. It makes 
clear that a key to correct modelling must be adequate description of the quantities in the 
integrals (12)–(15) over the boundary S . The latter is not yet defined. Its definition becomes 
an essential part of the problem. 
 
4. Analysis, reduction of general formulas, results and estimates 
 
Equation (2) for the angular momentum L  depends on the volume of integration in (3), (5) 
and (6). These and other integral relations above are valid for any V , but when we call it 
“plasma volume” the integrals (12)–(15) will be expressed through the physical quantities at 
the plasma boundary plS . Depending on experimental arrangements, plS  is usually defined as 

sepratrix or the last closed magnetic surface. This means different structure of the magnetic 
field and different properties of the plasma in and out of plS . 

 
The area around plS  is a subject of intense dedicated studies on tokamaks [14, 15]. 

Accumulated knowledge is a perfect basis for prescribing the quantities in the surface 
integrals (12)–(15). However, for calculations it is tempting, as a first approximation, to 
assume sharp boundary plasma-vacuum. Such mathematically convenient model is very often 
exploited in theoretical studies of MHD equilibrium and stability [1]. Assuming vacuum 
outside plS  would imply zero material fluxes through plS , while in real tokamaks they do 

exist and in no way can be disregarded. Such fluxes are a big problem for ITER as producing 
intolerable heat loads in the divertor [15]. 
 
With sharp plasma-vacuum boundary, or, more precisely, for a plasma that can be enclosed 
by a toroidal surface S  where 0=π�  and 0=ρ , we immediately obtain 0=== πTTT pR . 

This reflects the fact that the internal forces cancel each other and do not produce the integral 
torque. On the other hand, it implies possible tremendous simplification in mathematics, if 
proper used.  
 
This picture, being obviously unrealistic (no outward fluxes!), is, nevertheless, an 
indispensable step in theoretical modeling. It nullifies the other terms in (11), but allows an 
estimate of EMT  [16, 17]. Note that a nontrivial result for EMT  can be obtained only if there is 
a nonzero magnetic perturbation, while for an axially symmetric plasma equation (13) gives 
us 0=EMT . 
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This can be easily shown in a general form. If 0=j  outside the plasma, the integration in (13) 

can be extended to a larger volume (for example, bounded by axisymmetric surface asS  in the 

vacuum) because a vacuum region with 0=j  does not contribute to EMT . This choice can be 
done even for stellarators.  
 
With axisymmetric surface S , the second term in (13) is zero, so that 

∫∫ ⋅=×⋅=
asSV

EM dRBdVRT SBBje ζζ )( ,    (16) 

and EMT  is further simplified if B  at S  can be considered as a vacuum field. Indeed, 
representing B  in the form 

bBB += 0 ,       (17) 

where b  is the perturbation and 0B  is the axisymmetric part of B  with natural 0div 0 =B  

everywhere and const0 =ζRB  in the vacuum, we reduce (16) to 

∫ ⋅=
asS

EM dRbT Sbζ .      (18) 

Let us emphasize that this is an exact relation for the global electromagnetic torque on the 
plasma if axS  is an axisymmetric surface in vacuum ( 0=×∇ B  at axS ).  
 
It is interesting that in [3, 7, 9, 11, 14, 18], where “anomalous” or “unknown” torques have 
been discussed, the electromagnetic torque EMT  was not considered. Our analysis shows that, 
on the contrary, this must be the most “robust” contribution in a sense that we easily get 
nonzero EMT  in a general case [16, 17], while 0=EMT  only for ideal or perfectly symmetric 
plasmas.  
 
The next question is how large can it be compared to other terms in (11) and to NBIT . The 

estimates are easy: at normal component 5 G at the plasma surface and 1/2 =mn  equation 
(18) gives 2.0  N/m2, which is comparable to the NBI torque density in DIII-D experiments 
[7, 9, 10]. However, even without numbers one can conclude from equations (11)–(15) that, 
at least in theory, EMT  must play a special role – as the only potential contribution to T  in the 

model considered with plS  as “plasma-vacuum”. As such, EMT  will also provide a scale for 

comparison at the next step of modeling with material interaction taken into account in the 
“vacuum” behind plS . 

 
To find RT , pT  and πT , we have to incorporate the material fluxes through S . Here a theory 

should be based on the data from measurements at the plasma edge [3, 8, 10, 15, 19–21]. 
 
Assuming the bounding surface S  axisymmetric ( 0=⋅ Se dζ ), we obtain 0=pT  in (14) 

irrespective of p  at S  and other geometrical details, which is the same as elimination of the 

term with 2B  in (13). Also, 0=pT  if const=p  at S  (since 0div =ζeR ). This justifies 

disregarding pT  in the global torque (11). 

 
Direct calculations of the remaining RT  and πT , given by (12) and (15), require information 

on nv ⋅ζρv  and ne ⋅⋅ )( ζπ� , where n  is the unit normal to S . We can also propose another 
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way of finding πTTR + , which can be based on using experimental data for the scrape-off 
layer (SOL) plasma. 
 
Consider the SOL region separated from the bulk plasma by plS , from outside by the outer 

magnetic surface outS  where we can put 0=ρ  and 0=π� , and from the divertor side by the 

cross-section dtS  of the divertor throat. Similarly to (2), we obtain for the SOL plasma 

SOLSOL
R

SOL

TT
t

L
π+=

∂
∂

,      (19) 

where we disregarded the electromagnetic term and ignored pT  which is zero for axially 

symmetric boundary. Here SOL
RT  and SOLTπ  are given by (12) and (15), but now the boundary 

S  consists of three parts: plS , outS  and dtS , the latter connecting the inner and outer sides of 

outS  through the X-point and separating the SOL from the divertor area.  
 
With 0=ρ  and 0=π�  at outS  these integrals over outS  are zero, the integrals over plS  (with 

Sd  pointed into the plasma) are ‘minus’ RT  and πT  for the bulk plasma, and (19) reduces to 

dt
dt

SOL
dt

SOL
RR

SOL

TSTSTTT
t

L ≡+=++
∂

∂
)()( ππ ,    (20) 

where  

∫ ⋅−≡
dtS

dt
SOL

R dvRST Svζρ)(      (21) 

and 

∫ ⋅⋅−≡
dtS

dt
SOL dRST Se )()( ζπ π� .     (22) 

In a stationary state with 0/ =∂∂ tLSOL  we obtain from (20)  
dt

R TTT =+ π .       (23) 
With this relation the global torque balance (2) for the stationary plasma reduces to 

f
dt

EM TTT −=+ .      (24) 

Here we also used (4), (11) and 0=pT . 

 
To conclude the mathematical part, we remind that EMT  is given by (18), 

∫ ⋅⋅+−=
dtS

dt dvRT Sev )( ζζ πρ �

     (25) 

with Sd  pointed out (into the divertor), and fT  is the volume integral (6). The 

electromagnetic term can be calculated using any convenient axysymmetric toroidal surface 

axS  enclosing the plasma. The term dtT  is determined by the plasma parameters at the 

divertor throat. Alternatively, the parts of dtT , defined by (20), are given by the integrals (12) 
and (15) over the plasma surface plS . 

 
Finally, analysis of the plasma rotation, considered in terms of the integral force balance, 
requires only careful description of its interaction with the “external world”. It includes the 
neutral beams, the plasma behind the surface plS  defined as “plasma boundary”, and the 
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magnetic filed produced by the currents outside plS . This means only two sources/sinks of 

the momentum in addition to the known one from NBI. 
 
5. Discussion and proposals to theoretical studies and experiments 
 
According to (24), in experiments with NBIf TT =  the counter torque must be dt

EM TT + . This 

is a natural result obtained by integration of all possible contributions for a plasma described 
by (8) with f  staying for the moment input from NBI.  
 
In the absence of any auxiliary torque input, the integral torque balance in a stationary state 
reduces to 

0=+=++ dt
EMREM TTTTT π .    (26) 

The both quantities in the second equality can be measured: the first as described in [16, 17] 
and the second by using the SOL or divertor data such as presented in [15, 19–21]. Such 
measurements could be an important step in studying the mystery of plasma rotation in 
tokamaks because (26) is the equation governing the intrinsic rotation. 
 
According to definition (25), nonzero dtT  requires finite ζv  at the divertor throat. Such flows 

are often observed in experiments [15, 19–21]. Therefore, 0≠dtT  is a natural expectation. 
Note that (26) is a general result which should cover all particular cases within the general 
model (8). Our analysis confirms that the line of studies [19–21]is the most promising. At the 
same time it shows that, for the torque balance evaluation, a theoretical model can sacrifice 
some minor details because the result (26) is determined by integration. Then the effects of 
ELMs, blobs, orbit losses, etc can be treated in terms of the averaged flux into the divertor. 
The same is also true for NTV studies such as [3, 7, 11] and mentioned therein. 
 
An important consequence of (26) is that 0≠dtT  is coupled to dt

EM TT −= . In a stationary 

state the electromagnetic torque EMT  (vanishing at 0=b ) is the result of plasma interaction 

with the error field erb , as implied by (18) with more details in [16, 17]. To give 0≠EMT , the 

plasma reaction plb  must be with a phase shift relative to erb  [16, 17]. Such a shift, also a 
measurable quantity, comes from the plasma rotation and some dissipation inside. This 
rotation should be identified as the intrinsic rotation mentioned earlier. 
 
If so, we come to the conclusion that this rotation is essentially related to the error field. This 
prediction could be easily verified in experiments if, simultaneously with erb  change (by the 
correction coils) the change in the momentum flow into the divertor would be measured. 
With erb  variation the intrinsic rotation subject to (26) must decrease if dtT  increase slower 

than 
2erb , increase in the opposite case or remain the same if 

2erdtT b∝ . 

 
There is another interesting consequence of (26): with 0=EMT  it gives 0=dtT , which 
means, at 0≠ζv  at the divertor throat, absolutely asymmetric fluxes into the high- and low-

field sides of the divertor. Reduction of the asymmetry of these flows with increase of erb  
could be an indication of this tendency and another test of our predictions. For theory, 

0=dtT  or, equivalently, πTTR −=  shows that, in this case, the viscosity effects (due to NTV, 
for example) should not be considered separately from other contributions to the torque.  
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The presented theory is quite general. Somewhat approximate were only (19) with EMT  in the 

SOL region disregarded, and (20) with the flow through outS  assumed zero. The latter seems 
natural because the very idea of divertor is the wall protection. The plasma in SOL can freely 
flow along the magnetic lines. With j  parallel to B  we have no Bj×  force. The reaction of 

narrow-width resistive SOL plasma to erb  cannot be strong. Therefore, the approximations 
seem quite reasonable. The analysis shows that the intrinsic rotation can be explained by the 
asymmetry of fluxes into the SOL and by the plasma interaction with the error field. 
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