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Abstract. A toroidal rotation effect on a type-I ELM is investigated numerically in JT-60U H-mode plasmas. This
analysis shows that a sheared toroidal rotation can destabilize a type-I ELM, and has an impact on the achievable
pressure gradient and the type-I ELM behavior in JT-60U. To investigate this destabilizing mechanism, energies
that are distinguished by physics are introduced. By comparing them, it is found that an edge localized MHD mode
is destabilized by the difference between an eigenmode frequency and an equilibrium toroidal rotation frequency,
which becomes more effective in the shorter wavelength region. Based on this result, an effect of a poloidal rotation
is also investigated. Under the assumption that a change of an equilibrium by a poloidal rotation is negligible, it
is identified numerically that a poloidal rotation can have both a stabilizing effect and a destabilizing effect on the
edge MHD stability according to the direction of the poloidal rotation.

1. Introduction

An ideal magnetohydrodynamic (MHD) mode unstable near the plasma surface is thought as a
cause of a type-I edge-localized mode (ELM), which constrains the maximum pressure gradient
and its width at tokamak edge pedestal [1]. Since the type-I ELM induces a large heat load on
a divertor and a wall, it should be suppressed or its amplitude needs to be reduced.

Recent experimental results in JT-60U show that a toroidal rotation near pedestal has an
impact on the ELM behavior [2,3]. For example, an ELM frequency increases by changing the
direction of a toroidal rotation, and as the result, the type of ELM changes from the type-I ELM
to the grassy ELM [2]. Therefore, it is important to understand a toroidal rotation effect on
the edge MHD stability, which drives not only the type-I ELM but also the grassy-ELM whose
mode structure is narrower than that of the type-I ELM [4, 5].

Previous works reported that an edge localized MHD mode, called a peeling-ballooning
mode, can be destabilized by a toroidal rotation with shear [6, 7]. In particular, Ref. [7] in-
vestigated a toroidal rotation effect on the stability boundary of edge localized MHD modes,
and identified that this effect limits an achievable pressure gradient due to the destabilization of
finite-n edge MHD modes even though a ballooning mode stability is scarcely changed. Here
n is the toroidal mode number. However, the mechanism of this destabilization is still unclear.
In addition, recently, not only a toroidal rotation but also a poloidal rotation are observed near
edge pedestal at high spatial- and fast time-resolutions [8, 9], so that it should be necessary to
identify whether a poloidal rotation also affects the edge MHD stability or not.

In this paper, we focus on the rotation effects on the MHD stability, and discuss an impact
of the effect on ELM behavior. At first, the stability of the edge-localized MHD mode in JT-
60U ELMy H-mode plasmas is studied numerically with an effect of a toroidal rotation, and
the importance of this effect on the observed ELM behavior is evaluated. Next, we introduce
new definitions of energy that are distinguished by physics for investigating mechanisms that a
toroidal rotation with shear destabilizes an edge localized MHD mode. After that, an effect of
a poloidal rotation on the edge MHD stability is investigated, and is compared with that of a
toroidal rotation.
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This paper is organized as follows. Section 2 shows the numerical results of the stability
analysis with/without a toroidal rotation effect in JT-60U plasmas, and discusses the impact
of this effect on the type-I ELM in JT-60U. Section 3 discusses mechanisms that a toroidal
rotation with shear destabilizes an edge localized MHD mode. Section 4 investigates an effect
of a poloidal rotation on the edge MHD stability. Section 5 presents a summary of this work.

2. Toroidal rotation effect on the edge MHD stability in JT-60U ELMy H-mode plasmas

In this section, we investigate an effect of a toroidal rotation on the type-I ELM in JT-60U
numerically. The equilibria analyzed here are obtained by the reconstruction with the experi-
mental data of E49228 and E49229 plasmas in JT-60U; the details of these plasmas are shown
in Ref. [10]. As discussed in this reference, these plasmas have the same toroidal magnetic field
at the axis B0 = 4.0[T] and the plasma current Ip = 1.6[MA], but the plasma rotation profiles
are different between E49228 and E49229, whose toroidal rotation are in the co-(CO.) and ctr-
(CTR.) directions to the plasma current, respectively. Such a difference of the rotation profiles
are realized by adjusting the momentum input with neutral beam injection (NBI). By changing
the rotation profile from CO. to CTR., the type-I ELM frequency increases from ∼ 37[Hz] to
∼ 45[Hz], and the ELM energy loss becomes about half from ∼ 89[kJ] to ∼ 46[kJ].

Figure 1 shows the profiles of (a) the temperatures of ion Ti and electron Te, (b) the electron
number density ne and the pressure p, (c) the toroidal rotation frequency Ωt, and (d) the parallel
current density 〈 j · B〉/〈B2〉 and the safety factor q, respectively; these indicate the profiles just
before the ELM crash. Here ρvol. is the radial coordinate defined as ρvol. ≡

√
V(ψ)/Vtot., V is

the volume in each flux surface, ψ is the poloidal flux normalized as ψ = 0 (= 1) at the axis
(surface), Vtot. is the plasma total volume, j is the plasma current density, B is the magnetic
field, and bracket 〈 f 〉 means the flux averaged value of f . The 〈 j · B〉/〈B2〉 profile is obtained
by estimating a bootstrap current, a neutral beam driven current, and an ohmic current with the
ACCOME code [11]. The effective charge Ze f f and the poloidal beta βp are (2.6, 0.85) and
(2.8, 0.81) in the E49228 (CO.) and the E49229 (CTR.) plasmas, respectively. Hereafter, the
E49228 and the E49229 plasmas are called as CO. and CTR. plasmas. Note that the Ti profiles
outside the top of the Ti pedestal (ρvol. > 0.93) are similar to each other but the ne profile of the
CTR. plasma is different from that of the CO. plasma; the ne pedestal top and foot changes from
ρvol. = 0.93 and 0.99 (CO.) to 0.91 and 0.96 (CTR.). Such a difference of the ne profile changes
the position where the pressure gradient and the bootstrap current become maximum as shown
in Figs.1 (b) and (d).

The MHD stability with a toroidal rotation is investigated with the MINERVA stability code
[12] and the initial value code solving the ballooning equation with toroidal flow [13]. The
MINERVA code solves the Frieman-Rotenberg (F-R) equation [14]

ρ
∂2ξ

∂t2 + 2ρ(u · ∇)
∂ξ

∂t
+ ρ(u · ∇)(u · ∇)ξ = F(ξ), (1)
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FIG. 1. Profiles of (a) Ti and Te, (b) ne and p, (c) Ωt, (d) 〈 j · B〉/〈B2〉 and q, in the E49228 (CO.) and
the E49229 (CTR.) plasmas, respectively.
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as the initial value problem. Here ρ is the plasma mass density, u is the equilibrium rotation
velocity, F is the force operator, and ξ is the displacement vector. In case that a plasma rotates
only in a toroidal direction, u can be written as u = Ωteφ, where φ is a toroidal angle. Since the
MINERVA code is developed with the flux coordinate system, the plasma surface is determined
by cutting off the flux surface at ψ = 0.995 when an equilibrium has a separatrix at the last
closed flux surface. In this section, the range of n of the analyzed MHD modes is from 1 to 30,
and∞, and the shape of the conducting wall surrounding the plasma is approximately the same
as that of JT-60U vacuum vessel.

Figure 2 shows the stability diagrams on the (〈 jped〉/〈 j〉, α94) plane in (a) the CO. and (b)
the CTR. plasmas, where jped is the current density averaged over (2ψped − 1.0) ≤ ψ ≤ 1.0, α
is the normalized pressure gradient defined as α ≡ −(µ0/2π2)(dp0/dψ)(dV/dψ)(VR/2π)0.5, µ0
is the permeability in the vacuum, and the subscript 94 expresses the value at ψ = 0.94. The
target expresses the equilibrium values observed experimentally, and the solid and the broken
lines show the stability boundary with and without a toroidal rotation effect, respectively. As
shown in Fig.2 (a), the CO. plasma is approximately on the stability boundary of the edge
localized MHD mode without a toroidal rotation effect. In fact, the n = 12 peeling-ballooning
mode becomes marginally unstable by increasing α94 about 10%; this increment is thought to
be within the error of the edge profile measurements. Moreover, the stability boundary changes
little even when the toroidal rotation is taken into account in the MHD stability analysis.

On the other hand, as shown in Fig.2 (b), the CTR. plasma is far from the stability boundary
without a toroidal rotation, and to make the plasma unstable, it is necessary to increase α94 more
than 25%. Since such a large increment in pressure is no longer within the margin of the error,
this CTR. plasma without a toroidal rotation is stable against ideal MHD modes. In this CTR.
plasma, however, the toroidal rotation moves the stability boundary to the smaller α94 side, and
as the result, the maximum pressure gradient becomes smaller from α94−max ' 2.87 to ' 2.28
under the same 〈 jped〉/〈 j〉 ' 0.5 condition. Moreover, the n number of the MHD modes, which
determines the stability boundary, becomes larger as the rotation frequency increases, and the
destabilizing effect of the toroidal rotation becomes stronger as the n number of the MHD mode
increases. For example, on the stability boundary at 〈 jped〉/〈 j〉 ' 0.5, the n number of the MHD
mode changes from 16 to 20 by the toroidal rotation. This result is consistent with the results of
the qualitative and quantitative analyses about the effects of a rotation and its shear on the edge
MHD stability in Refs. [7, 12, 15], and resolves the discrepancy that the edge localized MHD
mode is stable in the CTR. ELMy H-mode plasma without the toroidal rotation [16].
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FIG. 2. Stability diagrams on the (〈 jped〉/〈 j〉, α94) plane in (a) the CO. (E49228) and (b) the CTR.
(E49229) plasmas, respectively. The target expresses the equilibrium values observed experimentally,
the (blue) circle means stable with a toroidal rotation, (red) cross means unstable without a toroidal
rotation, and the solid and the broken lines show the stability boundary of the finite-n MHD modes and
the infinite-n ballooning with and without a toroidal rotation, respectively.
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3. Mechanisms of a plasma rotation effect on the edge MHD stability

In this section, we investigate mechanisms that a toroidal rotation with shear destabilizes an
edge localized MHD mode. Note that as mentioned in Ref. [12], an equilibrium pressure is
no longer a flux function when a plasma rotates, and under the isothermal condition on each
magnetic surface, an equilibrium pressure can be written as

p = p0(ψ) exp
[
M2

(
R2

R2
0

− 1
)]
. (2)

Here R is the coordinate in the (R,Z, φ) system, and M is the Mach number. The equilibrium in
this section has a up-down symmetric D-shape cross-section; the ellipticity κ and the triangular-
ity δ are (1.74, 0.48) as shown in Fig.3 (a). The parameters (R0[m], a0[m], B0[T], Ip[MA]], βp)
are (3.00, 0.97, 2.50, 3.00, 1.00), and the profiles of dp0/dψ, 〈 j · B〉/〈B2〉, and Ωt are given as

dp0(ψ)
dψ

= βp

((
1 − ψ5

)1.5
+ 3.5 · exp

(
− (ψ − 0.96)2

2.25 × 10−4

))
, (3)

〈 j · B〉
〈B2〉 ∝

(
1 − ψ1.5

)1.2
+ 0.75 · exp

(
− (ψ − 0.96)2

4 × 10−4

)
, (4)

Ωt(ψ)[krad/s] = (50.0 − 0.5)
(
1.00 − ψ48

)4
+ 0.5, (5)

where R0 and a0 are the major and the minor radii of the plasma. Figure 3 shows the profiles of
(b) p0 in Eq.(2) and dp0/dψ, (c) 〈 j · B〉/〈B2〉 and q, and (d) Ωt/ωA0 and M of the equilibrium,
where and ωA0 is the toroidal Alfvén frequency at axis. The second term in the right hand side
(RHS) of Eq.(3) and that of Eq.(4) make the steep pressure gradient and the virtual edge boot-
strap current density near ψ = 0.96, respectively. The range of n of the MHD mode analyzed
numerically is from 1 to 50, and the conducting wall is placed at d/a = 2.00.

Figure 4 shows the n dependences of the growth rate γ and the mode frequency divided by
n, ω, with and without the sheared toroidal rotation. From this figure, we can follow that the
n number of the unstable MHD mode is between 11 and 29 in the static case. However, the
sheared toroidal rotation destabilizes the MHD modes, and as the result, the n = 9, 10 and
30 ≤ n ≤ 36 modes become unstable.

Based on this numerical result, we try to clarify destabilizing mechanisms by using the F-R
equation Eq.(1) with the assumption that the displacement ξ is the eigenmode with the complex
eigenvalue λ. By multiplying ξ on the left side of Eq.(1) and executing a volume integral in the
system with the assumption ξ(x, t) ≡ ξ̄(x) exp(λt), we can obtain the following equation

λ2
〈
ξ̄ |ρ| ξ̄

〉
+ 2λ

〈
ξ̄ |ρ(u · ∇)| ξ̄

〉
+

〈
ξ̄ |ρ(u · ∇)(u · ∇)| ξ̄

〉
=

〈
ξ̄
∣∣∣F(ξ̄)

〉
, (6)
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where
〈
ξ̄ |Π| ξ̄

〉
≡

∫
Vtot
ξ̄
∗ · Π · ξ̄dτ, and dτ is the volume

element. In case that the eigenvector ξ̄ is already known,
λ = γ + ınω can be calculated with the quadratic formula
of Eq.(6) as

λ =
−δWc ±

√
δW2

c − δK · δWp

δK
. (7)

Here δK, δWc, and δWp are defined as

δK =
〈
ξ̄ |ρ| ξ̄

〉
, (8)

δWc =
〈
ξ̄ |ρ(u · ∇)| ξ̄

〉
, (9)

δWp =
〈
ξ̄ |ρ(u · ∇)(u · ∇)| ξ̄

〉
−

〈
ξ̄
∣∣∣F(ξ̄)

〉
. (10)

Hereafter, the subscript of ξ̄ is omitted. As is well-
known, since the operators ρ and ρ(u · ∇)(u · ∇) − F are
Hermitian, and ρ(u · ∇) is anti-Hermitian, δK, δWp are
real, and δWc is imaginary, respectively. With these properties, when a MHD mode is unstable,
the growth rate γ and the mode frequency ω can be written as

γ = ±
√
δW2

c − δK · δWp

δK
, (11)

ınω = −δWc

δK
. (12)

To discuss the MHD stability in analogy with the Energy Principle in the static plasma, we
define the new energy δWg as

γ2δK2 = δW2
c − δK · δWp ≡ −δKδWg. (13)

This δWg expresses whether the plasma is stable or unstable by its sign, and becomes the same
as the potential energy in the static plasma.

Next, we separate δWg into two terms. One is the term that expresses the potential energy
taking into account the change of the equilibrium by the rotation ((u · ∇)u), δWg−eq., and the
other expresses the rotation effect on the displacement explicitly through the component (u·∇)ξ,
δWg−rot.; these can be written as

δWg = δWg−eq. + δWg−rot., (14)
δWg−eq. = − 〈ξ |F(ξ)〉 , (15)

δWg−rot. = 〈ξ |ρ(u · ∇)(u · ∇)| ξ〉 − 〈ξ |ρ(u · ∇)| ξ〉2
δK

. (16)

The first term in RHS of Eq.(16) represents approximately the Doppler shift due the plasma
rotation, and the second term in RHS of Eq.(16) can be written as

−〈ξ |ρ(u · ∇)| ξ〉2
δK

= n2ω2δK = n2ω2 〈ξ |ρ| ξ〉 , (17)

This means that δWg−rot. expresses the energy induced by the difference between the eigenmode
frequency and the toroidal rotation frequency of the plasma. With these energies defined here,
we discuss mechanisms that an edge localized MHD mode becomes unstable by a toroidal
rotation with shear.
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Figure 5 shows the n dependences of δWg, δWg−eq.,
and δWg−rot. of the peeling-ballooning mode, whose sta-
bility is already investigated as shown in Fig.4; that of
δWg in the static case is also plotted. As shown in this
figure, δWg−rot. becomes negative by the sheared toroidal
rotation and plays an important role for destabilizing the
MHD modes even though δWg−eq. is positive. This re-
sult indicates that the mechanism that a toroidal rotation
with shear destabilizes an edge localized MHD mode is
the difference between the eigenmode frequency and the
toroidal rotation frequency of the plasma. It is noted that
there is a trend that the destabilizing effect from δWg−rot.

becomes larger as n increases. This trend is consistent
with the results in the previous section and the past works
[6, 7], and is mainly come from the leading order term in
the n expansion of δWg−rot. and the mode structure of ξ [15].

4. Effects of a poloidal rotation on the edge MHD stability

As identified in the previous section, the destabilizing effect depends on the mode frequency ω.
Since the mode frequency can be evaluated with Eq.(12), the operator (u · ∇) is essential for
determining ω. If we can assume that a centrifugal force and a Coriolis force are negligible,
(u · ∇) is identical to k · u, where k is the wave number vector. In the case that a plasma rotates
in not only a toroidal but also a poloidal directions, k · u becomes ı(mΩθ − nΩφ), where m is
the poloidal mode number, Ωθ and Ωφ are the plasma rotation frequency in the poloidal and the
toroidal directions. As mentioned in Introduction, a poloidal rotation is no longer negligible at
edge pedestal. Furthermore, the m number in k · u is about q times larger than the n number,
because each poloidal Fourier component of an ELM usually localizes near each rational surface
k · B = m − nq = 0. These imply that a poloidal rotation also can affect the edge MHD stability
by changing the mode frequency. In this section, we investigate this effect numerically.

In general, Ωθ and Ωφ are not flux functions f (ψ). On the other hand, in toroidally rotating
plasmas, a toroidal rotation frequency can be regarded as a flux function Ωt(ψ). To compare the
result in the plasma that rotates both toroidally and poloidally with that in the pure toroidally
rotating plasma, we determine the rotation profile as follows. At first, we investigate the MHD
stability in the pure toroidally rotating plasma with u = Ωteφ. After that, Ωφ(ψ,Z = 0) is
adjusted as Ωt, and Ωθ(ψ, Z = 0) is determined arbitrary. As discussed in Ref. [17], due to the
conservation law of momentum, an equilibrium rotation can be expressed as

u =
Φ(ψ)
ρ

B + Ωt(ψ)eφ, (18)

where Φ is a surface value related to a momentum in the direction parallel to the magnetic field.
In Eq.(18), a poloidal component is only in the first term in RHS, the plasma rotation profile
can be determined as

Φ(ψ)
ρ

=
qR
Bt
Ωθ(ψ, Z = 0), (19)

Ωt(ψ) = Ωφ(ψ, Z = 0) − qΩθ(ψ, Z = 0). (20)

Here θ is defined as the straight field line coordinate used in MINERVA [12]. Based on this
rule, an effect of a poloidal rotation on edge MHD stability is investigated with the equilibria
shown in Fig.3; Ωφ(ψ, Z = 0) is equal to Ωt in Eq.(5), and Ωθ(ψ, Z = 0) is determined later.
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Note that many previous works showed that a poloidal rotation can change an equilibrium
drastically from that without a rotation [18]; in particular, a transonic poloidal rotation can give
rise to shock waves. However, a poloidal rotation in tokamak plasmas is not likely so large. In
addition, as mentioned above, we pay attention to the effect of a poloidal rotation on the MHD
stability due to the change of the mode frequency. From this viewpoint, in this paper, an effect
of a poloidal rotation on an equilibrium is assumed as negligible, and that on the linear equation
of motion Eq.(1) is to be investigated.

Figure 6 (a) shows profiles of Ωφ and Ωθ at Z = 0 near pedestal. The profiles of the pos-
itive Ωθ and the negative one are determined to make Ωt(ψ) = 0.5Ωφ(ψ, Z = 0) and Ωt(ψ) =
1.5Ωφ(ψ, Z = 0), respectively. In the positive Ωθ case shown in Fig.6 (b), which shows the n
dependences of γ and ω, the mode frequency becomes about half by adding the poloidal rota-
tion. The reason of this frequency decay is attributed to the decrease of k · u near the rational
surfaces as mentioned previously. However, even though the mode frequency becomes about
half, the poloidal rotation has little impact on the stability of the MHD modes whose n ≤ 20.
For n > 20 modes, this makes the growth rates smaller than those in the pure toroidally rotating
case, but the difference of γ is not so large that it is expected from the decrease of δWg−rot. due
to the frequency decay.

Meanwhile, when the sign of the poloidal rotation frequency is negative, the poloidal rotation
can change the edge MHD stability. In this case, Figure 6 (c) indicates that ω becomes about
1.5 times larger than that in the pure toroidally rotating case. This result can be explained in
the same way when Ωθ is positive. However, unlike in the previous case, γ of n > 20 modes
becomes larger; for example, the maximum γ value becomes about 1.4 times larger than that
without Ωθ. In this case, the increase of δWg−rot. is responsible for the destabilization.

The results in this section show that a poloidal rotation can change the edge MHD stability
due to changing the mode frequency, and this effect depends on not only the absolute value but
also the sign of the frequency when the plasma also rotates in the toroidal direction.

5. Summary

An effect of a toroidal rotation with shear on a type-I ELM stability has been investigated
numerically in JT-60U ELMy H-mode plasmas. As the result of the stability analysis, we have
clarified that the toroidal rotation observed experimentally can destabilize edge localized MHD
modes, and can make the stability boundary of edge localized MHD modes close to the point of
equilibrium observed experimentally in the stability diagram, though this point is far from the
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stability boundary under the static assumption.
To identify a mechanism of this destabilization, we have introduced new definitions of energy

that are distinguished by physics. By comparing these energies, we have clarified that this
destabilization by a toroidal rotation with shear is mainly induced by the difference between the
eigenmode frequency and the toroidal rotation frequency of the plasma, and this effect tends to
be larger as the toroidal mode number of the MHD mode increases.

Based on the result that the destabilizing effect depends on the mode frequency, we have paid
attention to effects of not only a toroidal rotation but also a poloidal rotation on the edge MHD
stability. When a poloidal rotation is added in a toroidally rotating plasma, the mode frequency
drastically changes because a rotation parallel to the magnetic field has little impact on the mode
frequency. By determining the direction of a poloidal rotation to increase a mode frequency, the
edge localized MHD mode becomes more unstable. However, when a plasma rotates poloidally
in the opposite direction, the growth rate of edge localized MHD modes decreases. These
results indicate that a poloidal rotation can change the edge MHD stability due to changing the
mode frequency, and this effect depends on not only the absolute value but also the sign of the
frequency when the plasma also rotates in the toroidal direction.
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