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Abstract Nonlinear simulations with the M3D [1] code are performed of disruptions [2]

produced by large scale magnetohydrodynamic (MHD) instabilities. The toroidally symmetric

and asymmetric wall forces produced during a disruption are calculated in an ITER model. The

disruption is produced by a vertical displacement event (VDE) and a kink mode. Expressions

are derived for the wall force, including the sideways force, using a thin conducting wall model.

The dependence of wall force with γτw is obtained, where γ is the kink growth rate and τw is

the wall penetration time. The largest force occurs with γτw ≈ 1. In this regime the wall force is

produced by poloidal halo current. The current and temperature quench is caused by the VDE

carrying the plasma to the wall. A less resistive wall will experience less wall force.

I. Introduction
A very critical issue for the ITER device construction is to evaluate the forces pro-

duced on the surrounding conducting structures during plasma disruptions [3]. Recent
studies have documented results obtained from the Joint European Torus (JET) experi-
ment [4, 5, 6]. A major concern are non axisymmetric stresses caused by large scale MHD
instabilities [7]. We extend [2] previous studies of vertical displacement events combined
with disruptions [8]. In particular, here the emphasis is on the non axisymmetric wall
forces. New numerical diagnostics are derived and implemented, which directly measure
the forces in the resistive shell surrounding the plasma. The disruptions are simulated
using the M3D [1] code. The code solves resistive MHD equations with parallel and per-
pendicular thermal transport. The plasma is bounded by a thin, resistive wall [9] of
thickness δ. The magnetic field perturbations outside the wall are calculated with Green’s
functions [10, 11]. The jump in the magnetic field across the thin wall gives the wall force.

Three dimensional reduced MHD [12] simulations [13] showed that overlap of magnetic
islands produced a chaotic rupturing of the magnetic field and loss of equilibrium. The
magnetic field chaos causes quenching of the plasma current and pressure. This physical
behavior is characteristic of a long wall penetration time, γτw ≫ 1, where γ is the kink
growth rate and τw is the wall penetration time. The present simulations are based on
an ITER reference equilibrium. Disruptions were simulated by an axisymmetric vertical
displacement event (VDE), along with a large scale kink instability. This is expected to
be one of the worst case scenarios.

The forces and stresses on the wall are due to currents flowing in the wall that couple
with the magnetic field. These currents are produced by inductive effects (eddy currents),
due to time varying magnetic fluxes through the wall, and by conduction currents, gen-
erally indicated as halo currents, that can flow from the plasma to the wall. The eddy
current is mainly toroidal, while the halo current is mainly poloidal. In the limit of a
conducting wall, the asymmetric wall force is produced predominantly by eddy current,
while for a relatively resistive wall, the asymmetric wall force is produced predominantly
by halo current.

We have found that the wall force is largest in the regime γτw ∼ 1, where it is
predominantly due to halo current. These results were obtained in the simulations, for a
given initial state, by varying the wall conductivity.
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The current and temperature quench is caused by the VDE carrying the plasma to
the wall. A less resistive wall will experience less wall force.

The paper is organized as follows. The resistive wall model, including the derivation of
the wall force, halo current, and toroidal peaking factor (TPF), is described in section II.
In section III the disruption simulations are presented, beginning with a brief description
of the numerical method. Simulational results are presented, including scaling of the wall
force with plasma current, halo current, and TPF. Conclusions are presented in section
IV.

II. Resistive Wall Model
The plasma is bounded by a thin resistive wall of thickness δ and resistivity ηw.

Surrounding this is an outer vacuum region, which can contain external current sources.
On the resistive wall boundary, integrating ∇ · B = 0 across the thin shell gives the

requirement that the normal component of magnetic field is continuous at the wall,

Bv
n = Bp

n, (1)

where Bv
n, B

p
n are the normal component of magnetic field in the vacuum, just outside the

wall, and the plasma, just inside the wall. The normal component of the magnetic field
at the wall satisfies

∂Bn

∂t
= −

ηw

δ
∇ · [n̂ × (Bv − Bp) × n̂] (2)

This gives a boundary condition to determine the vacuum field. The vacuum field is solved
by the GRIN code [10]. In the wall, the current is given by

Jw =
1

µ0δ
n̂ × (Bv −Bp). (3)

where n̂ is the outward normal to the wall. The wall force density is fw = Jw ×Bw. Inside
the wall assume that Bw = 1/2(Bv + Bp). The wall force density can be expressed

fw =
1

µ0δ
[Bn(Bv −Bp) −

1

2
(|Bv|2 − |Bp|2)n̂)]. (4)

The normal component has a simple physical meaning. It is the difference in magnetic
pressure across the wall, divided by the wall thickness. Integrating over the wall thickness
δ gives the magnetic pressure on the wall. The total wall force per toroidal angle is given
by

F =
µ0δ

2πR0LwB2
0

∫
dlRfn. (5)

Here the force has been normalized to be dimensionless, where B0 is the magnetic field on
axis, and Lw =

∫
dl is the wall circumference. To obtain the dimensional force, (5) must be

multiplied by Fdim = 2πR0LwB2
0/µ0. Of particular importance is the net horizontal force,

Fx. Here Fx is obtained by taking the horizontal components of F, Fc =
∫

dφF · R̂ cos(φ),
Fs =

∫
dφF · R̂ sin(φ). To allow for the horizontal force to be an arbitrary direction, the

horizontal force is Fx = (F 2
c + F 2

s )1/2. It is in units of Fdim.
The halo current is the poloidal current flowing into the resistive wall. Nonlinear

simulations of VDEs, disruptions, and resistive wall modes with the M3D code [1] found
Hf and TPF consistent with experimental data [8]. The normal component of the poloidal
current integrated over the wall, Ihalo, is

Ihalo(φ) =
1

2

∫
|n̂ · J|Rdl, (6)
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where dl is the length element tangent to the wall. Half the absolute value is taken in
the integrand because ∇ · J = 0 implies the total normal current is zero when integrated
over the wall and the toroidal angle φ. The toroidal peaking factor [14] is defined as the
maximum of

TPF =
2πIhalo(max)∫

Ihalodφ
. (7)

In the following simulations, TPF ≈ 2. The ratio of halo current to total plasma current
is also important. The halo current fraction Hf is defined as the ratio

Hf =

∫
Ihalodφ

Iφ
, (8)

where the toroidal current is Iφ =
∫

JφdRdZ, and the initial value of Iφ is used.
III. Disruption Simulation

The M3D extended MHD code [1] solves the full resistive MHD equations. The open
field line region surrounding the plasma is treated as a resistive MHD vacuum with very
large resistivity, small density, and low temperature. A resistive wall with the shape of
the experimental vacuum vessel, slightly smoothed, bounds the vacuum. The code does
not assume large aspect ratio or incompressibility and it keeps the full plasma X-point
geometry. The plasma velocity is evolved self-consistently, by solving the MHD momentum
evolution equations.

A single, scalar temperature is assumed, with the ion and electron temperatures taken
to be proportional. Temperature evolution includes parallel[15] and perpendicular thermal
transport. The effective parallel thermal diffusion coefficient is κ‖ = 2RvA, much larger
than the perpendicular diffusion, where R is the major radius and vA is the Alfvén speed.
The resistivity varies as T−3/2 self-consistently, where T is the temperature. Spatially
constant perpendicular thermal conductivity κ⊥ and viscosity µ⊥ were employed.

M3D uses an unstructured mesh [16] with a finite element discretization in the poloidal,
(R, Z) plane. In the toroidal direction, a uniform mesh in toroidal angle φ is used, with
a pseudospectral discretization. The mesh boundary is treated as a thin resistive wall.
Outside the resistive wall is the vacuum region.

In the following, M3D is used to calculate a disruption. The initial state is an ITER
reference equilibrium, FEAT15MA, written to a file in EQDSK [17] format. This was read
into M3D and used to generate a mesh and initialize a nonlinear simulation. The initial
equilibrium had q = 1.1 on axis.

In the simulation the Lundquist number was chosen to be S = 105 on axis and S = 102

at the wall. The Lundquist number must be much lower than experiment for numerical
reasons. The wall resistivity ηw divided by wall thickness, was chosen to have a range of
values. In the following example of Fig.1, τw = 10R/vA, where τw = δa/ηw, with δ the wall
thickness and a the effective minor radius, and τA = R/vA is the toroidal Alfvén time.
The perpendicular thermal diffusivity was κ⊥ = 10−5ǫavA, and the viscous diffusivity was
µ⊥ = 10−4ǫavA, where ǫ = a/R.

The velocity boundary condition was vn = 0. The magnetic field boundary condition
was given by (2).

The initial equilibrium is VDE unstable. The equilibrium was made to be kink unsta-
ble by rescaling. The initial equilibrium had q0 = 1.1, and initial total current I0. The
equilibrium was rescaled to generate equilibria with q < 1 on axis, and 1 < I/I0. The
poloidal magnetic field and toroidal current were rescaled by multiplying by a rescaling
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parameter, and the pressure was rescaled by the square of the rescaling parameter. Such
a state might be produced during a VDE, as current is scraped off by wall interaction.

The following example was produced by first evolving a VDE, then adding a kink
perturbation as the plasma approached the wall. The wall resistivity for this example had
γτw ≈ 1, and the current enhancement was I/I0 = 1.6. The contours are all shown in the
poloidal plane (R, Z) with toroidal angle φ = 0.

In Fig.1, at time t = 38.54τA, the VDE and kink mode have developed nonlinearly, with
the plasma in contact with the wall. Fig.1(a) shows the poloidal magnetic flux penetrating
the wall. Fig.1(b) shows the toroidal current. Much of the bulk toroidal plasma current
has decayed. The current is concentrated in intense filaments localized at the magnetic o
- point and x - point of Fig.1(a). The toroidal flux RBφ in Fig.1(c) has a large poloidal
variation at the wall, indicating a large halo current.

The time history of the normalized total pressure P , total toroidal current Ip, hori-
zontal force Fx, halo current fraction Hf , and toroidal peaking factor TPF, are shown in
Fig.2. The quantities I, P , and Fx are in arbitrary units. The TPF peaks first, reaching a
value of about 2.2. Next the pressure quench begins, closely followed by the current. The
pressure quench and current quench are almost simultaneous because the pressure and
current are carried the wall by the VDE. The halo current fraction Hf peaks during the
current quench. The horizontal wall force Fx is closely correlated in time with the halo
current fraction Hf . This indicates a strong causal connection of the wall force and the
halo current.

The scaling of wall force with wall resistivity was obtained for the same initial states
with a VDE as above, by varying τw. The results are shown in Fig.3. The two curves
labeled “1” and “2” connect computed values, for two rescalings of the initial equilibrium.
The point marked “a” on the upper curve “1” corresponds to the simulations presented
above. The second set of simulations on curve “2” correspond to a less unstable rescaling
of the initial state, with I/I0 = 1.28, which is more realistic. The maximum force in all
cases occurs when γτw ≈ 1. When γτw ≫ 1, the wall is a good conductor, and induced
(eddy) wall current predominantly produces the wall force. In the case γτw ∼ 1, there is
significant magnetic flux penetration through the wall, and the wall force is much larger.
The force in this regime is produced predominantly by halo current.

In terms of ITER parameters, the toroidal field is Bφ = 5.3T, producing a magnetic
pressure of 2.24 × 107N/m2. Multiplying by the plasma surface area 2π

∫
dlR = 804m2

gives the total wall force in ITER F ITER
dim = 1.81 × 1010N . The horizontal wall force is

Fx × Fdim. In ITER terms, the peak sideways force, marked “b” in Fig.3, for the less
unstable case “2”, that we consider more realistic, is F ITER

x = Fx×F ITER
dim = 70MN. This

is somewhat more than the predicted value used in the ITER design [18]. The total wall
force Fdim scales as I2

p , where Ip ∝ Ba is the plasma current, assuming fixed aspect ratio
and q. The ITER current is about 5 times greater than the JET current, so that the JET
horizontal force in this particular case would be about 2.75 MN. This value is consistent
with experiments [6].

In JET [7, 19], the quantity dIφ/dφ was measured, where Iφ is the toroidal plasma
current as a function of toroidal angle, and was compared to the dMIZ/dφ, where MIZ =∫

JφZdRdZ is the of the vertical moment of the toroidal current density. The current was
measured in disruptions in which there was usually an upward VDE, and occasionally a
downward VDE. The net toroidal variation of Iφ is here not caused by Hiro current flowing
into the wall [7], but by the vertical asymmetry produced by the VDE displacement [2].
The variation of the toroidal current is accompanied by halo current to the wall, from
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∇·J = 0. Fig.4 shows time history of CY = C(Iφ, MIZ), for the case of Figs. 1 - 2, where
C(a, b) = (

∫
dφab)(

∫
dφa2)−1/2(

∫
dφb2)−1/2. The correlation is positive, and coincides with

the halo current. Also shown are the correlations FX = C(FR, ξR) and FY = C(FZ , ξZ),
where FR, FZ are components of the force and ξR, ξZ are the plasma displacements in the
R̂, Ẑ directions, integrated over the poloidal plane. The force is positively correlated with
the plasma displacement.

IV. Discussion and conclusion
The toroidally symmetric and asymmetric wall forces produced during a disruption are

calculated in an ITER model. A new method is derived for calculating wall forces directly
from magnetic field pressure at a resistive wall. Simulations were done with M3D using
an ITER reference equilibrium, modified so that it was both VDE and kink unstable. An
example was chosen in which a VDE carried the plasma close to the wall, when it became
kink unstable. The simulations show that the pressure, current and wall force are quenched
by the contact of the plasma with the wall. We remark that the VDE kink simulation
that we have presented so far is not fully self-consistent. In fact, the plasma edge should
be scraped off or cooled by the plasma wall interaction. This should cause the current
channel to shrink, and the current density to increase, so that q on axis will decrease
in time. This will in turn enhance plasma instability and trigger the kink mode. In the
simulation presented here, the current is rescaled initially. A completely self consistent
treatment will require additional physics modeling of the plasma wall interaction.

The dependence of wall force on wall resistivity was studied. It was found that the
relative importance of eddy current and halo current on the sideways wall force depends
strongly on γτw. If the wall is a relatively good conductor, such that γτw ≫ 1, the eddy
current predominates in producing the wall force, and the wall resistivity has little effect.
In the case, γτw ≈ 1, the halo current predominates, and the wall force is much larger.
For a given γτw, Fig.3 shows that a less unstable plasma will produce less wall force.

The variation of the horizontal force with wall resistivity which was observed in the
simulations of Fig.3 offers an important opportunity to ameliorate the sideways force of
disruptions. If the wall can be made more conducting, it is possible to reduce the wall
force by a large factor. The JET experiment operates in a regime with large halo currents
relative to eddy currents, which is the regime γτw ∼ 1. Results in this regime may over-
estimate the forces on a better conducting wall. However it should be noted that, due to
axisymmetric vertical control, it is in general difficult in any magnetic confinement device
to operate with a very conducting wall, which will shield the vertical field penetration.
Moreover, the very complicated structure of the ITER wall, where many cuts and holes
in the metal wall and blanket modules are present, will certainly make more difficult to
fulfill this requirement.

In conclusion, in this paper we have presented a self consistent computational model
for 3D MHD disruption simulations. Within this model we calculated the wall forces,
with particular emphasis on the non axisymmetric sideways force. We gave an example
for ITER with a force in the range of 70 MN, a value which can vary widely with the
growth rate γ and the wall resistivity τw.

Our model is not completely self-consistent, especially in the modeling of the self-
adjustment of the current profile, due to plasma wall interaction and plasma cooling.
Future work will be necessary to carry out more self consistent simulations, as well as to
compare simulation results with experimental data from JET and other tokamaks.
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(a) (b) (c)

Figure 1: (a) poloidal flux ψ, (b) toroidal current −RJφ, (c) toroidal field RBφ , at t = 38.54τA,

with toroidal angle φ = π.
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Figure 2: (a) toroidal current I, pressure P , TPF, halo current fraction Hf and horizontal force

Fx as a function of time. The quantities I, P , and Fx are in arbitrary units. There is a close

time correlation of halo current fraction Hf and horizontal force Fx.
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The lower curve “2”, which corresponds to more stable initial states, is more realistic.
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Figure 4: Correlations as a function of time. The correlations change sign after Fx is quenched.


