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Abstract. Dedicated JET experiments have been devised in order to test the predictions of a recent theory [J.
P. Graves, et al, Phys. Rev. Lett. 102, 065005 (2009)] indicating that sawteeth can be destabilised by ICRH in
reactor relevant conditions. Energetic passing ions influence the MHD internal kink mode instability when they are
distributed asymmetrically in parallel velocity, which is a natural feature of minority ion populations in resonance
with toroidally co or counter propagating ICRF waves. Reported here are theory and dedicated JET experiments
which have been devised in order to neutralise an alternative sawtooth control mechanism, involving changes in the
equilibrium current due to ICRF, and permit comparison with recent theory across physical parameters. Negligible
change to the net equilibrium current was assured by choosing ITER relevant 3He minority ICRF. Depending on
the antenna phasing, the sawtooth period can remain as short as those of Ohmic pulses, despite being close to the
L-H threshold. A change of antenna phasing can produce sawteeth so long that NTMs are triggered and saturated
even in L-mode. The sawtooth stability properties are explained by the effect of the wide drift orbits of fast ions
intersecting the q = 1 radius. Sophisticated numerical modelling agrees well with an analytical solution involving
the distribution of energetic particles at q = 1, and with salient experimental observation.

1. Introduction

It is now well known that long period sawteeth can trigger neoclassical tearing modes (NTMs) even in
plasmas with quite moderate performance. This is clearly a concern for future standard operation in
ITER because the alpha particle population could lengthen the sawteeth period by up to 100s [1]. To
put this into perspective, Fig. 1 reproduces a recent study [2] showing the normalised beta βN
in various machines at the time when a sawtooth trigged an NTM, plotted with respect to the
sawtooth period normalised to the resistive diffusion. The data selected from expected ITER like
parameters (shape, auxiliary power relative to L-H threshold power) demonstrates significant
data collapse across machine parameters. Assuming that this data collapse would hold also for
ITER, it is possible to predict the onset beta in ITER for an estimate of the resistive time and a
chosen value of the sawtooth period (10s and 100s chosen in Fig. 1).

It is clear from Fig. 1 that we would wish to avoid sawteeth of 100s in ITER, where we predict
NTM triggering at only βN ≈ 1.5. In the present paper, we show that NTMs can be triggered
even in L-mode with βN ≈ 0.8 by very long sawteeth. One particular JET pulse examined
here, 78739, shown in detail in Fig. 2, collapses on to the data set, and is seen, in Fig. 1 to
be the largest normalised sawtooth period and smallest normalised beta. The auxiliary power,

∗See the Appendix of F. Romanelli et al., paper OV/1-3, this conference
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FIG. 1. Showing the normalised beta at the time of a sawtooth triggered NTM in various tokamaks,
plotted as a function of the sawtooth period normalised to the resistive diffusion time [2]. Assuming
similar data collapse in ITER it is possible to predict the critical normalised beta for a particular guess
of the sawtooth period. Figure partially reproduced from Fig. 6 of Ref. [I. T. Chapman, Nucl. Fusion 50
102001 (2010)]. Copyright rests with Euratom.

relative to that required for L-H transition, was lower in 78739 than the lower limit of the
original data set employed in Ref. [2]. Nevertheless, this particular pulse fitted into the remit of
sawtooth control and manipulation in the set of experiments reported here, whose primary aim
was to validate a recent theory describing the mechanism of sawtooth control using ICRH, and
to do this using ITER relevant minority 3He. The highly effective nature of sawtooth control
using toroidally propagating ICRF waves with off-axis resonance in tokamaks has recently been
explained [3]. Energetic passing ions influence the MHD internal kink mode instability when
they are distributed asymmetrically in parallel velocity. Such populations are generated by
toroidally aligned NBI, and its effect on sawteeth is well documented [4, 5], but parallel velocity
asymmetry is also a natural feature of minority ion populations in resonance with toroidally
co or counter propagating ICRF waves. This paper reports the theory [3] and dedicated JET
experiments [6] which have been devised in order to neutralise an alternative sawtooth control
mechanism [7, 8], involving changes in the equilibrium current due to ICRF [9, 7, 10], and
permit comparison with recent theory [3] across physical parameters. Negligible change to the
net equilibrium current was assured [6] by choosing ITER relevant 3He minority ICRF.

The effectiveness of minority 3He ICRF for controlling sawteeth, and its importance, is illus-
trated in Fig. 2. The difference between the two pulses is that the direction of the toroidally
propagating ICRF waves is counter-tangent to the plasma current in pulse 78737 (-90◦ antenna
phasing), and co-tangent (+90◦ antenna phasing) in 78739, which is the JET pulse indicated by
the bold square in Fig. 1. In both pulses the early NBI phase increases the sawtooth period to
300ms from Ohmic sawteeth of around 80ms. At 18s, 4.5MW of 3He ICRF is applied on the
high field side of the q = 1 rational surface. A very slow ramp in the magnetic field and current
gives rise to a minimum in the sawtooth period of 100ms for the -90◦ phasing pulse, while for
+90◦ phasing the sawteeth become extremely long. A sawtooth of more than 1 second triggers
a neoclassical tearing mode (NTM), as indicated by the n = 2 toroidal mode number magnetic
signal shown in Fig. (2). That this could happen despite the pulse being in L-mode particularly
highlights the crucial importance of sawtooth control.

2. Theoretical Development

In this section we identify [3] the effects of finite orbit widths and parallel velocity asymmetry
for an arbitrary distribution function. We write down a solution [11] to the perturbed distribution
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FIG. 2. Time traces of 78737 (blue, -90◦ phasing) and 78739 (red, +90◦ phasing). Reproduced from Fig.
1 of Ref. [J. P. Graves, et al, Nucl. Fusion 50 052002 (2010)]. Copyright rests with Euratom.

function δF = δFf +δFk which treats wide radial drift excursion. From Refs. [11]:

δFf =−(Ze/m)(ξ ·∇ψp)
∂F
∂Pφ

(1)

is the adiabatic (fluid) contribution, ξ = ξ̂exp(−inφ− iωt) is the MHD displacement with
ξ̂ = ∑m ξ̂

m
exp(−imθ), and the non-adiabatic (kinetic) contribution δFk is e.g. defined in Eqs.

4 and 5 of Ref. [3]. Here Pφ is the toroidal canonical momentum which is conserved over the
radial drift of a single particle. In the limit of zero radial drift excursion, or orbit width ∆r,
the adiabatic (or fluid) contribution is simply a result of convective ‘c’ motion perpendicular to
the field line, δFc = −ξ⊥ ·∇F . Meanwhile, δFk is associated with the parallel dynamics, and
is often referred to as the response due to kinetic-compressibility. In particular, replacing the
drift kinetic treatment employed here with the ideal MHD model, one would substitute δFk de-
fined above with δFknc =−γF∇ ·ξ, the non-convective ‘nc’ stabilising effect of compressibility.
Assuming an isotropic equilibrium distribution function, taking a second velocity moment of
δFc + δFknc simply yields the MHD perturbed pressure δP = −ξ⊥ ·∇P− γP∇ · ξ. The MHD
model provides a very poor description of the parallel dynamics of energetic particles, and
clearly cannot describe resonant wave-particle interaction. However, MHD is a good model of
perpendicular dynamics. In particular, the perpendicular component of the MHD equation of
motion, in which δPc =−ξ⊥ ·∇P (the second moment of δFc) appears explicitly, describes the
essential perpendicular dynamics of a hybrid kinetic-MHD treatment. Nevertheless, in addi-
tional to the well known non-convective effects associated with the kinetic response δFk, finite
orbit widths introduce additional relatively exotic effects in δFf [4, 3]. As we will see, by ex-
panding δFf = δFf 0 + δFf 1 with respect to orbit radial width ∆r, we are able to identify the
finite orbit correction associated with the adiabatic contribution [4, 3]:

δFf 1 =−(Ze/m)(ξ ·∇ψp)
∂F0 +F1

∂Pφ

+ξ⊥ ·∇F0. (2)

where the equilibrium distribution F = F0 +F1 + .. has also been expanded in ∆r. It is in this
correction that the effect of parallel velocity asymmetry on the internal kink mode arises, and,
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we claim, the resulting observable affect on sawteeth.

In order to relate Eq. (2) to a potential energy δW , we recall that δW is defined in terms of the
perturbed force δF via δW =−(1/2)

∫
d3xξ

∗
⊥ ·δF , where

δF = δ j×B+ j×δB−∇ ·δP.

Now, the fast ions primarily influence the linear perturbed force δF through the perturbed
pressure tensor δP. The fast ion pressure tensor δP is of course obtained by evaluating the
second velocity moments of δF , and results in,

δW =
1
2

m
∫

d3x
∫

d3vκ ·ξ∗⊥

(
v2
‖+

v2
⊥
2

)
δFh. (3)

To make progress we need to expand F in orders of the orbit width ∆r, so that F = F0+F1+ ....
We note that another constant of motion, defined by Pφ, is the temporal average of the particles’
minor radius, r, over a full toroidal transit, i.e. r = τ

−1
b

∫ τb
0 dt r(t), where τb is the bounce time,

or transit time, for respectively trapped or passing particles. Writing r(t) = r+∆r(t) we have,

F0 = F(E ,µ,r)|r→r and F1(E ,µ,r) =−∆r G0(E ,µ,r), (4)

and

G0(E ,µ,r) = G(E ,µ,r)|r→r and G =
∂F
∂r

, (5)

with
∆r =

σq
rΩc

(
|v‖|R− pR2

0qωb
)
, (6)

where σ is the sign of v‖ , p = 1 for passing particles, p = 0 for trapped particles, ωb = 2π/τb

and Ωc = eZB0/m. Also, E = v2/2 is the kinetic energy, and µ = v2
⊥/(2B). Defining F± =

F(σ) and G± = G(σ) etc to separate the contributions of particles with respectively v‖ > 0
and v‖ < 0, one can now obtain various potential energy contributions (normalised as ˆδW =

δW/(2π2R0ξ2ε2
1B2

0/µ0)) due to passing and trapped ions. Note that the the pitch angle k2 =

(1−λB0(1− ε))/2λB0ε is employed for trapped ions, and y2 = 1/k2 for passing ions, where
λ = µ/E and ε = r/R0 the local inverse aspect ratio. We now go about solving for the adiabatic
contribution, corresponding to Eq. (1). In order to separate zeroth order effects from finite
orbit effects, we expand Eq. (1) about the flux label r. For this purpose we note that ξ ·∇ψ =

rB0ξr/q(r) and ∂/∂Pφ = Ω−1
c (q(r)/r)∂/∂r, r/r = 1+(∆r/r), q(r)/q(r) = 1− (∂∆r/∂r), where

∂∆r/∂r = ∆rs(r)/r. This then yields

δFσ
f = δFσ

f 0 +δFσ
f 1 (7)

with the lowest order convective contribution:

δFσ
f 0 =−ξrGσ

0 , (8)

and the finite orbit correction:

δFσ
f 1 =−ξr

∆r

r

(
(2− s)Gσ

0 −
y2

2
(2− y2)

∂Gσ
0

∂y2

∣∣∣∣
r
−

∂(rGσ
0 )

∂r

∣∣∣∣
y2

)
, (9)

where it is important to highlight that ∂G/∂r|λ = ∂G/∂r|y2 − (2− y2)(y2/2)∂G/∂y|r, must be
taken into account when dealing with partial derivatives. We are reminded however, that G0,
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defined in Eq. (5), is the radial derivative of F , with λ kept constant, since G = ∂F/∂r|λ. The
last term in Eq. (9) is the only finite orbit term that contributes significantly to δW when
the additional kinetic response δFk is included [3]. By employing the leading order internal
kink perturbation, assuming that the mode is close to marginal stability, such that ξr = H[r1−
r]exp(−iθ− iφ− iωt) with H the Heaviside step function, we obtain [3]:

ˆδW r1 =−
(

2
π

)1/2 2
ε1

∫ 1

0
dy2
(

ε1y2

2
− 2G1 +G2

K[y2]

)(
q

Ωc

)(
eT⊥
m

)1/2(2µ0

B2
0

)
(C+−C−)

∣∣∣∣∣
r=r1

,

(10)
where

Cσ =

(
eT⊥
m

)−1/2 (m/2)(π/2)3/2

[y2 + ε(2− y2)]3

∫
∞

0
dE (2E)2Gσ

0 ,

is valid for an arbitrary distribution function. Here

G1 =
ε

2

∮
dθ cosθ(1−εcosθ)[1−y2(sin(θ/2))2]1/2 and G2 =

y2

4

∮
dθ

cosθ(1− εcosθ)2

[1− y2(sin(θ/2))2]1/2 ,

both of which can be written [3] in terms of complete elliptic integrals of the first kind K[y2] and
second kind E[y2]. Only particles with orbits that intersect r1 contribute to ˆδW r1 . Clearly the
number of particles that do intersect increases with orbit width of a typical particle, and this in
turn is determined by the particle energy. Consequently, δWr1 is proportional to the character-
istic orbit width (i.e. T 1/2) multiplied by the pressure gradient (essentially proportional to Cσ).
Moreover, δWr1 is zero for a symmetric distribution in v‖ at r1 (for which C+−C− = 0). We re-
peat that the parallel velocity asymmetry is introduced in the experiment via the deployment of
toroidally propagating ICRF waves (+90 or -90 phasing using the JET antennas). Moreover, the
gradient in the distribution function (Gσ

0 ) at r1 can be varied extremely sensitively by moving
the resonance position across r1. Experimentally this is achieved by slowly ramping the toroidal
field, and proportionally, the plasma current. The final control parameter is the tail temperature,
which determines the characteristic orbit width. This can be controlled experimentally by vari-
ation of the minority concentration while containing the fast ion pressure through keeping the
RF power constant. It is pointed out here that the characteristics of δWr1 have been compared
[5] favourably with the results of the HAGIS code [12], and in particular, the contribution to δW
due to finite orbit widths. This has been undertaken by simulations capable of isolating only the
contribution to HAGIS of particles intersecting r1, and by variation of the radial gradient of the
distribution and the direction and degree of asymmetry. In order to undertake accurate simula-
tions without approximation of the SELFO [13] generated distribution function, we choose to
model JET experiments using the HAGIS code, but we are confident in interpreting the results
based on the physics indicated by Eq. (10) and the analysis that went into deriving it.

3. Simulations and Experimental Comparisons

We now address the experimental objective of generating negligible minority ion current in or-
der to eliminate and avoid the traditional sawtooth control mechanism [7] involving the change
the magnetic shear at q = 1. The asymmetry in toroidal wave number spectra, due to the an-
tenna phasing, gives rise to Fisch currents [9] and currents due to preferential detrapping [10]
of co and counter circulating ions. The SELFO code calculates these currents in addition to
currents that are insensitive to antenna phasing which arise from the guiding centre drift orbits
of predominantly trapped and barely passing ions. However, the plasma is dragged [9, 7] along
with the fast ions, such that the total current is proportional to a drag coefficient jd , giving
jtot = jh× jd . The fast ion current is subject to momentum conservation, quasi-neutrality and
the balance of collision rates of electrons on all ion species [9, 7], giving

jd = 1−
[

Zh

Ze f f
+

mh ∑i Zini(1−Zi/Ze f f )

Zh ∑i nimi
−G

(
Zh

Ze f f
− mh ∑i niZ2

i
ZhZe f f ∑i nimi

)]
, (11)
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FIG. 3. Showing the comparison of internal kink stability modelling and RF sawtooth control experi-
ments reported in Ref. [6]. (a) and (b) are the measured sawtooth period, and simulated δW contribution
for 76189 (-90◦ phasing). (c) and (d) are the same but for 76190 (+90◦). Reproduced from Fig. 4 of Ref.
[J. P. Graves, et al, Nucl. Fusion 50 052002 (2010)]. Copyright rests with Euratom.

where G = 1.46A(Ze f f )ε
1/2, A is a weak function of Ze f f and i denotes ion species other than

hot (h). In Ref. [6] it is shown that jh has a dipole structure, with maximum current around 30
kA/m2. Due to the minority ion mass number mh = 3 and charge Zh = 2, deuterium bulk ion
population, carbon and beryllium impurities, and moderate Ze f f ≈ 1.8, the effect of the plasma
drag is to lower the net driven current density by at least 90% within the q = 1 surface, so that
the change in the shear due to current drive is negligible. It is therefore concluded that the
sawteeth were not controlled by the effect of ICRF current drive on s1. Moreover, that the trend
in the sawteeth is opposite for +90 and -90 phasings rules out the possibility that the sawteeth
were modified simply by the effect of localised electron heating.

It is now shown that sawteeth are modified by ICRH even for pulses with relatively low aux-
iliary power. Diagnostic neutral beams with a power of 1.4MW were used in pulses 76189,
employing 3MW of ICRF with -90◦ phasing, and 76190, employing 2MW ICRF with +90◦
phasing, both with low concentration (up to 0.5%) minority 3He. The toroidal magnetic field
was ramped upwards from around 2.88T to 2.96T, and the plasma current was ramped propor-
tionally. Figure 3 (a) and (b) plots the sawtooth period for 76189 and 76190 as a function of
the 3He resonance position relative to the measured inversion radius. It is seen that the saw-
tooth period is strongly modified as the resonance position is shifted relative to the sawtooth
inversion radius. The pulse with -90◦ phasing exhibits a narrow window of sawtooth destabil-
isation, while the +90◦ phasing pulse exhibits the opposite. Employing the SELFO generated
distribution function for pulses 76189 and 76190 in the drift kinetic code HAGIS [12], together
with an MHD displacement supplied from linear ideal MHD numerical calculations, reveals
the corresponding fast ion contribution to ˆδW without recourse to approximation of wave and
guiding centre interaction. Figure 3 (c) and (d) compares the observed signature of the sawtooth
period with the fast ion potential energy when plotted with respect to the difference between
the 3He resonance position and the measured and the q = 1 radius. The narrow region over
which the sawteeth are sensitive to the ICRF deposition, also visible in Fig. 3, is recovered by
the simulations, which assume r1 = rinv. The sign of the RF ion ˆδW contributions is consistent
with the observed effect on the sawteeth, and the amplitude is larger than all other contributions
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to ˆδW including the collisionless stabilisation from the NBI ions. We note from Fig. 3 that the
response of the trapped ions is much less than the passing ion response, as expected from the
mechanism of Eq. (10).

Furthermore, by exploiting the knowledge of the fast ion control mechanism derived in [3], it
has been possible to reduce its effect, and the corresponding sawtooth control, thereby provid-
ing further experimental evidence in support of the theory. The aim is to reduce the finite orbit
width of the fast ions, which scales with the hot ion temperature as ∆r ∝ T 1/2

h . Referring e.g. to
Stix [14], the hot ion temperature is proportional to the ICRH power, and inversely proportional
to the minority ion concentration. Pulses with contrasting 3He concentration exhibit the same
signature with respect to the scan in resonance position, but the amplitude of the effect is re-
duced for increased concentration, as expected for the fast ion mechanism, and contrary to the
current drive mechanism [7]. Pulse 78740 shown in Fig. 4 (a) employs approximately 4.5MW
of -90◦ phasing ICRH with relatively high minority 3He concentration (up to 3% of the elec-
tron density). This can be compared directly with the otherwise identical pulse 78737, detailed
also in Fig. 2, employing -90◦ phasing with relatively low minority 3He concentration (up to
nh/ne = 0.6%). The several-fold increase in 3He concentration in 78740, relative to 78737, is
consistent with the deliberate increased opening of the 3He gas valve. The two pulses exhibit
the same signature with respect to the scan in resonance position, but the amplitude of the effect
is reduced for increased concentration, as expected for the fast ion mechanism, and contrary
to the current drive mechanism [7] (currents remain negligible). Detailed verification [6] that
the fast ion mechanism [3] is consistent with the experiments shown in Fig. 4 (b) is undertaken
by SELFO/HAGIS simulations evaluating the stability of JET pulses 78737 and 78740. Fig-
ure 4 plots the ICRH ion contribution to ˆδW , upon variation of r1− rres, for nh/ne = 0.01 and
nh/ne = 0.03, relevant for 78737 and 78740 respectively. It is seen that the range in r1−rres over
which ICRH has a destabilising effect is independent of concentration. Meanwhile, the strength
of destabilisation of counter propagating ICRH waves on the internal kink mode is even more
sensitive to concentration than would be expected from the simple relation ∆r ∝ (ne/nh)

1/2. For
nh/ne = 0.01 the effect of ICRH dominates stability, while for nh/ne = 0.03 the effect of ICRH
is much smaller than the combined effect of NBI and MHD, as expected from experiments (Fig.
4 (a)). Finally, if the 3He concentration is too low, minority power absorbtion is reduced, and
enhanced minority ion energies lead to broader hot ion deposition, and losses, and a reduced
impact on sawteeth, as indicated by the simulation in Fig. 4 (b) employing nh/ne = 0.0015.
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4. Conclusions

This paper summarises a new mechanism [3] that has been proposed to explain the highly ef-
fective nature of sawtooth control using off-axis toroidally propagating ICRH. By developing
an analytical treatment, it is shown that energetic passing ions influence the internal kink mode
when the distribution of ions is asymmetric in v‖. Such distributions are clearly a natural prod-
uct of co or counter propagating ICRH waves. When a counter propagating wave is deposited
sufficiently close to the q = 1 radius, r1, on the high field side, the fast ion effect is so strong
that the internal kink mode is driven ideally unstable. Furthermore, it is shown that the response
of the fast ions on the internal kink mode is very sensitive to the difference between the position
of the RF resonance radius and r1. This is due to the fact that the only fast ions that contribute
are those that intersect the q = 1 radius, and thus the mechanism is not diminished by inte-
gration over sharp features in the distributions’ radial profile. Moreover, the mechanism can
also explain sawtooth stabilisation with co-propagating waves on the high field side. With this
theoretical model at hand, it was possible to design experiments [6] capable of testing the mech-
anism over various parameters, while eliminating other known control mechanisms. Choosing
3He minority ensured that there would be minimal modification of the magnetic shear due to
ICCD. Despite this, it was found that the sawtooth period was extremely sensitive to the RF
resonance position relative to the q = 1 radius, as expected from the theory. Furthermore, more
advanced experimental verification has been undertaken [6] by variation of the amplitude of
the fast ion mechanism. In particular, by reducing the tail temperature, and therefore the orbit
widths of the fast ions, via in increase in the 3He concentration, it was verified that sawtooth
control becomes less effective. In the present proceedings, these dedicated experiments are
compared favourably with sophisticated modelling using the SELFO [13] code for the fast ion
distribution function, and the HAGIS [12] code for the stability calculations. In these codes
the physics of finite orbit widths are included in the calculations. Finally, that fast ions can so
dramatically, and directly, affect sawteeth is encouraging for 3He minority ICRH deployment
in ITER, where control solely via the magnetic shear is expected to be more challenging [15].
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