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Abstract. Approaching the problem of toroidal momentum evolution within the framework of the neoclassical 

theory with the corrected Braginskii stress tensors, this paper looks for the counterparts of terms like fluxes and 

sources in the momentum conservation equations and presents their numerical solutions for the evolution of the 

toroidal and poloidal velocities. Present study considers a subsonic, collisional plasma in front of the magnetic 

separatrix having a model temperature profile with a controllable gradient and a pedestal height. Study indicates 

a nonlinear, two-time-scales-coupling between the poloidal and toroidal rotation velocities and shows that the 

poloidal rotation velocity has a faster response time. If gyrostress tensor is properly taken into account, however; 

the longer-time evolution of the poloidal and toroidal rotation velocities are strongly coupled. This behaviour is 

found to be governed by a system of three quasilinear partial differential equations where the space variable is a 

radial boundary layer distance from the magnetic separatrix. Possibility of a solution is determined by the chosen 

initial and boundary conditions, (Dirichlet or Neumann), at both limits of the radial boundary layer and the 

gradient and pedestal height of the model temperature curve used. Steep temperature gradients are found to lead 

to rapidly diverging rotation velocity profiles. 

 

1. Introduction 

 

Rotation profiles have an important role in the self-regulating mechanisms related to the 

transition to the better confinement modes of tokamak plasmas [1]. Former interest for the 

explanation of the observed poloidal plasma rotation in tokamaks [2-4], has lately shifted to 

the analysis of spontaneous toroidal rotation [1, 5-8], since it does not require an external 

momentum driver, which may not be available in the future large devices such as ITER [1]. 

Self-generated toroidal rotation has been observed in many tokamaks, mostly in co-current 

direction at the edge [1, 9], whereas some counter-current rotation is also observed with 

strong negative electric field in recent experiments for different heating methods [10].  

 

The plasma rotation problem can be formulated as a conservation equation for the toroidal 

momentum, deriving the flux and source terms of the toroidal momentum and the convection 

velocity arising, for example, from various turbulence mechanisms [7]:  
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where mi is the ion mass, Ni is the ion density, R is the major radius, V  is the toroidal 

velocity,  is the effective diffusivity, Vpinch is the convective velocity, res is the residual 

stress and  is the possible external torque. Note that the convective derivative term on the 

right hand side has dropped out in the surface averaging of equation (1) [11].  

 

This paper looks for the counterparts of various terms in equation (1) in the regime of high 

collisionality and presents numerical solutions for the evolution of the toroidal and poloidal 

velocities assuming a model temperature profile with a controllable gradient and a pedestal 
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height. In the second section, basic equations describing the plasma at the collisional edge 

region of a tokamak plasma, and the adopted temperature distribution have been introduced. 

In the third section an outline of a numerical solution procedure for these equations and in the 

fourth section the results have been given. Discussion of the results and the conclusion are in 

the fifth section. 

 

2. Governing equations 

 

It has been shown [12] that a collisional model of plasma at the edge region of tokamak 

plasmas near the magnetic separatrix is consistent with a series of past experiments. For 

example, in some shots of Alcator C-Mod ELM-free Ohmic discharges and both L- and H- 

modes of ASDEX-U device near the edge region the non-dimensional collision frequency is 

222.0c/qRˆ
ii , indicating that the plasma is collisional [13], where q is the safety 

factor, i is the ion-ion collision frequency, and ci is the thermal speed of ions. In this study 

we approach the problem of toroidal and poloidal rotation of plasmas in the context of the 

revisited neoclassical theory [14-18] accounting the effects of steep temperature and density 

profiles where the standard neoclassical theories would not be adequate.  

 

The equations of toroidal momentum evolution within the framework of revisited neoclassical 

theory [14], including the corrections [19] to the stress tensors in the Braginskii’s two-fluid 

equations [20], have already been obtained for the edge region of tokamak devices with 

circular [15] and arbitrary [16] cross-sections including various source terms [17] in subsonic 

region. Flux surface averaged equation for circular cross section tokamak is:  
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where U  and U  are the poloidal and toroidal velocities. r is the minor radius. Jr is the radial 

polarization current.  and  are possible externally applied particle and momentum 

sources, such as charge exchange and neutral beam injection. 
1

i
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ii||,
, parallel heat diffusion 

coefficient is iiii||, m/P9.3 . B, B  and B  are the total, poloidal and toroidal magnetic 

fields, respectively. 2,i is the perpendicular viscosity coefficient.  is the unit vector in 

toroidal direction and h=[1+(r/R) Cos ] . 

 

The second term in the right-hand side of equation (2) has originated from the gyrostress 

tensor. It provides toroidal torque even when there is no external toroidal momentum source, 

such as imparted by a neutral beam injection [16].  

 

By using a similar approach, the flux-surface averaged equation of the poloidal motion for 

both arbitrary and circular cross-section of tokamak plasmas in the edge region can be 

obtained [16] and extended to include faster time-scales [17].  Flux surface averaged parallel 

momentum equation for circular cross section tokamak is: 
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(3) 

 

where 0,i is the parallel viscosity coefficient.  

 

Equations (2) and (3) have a two-time-scales-coupling between the poloidal and toroidal 

rotations and shows that the poloidal rotation velocity has a faster response time, 0

2

ex1  

[12, 17], where ex is the expansion parameter to reduce the corrected Braginskii’s equations. 

On a longer time scale, 
1

i

2

ex0 )(~  however, if gyrostress tensor is properly taken into 

account, the poloidal and toroidal rotation velocities are strongly coupled. And, the poloidal 

rotation provides a further source mechanism for the toroidal rotation [16].  

 

The temperature profile is prescribed and taken to be constant during the temporal evolution. 

The distribution along the spatial dimension can be approximated as a sum of special 

monotonic functions of the radial coordinate, ξ, [12]: 
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where Ai, Ci, and μi are constants and Ts is the temperature at the separatrix. Functions yi have 

the property )y1(y2yand)y1(y 2
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ii . Therefore, the equations governing 

the motion of the plasma can be constructed as an autonomous system. By using the 

temperature values at the core side of the edge region and on the separatrix, we can get two 

equations for the two coefficients in the equation (4)  
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where Tc is the temperature at the inner side of the boundary.  In order to reduce the 

computational expenses, here, temperature profile is taken simply as, 

/Ctanh1T5.0)(T 1c , where cs

1

1 T/T21tanhC . Therefore the steepness of 

the temperature profile is controlled by the parameter, . Hence, the derivative of the 

temperature can be expressed in terms of the temperature distribution instead of the radial 

coordinate as TT/T1T/2T cs ,   and T)T/T(21T)T/T(1T)/2(T cscs

2

 
[12, 19]. For different values of , some of the temperature profiles can be seen in FIG. 1. 

Note that as the  decreases, i.e., as the profile steepens, the stored energy of the plasma 

increases.  
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FIG. 1.  Temperature profile. As the parameter , decreases, the profile become steeper. The 

distributions shown with solid thick lines have been used in velocity calculations. 

 

3. Solution procedure 

 

The long-time-scale behaviour of the poloidal and toroidal velocities is found to be governed 

by a (normalized) system of three quasilinear partial differential equations (6), where the 

space variable rs L/)rr(  is the normalized radial distance from the separatrix, Lr is the 

length scale of the temperature gradient and rs is the radial location of the separatrix. 

Temperature is also nondimensionalized using the value at the separatrix, Ts. The toroidal 

(U ) and poloidal (U ) velocities are normalized by exci and ex
2
ci, respectively. And the 

temporal evolution of the plasma is taken to be synchronized with the toroidal damping time, 

which is slower than the poloidal one by two orders [21]. The toroidal and poloidal rotation 

equations can be cast into a conservation form as follows: 
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The normalized toroidal and poloidal rotation velocities are expressed above by the u1, u2 

components of the unknown vector u, respectively. The third component, u3 is a nonlinear 

function of u1, u2, and T(ξ) ,  namely,  u3=u3(ξ,u1,u2)=[η2 )u,u,(F 21  – G(ξ,u2)u2], where    
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with the terms representing the charge exchange and radial current effects Ka = CX, 

KB=Jr·B  , respectively. 

 

The quasilinear matrix equation (2) can be also rewritten as, 
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where 
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where ]1)GuGF/(F[FH 2uu2u2u 2221
.  

 

The quasilinear system (10) can be numerically solved using a method provided by [22] for 

given initial u(ξ, t0)=u0(ξ), and boundary conditions, at =a or =b for all t, of the form 

0)/,,,t(),t(),,t( uufqup , where p and f are vectors and q is a diagonal matrix 

with elements that are either identically zero or never zero [22]. The thin edge region of a 

tokamak with large aspect ratio, as considered in this study, is taken as a slab model (m=0 in 

Ref. [22]). The steady state solutions of the system (2’) have bifurcation behavior and richer 

structures especially when the temperature distribution becomes steeper, i.e. 0 [12]. 

 

4. Results 

 

By using a code to implement the solution procedure given in the previous section, we study 

the effect of the steepness of the temperature gradient. The radial coordinate is discretized by  

300 stations and the 21 non-dimensional time steps have been taken to calculate the motion 

from t=0 to t=0.25. The temperature at core-side of the edge region is taken as 5 times of the 

temperature at the separatrix. In the solutions, Dirichlet-type boundary conditions are taken. 

The plasma is assumed to be at rest initially.  

 

In the FIG. 2., and FIG. 3., the temporal evolution of toroidal and poloidal rotations of the 

plasma is presented, respectively, for =2, and =1.5 (steeper gradient) in the temperature 

distribution. In both figures, plasma gains momentum and accelerates in both toroidal and 

poloidal directions even without an external torque supplier in the neoclassical context. The 

driver of this motion is the gradient in the temperature distribution [16]. As the temperature 

gradient becomes steeper, i.e. as the stored energy of the plasma increases, it is seen that the 

maximum value of both toroidal and poloidal velocities increases.  
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 a) =2.0  b) =1.5 (Steeper temperature profile) 

 

FIG. 2.  Effect of the steep temperature profile on toroidal velocity, U  . 

 

The maximum value of the poloidal rotation along the minor radius has a tendency to migrate 

through the core side, whereas toroidal rotation has no such behavior. 

 

  
 a) =2.0  b) =1.5 (Steeper temperature profile) 

 

FIG. 3.  Effect of the steep temperature profile on poloidal velocity, U  . 

 

The electric field is calculated using radial momentum balance equation 

r/Pln)e/T(UBUBE iiir  
where Pi is the plasma pressure. In FIG. 4., non-

dimensional electric field is shown with negative values along the edge region. Here, we note 

that the toroidal velocity term is dominating. 

 

  
 a) =2.0  b) =1.5 (Steeper temperature profile) 

 

FIG. 4.  Effect of the steep temperature profile on radial electric field, Er . 
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Increasing the steepness of the temperature gradient also causes the plasma to have a reverse 

toroidal velocity around the separatrix side of the solution region. FIG. 5 is the blow-up view 

of the FIG. 2. Here, a small but persistent positive toroidal velocity for different steepness 

values is found. We have seen that steepening the gradient accentuates this behavior.   

 

  
 a) =2.0  b) =1.5 (Steeper temperature profile) 

 

FIG. 5.  Effect of the steep temperature profile on toroidal velocity, U  . Magnified view of the FIG. 2. 

Steeper gradient cause the plasma to rotate in reverse direction at the edge. 

 

Changing the initial and boundary conditions in the core side of the plasma may cause the 

direction of the toroidal rotation to be reversed. It also makes the velocity distributions more 

complex. Examples of time dependent solutions of toroidal and poloidal velocities for 

moderately steep temperature profiles ( =2) for non-zero boundary conditions are shown in 

FIG. 6. In this figure, spatial discretization is taken as the previous calculations. The equations 

are integrated for  t (0 , 2) interval with 20 non-dimensional time steps. For both toroidal and 

poloidal velocity, it is assumed a temperature like (tangent-hyperbolic) initial curve with     

U  = 20, U  = 5 for =  8 (i.e., core side) and U  =  0.1, U  = 0 for = 1 (i.e., outer side). 

 

 
 a)  Toroidal velocity 

 
 b)  Poloidal velocity 

 

FIG. 6.  Initial and boundary value solutions for toroidal (a) and poloidal (b) rotation velocities with 

nonzero initial and boundary conditions.  

 

We observe that for smaller  values, i.e., for steeper temperature gradients, the velocities 

may have multi-valued solutions along the radius leading to possible mode transitions or 

instabilities. In such cases, adoption of a different numerical solution technique becomes 

necessary.  
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5. Conclusion 

 

In this paper, flux-surface averaged equations governing the toroidal and poloidal motion of a 

collisional edge region of tokamak devices with circular cross-section and large aspect ratio 

were solved by numerical methods. Temperature profiles were assumed to be given and 

constant during the calculations. It is seen that both toroidal and poloidal rotation starts and 

grows even without external momentum source in initially non-rotating plasma as indicated 

by Ref. [16]. The terms in gyro-stress tensor for steep gradients acts as a toroidal momentum 

source in the neoclassical context. At the same time, the strong coupling between the parallel 

and toroidal momentum equations causes the plasma to rotate in the poloidal direction as well. 

Qualitative agreement between the results and the experiments for toroidal velocity and radial 

electric field encourages the quantitative comparisons in the future studies. 
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