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Abstract: Electrostatic turbulence and transport can dominate reversed field pinch (RFP) confinement when 
transport from global-scale magnetic fluctuations is reduced by profile control and quasi-single helicity states.  
Ion and electron temperature gradient (ITG and ETG) turbulence and trapped electron mode (TEM) turbulence 
are examined in the RFP by adapting the gyrokinetic code GYRO to RFP equilibria.  Solution of the Grad 
Shafranov equation yields toroidal generalizations of the cylindrical Bessel Function model.  These are used to 
study instability for comparable toroidal and poloidal magnetic fields, and with the ultra low safety factor 
values of the RFP.  RFP equilibrium parameters of importance for ITG turbulence, like magnetic shear and 
safety factor, are not independent and must be varied consistent with their dependence on radial position and 
pinch parameter.  ITG modes are unstable in the RFP.  Instability is enabled by the everywhere bad curvature of 
the poloidal magnetic field.  There is no ballooning at the outside midplane.  Parallel streaming is important but 
not enough to produce slab-like eigenmode structure in GYRO.  The instability threshold in temperature 
gradient scale length, normalized to minor radius is comparable to the tokamak threshold scale length, 
normalized to major radius.  This makes the critical gradient in the RFP higher by the aspect ratio.  For 
wavelengths smaller than the sound gyroradius, nonadiabatic electron physics yields instability related to TEM 
and ETG.  Nonlinear simulations indicate a Dimits shift as in tokamaks. 

1. Introduction 

Current profile control techniques [1] and quasi-single helicity states at high plasma current 
[2] have yielded reversed field pinch (RFP) plasmas with greatly reduced stochastic magnetic 
transport from global tearing modes. When global tearing modes are controlled, transport 
from small-scale electrostatic and electromagnetic fluctuations becomes important and can 
govern confinement, as in the tokamak.  However, unlike the tokamak, it is not known what 
small-scale fluctuations are responsible for confinement degradation.  Many types of 
fluctuations familiar from other toroidal configurations are rendered stable or only feebly 
unstable by the strong magnetic shear of the RFP [3] – [4].  However, much of the work that 
established the strong stabilizing influence of shear was based on reduced models.  With the 
emergence of comprehensive models for toroidal geometries, and given the importance of 
small-scale electrostatic and electromagnetic fluctuations in RFP plasmas when magnetic 
turbulence is reduced, it becomes crucial to develop comprehensive toroidal models of 
gyroradius-scale turbulence in the RFP.  Computational studies can then be carried out to 
understand the physics of these fluctuations and assess techniques for their control. 

We describe a study of ion temperature gradient (ITG) instability and drift instabilities 
associated with nonadiabatic electrons in the RFP using the gyrokinetic solver GYRO [5].  
ITG turbulence is of central interest because it remains unstable even for the large magnetic 
shear of the RFP.  Moreover, pulsed poloidal current drive (PPCD) yields peaked 
temperature profiles with flat density profiles, giving large values of ηi = Ln/LT and therefore 
providing a strong drive.  GYRO was developed for tokamak equilibria, which among other 
properties, have toroidal fields that significantly exceed polodial fields, safety factor values q 
that are order unity and larger, and toroidal flux that is a single-valued function of radius.  
We describe here reconfiguration of GYRO to accommodate the RFP equilibrium so that the 
code handles toroidal and poloidal fields of arbitrary magnitude in toroidal geometry, 
including the ultra low q values of the RFP.  Part of the reconfiguration is the development of 
properly ordered, toroidal equilibrium approximations of the Grad Shafranov equation that 
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have the simplicity and utility of the so-called s-α tokamak equilibrium model [6] or the 
strictly cylindrical Bessel function model [7] of RFP equilibria.  Properly ordered toroidal 
RFP equilibria are desirable for both physics understanding and validation work.   

Based on simulations with reconfigured GYRO, we find that the ITG mode can be unstable 
in the RFP, particularly for magnetic equilibria attained with current profile control.  The 
mode is driven by the curvature drift resonance but does not balloon significantly when the 
poloidal field, with its everywhere bad curvature, is dominant.  This occurs in the outer parts 
of the discharge where the driving gradient is strongest, and when the pinch parameter Θ is 
large, as occurs in PPCD.  These changes affect ITG stability, mode structure, turbulence and 
transport and are the subject of qualification and verification efforts described herein.  Future 
work will pursue validation opportunities. When nonadiabatic electrons are included there is 
signficant new instability at wavenumbers above an inverse ion gyroradius, indicating the 
importance of electron trapping and electron temperature gradient drive.   

2.  Equilibrium Modeling for Gyrokinetic Computation in the RFP   

The Bessel function model, while the standard equilibrium representation of the RFP, is a 
cylindrical equilibrium.  We solve the Grad-Shafranov equation for the RFP and establish a 
hierarchy of approximate toroidal equilibria for computational studies [8].  In the limit of 
large aspect ratio (ε ≡ a/R0 << 1), where R0 is the major radius at the flux surface center, the 
Grad-Shafranov equation is R(∂/∂R)[(1/R)∂Ψ/∂R] + ∂2Ψ/∂Z2 = –µ0R

2p′–FdF/dΨ.  Here R and 
Z are radial and axial coordinates of a cylindrical coordinate system aligned with the toroidal 
axis of symmetry, RBφ = F(Ψ), and Bθ = |∇Ψ|/R, relating F and Ψ to the toroidal and poloidal 
fields Bφ and Bθ.  We introduce the approximation F(Ψ) = µ(Ψ − Ψs), where Ψs is a constant 
of order ε or smaller.  This approximation is well satisfied by equilibria in MST [9].  
Moreover the poloidal component of the force free condition ∇×B = µB yields jθ = 
(dF/dΨ)(Bθ/µ0), which implies dF/dΨ = µ.  This approximation for F is substituted into the 
Grad-Shafranov equation.  The average poloidal beta is assumed to be of order ε2, allowing 
the neglect of the term dp/dΨ.  The resulting equation is expanded in powers of ε and solved 
order by order up to O(ε).  Constants of integration are chosen to satisfy wall boundary 
conditions.  Assuming shifted circular flux surfaces the solution up to this order depends on 
only two parameters, µ = 2Θ/a and r/a, where Θ = 〈Bθ〉

wall/〈Bφ〉
vol is the RFP pinch parameter.  

The solution is  
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where δ = –(π)1/2(Θ/2)F1(2Θ)/J1(2Θ) and F1 is a combination of Bessel functions [8].  The 
shift Δ is different from tokamak equilibrium models in two ways.  Its radial variation is not 
quadratic, and it exists even for zero beta.   

From this solution the toroidal and poloidal fields are given by 
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where Δ′ = (∂/∂r)Δ(r/a) and θ is the poloidal angle on the flux surface measured from the 
outboard midplane.  When the gradient in the poloidal beta is large the flux surface shift Δ′ is 
important.  Otherwise, the shift can be neglected, yielding  

 

€ 

Bφ =
B0J0(2rΘ /a)
1+ (r /R0)cosθ[ ]

, (3) 

 

€ 

Bθ =
B0J1(2rΘ /a)
1+ (r /R0)cosθ[ ]

. (4) 

Note that this result corresponds to a generalization of the Bessel function model to include 
the factor (1/R) of toroidal geometry.  The factor applies to both components of the field.  
We call this equilibrium the toroidal Bessel function model (TBFM).  The equilibria of Eqs. 
(1)-(2) or (3)-(4) can be used as reduced equilibria in GYRO for assessing scalings and 
trends of instabilities and turbulence.  These replace the s-α equilibrium, which is not 
appropriate when the poloidal field becomes large.  For RFP discharges with Θ > 3, the 
approximations made in deriving Eqs. (1) and (2) break down.  In such cases local Miller 
equilibria could, in principle, be fitted to experimental RFP equilibria using the full available 
parameter set of the Miller equilibrium embedded in GYRO to capture the shape of the flux 
surfaces.    

In the RFP both the toroidal and poloidal fields are constrained by the internal physics of 
relaxation.  Consequently parameters on which ITG instability is sensitive, and which are 
treated as independent in tokamak modeling, cannot be varied independently in the RFP. 
Magnetic shear s and q,  which  affect  stability  through  the magnetic drifts, are functions of  
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               Fig. 1. Variation of q and s with Θ 

radial position and pinch parameter Θ. For 
the TBFM whose fields are given in Eqs. (3) 
and (4), q = (εr/a) J0(2Θr/a)/ J1(2Θr/a), and 
s = 2–2qΘ/ε −2r2εΘ/qa2.  These approxima-
tions are valid if Θ  is not too large, a 
condition met in standard discharges.  In 
PPCD discharges Θ  is larger and the 
equilibrium must be taken from experiment.  
The dependence of q and s on Θ  is 
illustrated in Fig. 1, where Θ  is varied for 
fixed r/a = 0.1.  Magnetic shear and safety 
factor are constrained to lie on the curved 
line.  The upper part of the curve 
corresponds to small Θ, and the field is 
tokamak like with Bφ >> Bθ and weak shear.  
As Θ increases, increasing poloidal field 
drops the safety factor to small values.   

The magnetic shear changes little at first and then drifts to negative values.  The red point is 
Θ = 2 and corresponds to a typical RFP equilibrium with q = 0.16 and s = -0.041.  For 
reference, the point marked by a ‘*’ and labeled ‘CYL’ is the tokamak cyclone base case 
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[10].  For larger r/a the curve is displaced further to the left, giving more negative values of 
magnetic shear for a given Θ. 

3. Linear Instability Properties 

RFP discharges have q << 1 and magnetic shear s < 0, wholly outside the parameter space of 
tokamak operation.  It is therefore essential to perform verification of GYRO with the RFP 
equilibrium modifications.  At sufficiently small Θ and r, Bφ exceeds Bθ,  as in a tokamak.  In 
this case an RFP equilibrium such as the TBFM and a standard Miller tokamak equilibrium 
[11] converge.  Benchmarking with tokamak runs verifies ITG growth rate calculations for 
RFP equilibrium modifications.  As Θ and r increase, Bθ becomes larger than Bφ.  Because 
the ITG instability is sensitive the curvature drift resonance this change in magnetic field 
configuration leads to changes in the growth rate.  This is illustrated in Fig. 2, which shows 
the real frequency and growth rate at various radial positions for Θ = 1.35.  At small r the 
Miller and TBFM results closely agree.  At larger values of r the growth rates are different, 
with the TBFM yielding lower growth rates for higher values of kθρs. The mode structure at 
higher values of r does not balloon at the outside midplane, rather its extent along the field 
line greatly increases. As a result, converged growth rates require much larger parallel 
resolution than for the tokamak, and much greater temporal resolution.  The growth rate 
remains strongly dependent on the curvature drift, but it is the curvature drift of the poloidal 

 
Fig. 2.  Normalized real frequency (a) and growth rate (b) as functions of poloidal 
wavenumber for a variety of radial positions.  Solid lines indicate a tokamak equilibrium 
provided by the Miller model and the ‘+’ symbols indicate the TBFM.   

field, indicating that drive is enabled by the everywhere-bad curvature of the poloidal field.  
The parallel streaming term k||v|| is large in the RFP, but not enough to force a slab-like mode 
structure.  Nonetheless the term remains essential for quantitatively correct predictions of the 
growth rate.  The ITG instability for q << 1 and s < 0 has shear scaling like that of tokamak 
regimes: the growth first increases with more negative magnetic shear, and then decreases, 
consistent with the importance of the curvature drift resonance over the parallel streaming 
resonance.  The scaling of growth rate with temperature ratio Ti/Te is also similar to that of 
the tokamak.  The growth rate decreases with increasing Θ.   
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As shown in Fig. 3, variation of the temperature gradient scale length LT establishes that for 
the RFP, the ITG threshold gradient LTcrit, normalized to minor radius is comparable in 
magnitude to the tokamak threshold gradient normalized to the major radius, i.e., a/LTcrit|RFP ≈ 
R/LTcrit|TOK.  Hence the critical gradient is order R/a higher in the RFP.  This difference is 

      Fig. 3. Growth rate as a function of a/LT 

consistent with the growth rate dependence 
on poloidal curvature in the RFP, the 
unavailability of ballooning to magnify the 
destabilizing effect of bad curvature, and the 
fact that magnetic shear is stronger in the 
RFP than in the tokamak by R/a. These 
observations suggest that there may be a 
subdominant slab-like branch that could 
become dominant for certain parameters. 
They also indicate that ITG may remain 
active at smaller radial locations in the RFP 
than in the tokamak due to the increasing 
importance of toroidal field.  The results of

these studies are at variance with analytical calculations [12], which have used invalid 
simplifying assumptions for the kinetic operator.  Indeed the importance of both the Landau 
and curvature drift resonances in the kinetic operator make the RFP a more stringent test bed 
for validation of the gyrokinetic model than the tokamak, and point to a significant validation 
opportunity. 

4.  Microturbulence Physics Studies for the RFP  

Non adiabatic electrons have been included in linear stability calculations, as illustrated in 
Fig. 4, which shows the real frequency and growth rate as a function of k for a calculation 
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Fig. 4.  Real frequency and growth rate as 
function of k with non adiabatic electrons. 

 

Fig. 5.  Time histories of zonal flow and 
finite n potentials 

with zero beta.  Below kρs = 0.8, the growth rate is the same with or without nonadiabatic 
electrons.  Above this value the growth rate increases sharply when nonadiabatic electrons 
are included; otherwise it decreases.  The mode frequency changes from the ion to the 
electron diamagnetic direction as the wavenumber increases into the range of this new 
instability.  Electrostatic mode structures in the high k region have even parity along the field 
line.  In tokamaks the new branch is the trapped electron mode (TEM) at intermediate k and 
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the electron temperature gradient mode at higher k.  The mode structure and frequency 
suggest that TEM operates in the RFP, a fact that has not been verified previously.  It should 
be noted that there are significant numbers of trapped electrons in the RFP, from both 
toroidal and poloidal fields, as indicated by the TBFM, Eqs. (3) and (4).   
Flux tube simulations of saturated ITG turbulence have been performed for a range of values 
of the temperature gradient scale length. The heat diffusivity shows a Dimits shift, increasing 
weakly with a/LT right above the threshold, and then increasing more sharply further above 
the threshold.  This behavior is related to zonal flows.  Figure 5 shows time histories of the 
electrosatic potential for n = 0 and finite n components.  There is a significant zonal flow.  It 
should be noted that in the RFP edge, where the field is predominantly poloidal, the zonal 
flow is toroidal.  Recent gyrokinetic studies of ITG turbulence in tokamaks have shown that 
the turbulence is saturated by stable eigenmodes that damp energy injected by the instability 
in the same wavenumber range as the instability [13].  Zonal flows provide an efficient 
energy transfer channel from the instability to the stable eigenmodes [14].  When this 
channel is artificially suppressed, energy flows to the damped eigenmodes through less 
efficient channels, which require larger amplitudes.  This process is expected to apply to the 
RFP and will be studied in the future. The possible role of ITG turbulence in the spontaneous 
rotation of RFP plasmas will also be investigated.   

5.  Conclusions 

The stability and fluctuation properties of temperature gradient driven drift waves, including 
ITG, TEM and ETG, have been studied for RFP plasmas using gyrokinetics. The Grad-
Shafranov equation has been solved under an aspect ratio expansion, yielding toroidal equil-
ibrium approximations, including a toroidal generalization of the Bessel function model of 
RFP equilibria.  These equilibria are parameterized by the radius and pinch parameter, and 
indicate that quantities such as magnetic shear and safety factor are not independent.  The 
toroidal equilibria derived are used in GYRO to study microinstability and turbulence in the 
ultra low q, negative magnetic shear environment of the RFP.  The ITG mode is unstable in 
the RFP, with a threshold measured in a/LT that is comparable to the tokamak threshold 
measured in R/LT.  Growth rates decrease with the pinch parameter.  The instability is sensi-
tive to the curvature of the poloidal field and shows little tendency to balloon.  Extended 
mode structure along the field line requires significantly larger parallel resolution than that of 
the tokamak.  The toroidal equilibrium admits significant trapped particles and nonadiabatic 
electrons lead to trapped electron instability above kρs = 0.8.   
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