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Abstract. The fusion power scales as square of the plasma density and an achievement of a possibly 

highest density is a topic of great interest for economically profitable fusion reactors [1]. It is well known, 

however, that in tokamaks in the high confinement H-mode, there is a dramatic deterioration of plasma 

particle and energy confinement and back transition to the low confinement L-mode when one approaches 

the Greenwald limit (
2/Gr pn I aπ∼ , with Grn  measured in 

20 310 m
−

, the plasma current pI  in MA and 

the separatrix minor radius a  in m ) [2]. The physical mechanism and theoretical model for the density 

limit in H-mode plasmas are presented. It is demonstrated that sheared flows, which develop during L-H 

transition and suppress anomalous transport at the plasma edge in the H-mode state, start to decay by 

generating tertiary modes like Kelvin-Helmholtz instabilities when the plasma density exceeds a critical 

level crn . The dependence of crn on the plasma current pI , 
1.25

cr pn I∼ , implies that for not to high 

currents crn is lower than the Greenwald density limit Gr pn I∼ . This offers an explanation for the 

experimental observations on the H-mode density limit often happening noticeably lower than Grn [2].  

 

1. Introduction 

 

The fusion power scales as square of the plasma density and an achievement of a possibly 

highest density is a topic of great interest for economically profitable future fusion 

reactors [1]. It is well known, however, that in tokamaks in the high confinement H-

mode, being the basic scenario for plasma performance in ITER, there is a dramatic 

deterioration of plasma particle and energy confinement and back transition to the low 

confinement L-mode by approaching to the Greenwald limit 2/Gr pn I aπ∼ , with Grn  

measured in 20 310 m
− , the plasma current pI  in MA and the separatrix minor radius a  in 

m  [2]. Although this is a limit for the edge density, the average density cannot be 

significantly higher by a typically flat density profile in the H-mode. Therefore the 

physics of the density limit is of great importance and diverse mechanisms have been 

proposed. 
 

It is widely accepted that a final plasma disruption at the density limit in the L-mode 

happens because MHD instabilities develop due to shrinkage of the current channel [3]. 

The latter is triggered normally by a collapse of the edge thermal equilibrium caused by 

impurity radiation. In order to set off this channel of energy losses the edge plasma 

temperature has to drop to low enough level. This can happen either by the development 

of MARFE [4] or when the character of edge anomalous transport changes principally 

through drift resistive ballooning modes [4-7]. In the H-mode the mechanisms considered 

above are most probably not operative because of high temperature at the plasma edge. In 
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the edge transport barrier (ETB) instabilities, leading in the L-mode to anomalous 

transport, are robustly suppressed by the plasma-sheared flow in the radial electric field 

and neoclassical transport processes are dominant. As it has been demonstrated recently 

[4], in this case the Greenwald density limit corresponds perfectly to the transition from 

plateau to Pfirsch-Schlüter neoclassical transport regime and is explained by the fact that 

in the latter one the edge temperature drops extremely fast with increasing density, as 
30

n
− . However, these findings do not make clear why most often the H – L transition 

happens at a density lower than Grn  and the latter is actually the ultimate limit. Here we 

explain this by demonstrating that shear flows, providing suppression of anomalous 

transport in the ETB, start to decay by generating tertiary waves like Kelvin-Helmholtz 

(K-H) instabilities if the plasma density exceeds a critical level crn and cr Grn n<  at not 

very high plasma current.  

 

In this paper, we first describe the edge turbulence in L-mode discharge is dominant by 

high – m drift resistive ballooning mode (DRBM) and later explore the modulational 

stability of the short scale DRBM turbulence to a long scale zonal flows (ZFs). Since the 

long scale ZFs are well separated from the small-scale modes driving them therefore the 

wave kinetic equation and adiabatic theory is used to study the interaction between them. 

By using a “predator and prey” [8] model we estimate the saturation level of turbulence 

in a state of stable L-mode and the minimum amplitude of shear flow layer required for 

stable H-mode. It is observed [9] that when the collision damping is weak, the model 

predicts unrealistically low value of saturated primary turbulence, thus we study the 

tertiary instability of ZFs, which take the place of collisional damping of ZFs. Finally, a 

self-consistent model for interaction of shear layer, tertiary instability [i.e., Kelvin 

Helmholtz (K-H) instability], edge transport barrier (ETB) heat balance and the physics 

of penetration dynamics of recycling hydrogen neutral into ETB   is constructed and 

derived the density scaling closed to Greenwald limit. 

 

1. Linear dispersion relation of High –m DRBM 

 

We write the linear dispersion relation of high-m DRBM derived in ref [6]  
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This equation contains simple drift mode, a standard drift resistive ballooning mode and 

also the high - m DRBM [7]. The high-m DRBM is known to be responsible for edge 

turbulence in L-mode and it has the growth rate similar to the ideal MHD growth rate, 

even when β  is less than the criticalβ  [ 2(1 ) / ) 1critical i nq R Lβ τ β≈ + < ]. The DRBM 

instability dominates over drift Alfven mode, if,  

 
2 2 1/ 2 1/ 2[ 2 / 1 ]( / ) 2(1 ) ( / )( / )f i n i e i f i n ek q R L m Rm R Rm L mλ τ τ β λ
⊥

> + > + . 
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In the limit 1nε <  and 0 1k L⊥ < , the real frequency and growth rate of DRBM are given 

by 
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Here 0γ  is the ideal mode growth rate. Note that the growth rate of DRBM is close to 

ideal growth when the plasma is collisional and poloidal ‘m’ number of the instability is 

large. 

 
 
2. Zonal flows 
 

Our main interest here lies is in studying the saturation of high-m DRBM through back 

reaction of zonal flows. In the long wavelength limit, the equations of zonal flow of 

interest is  

 

( ) 2| | | | / )neo

t i q x k y k x y k x y rk k q

k k

k k k k Nν φ φ φ φ ω δ∂ + = ∂ ∂ ≈ ≈ Λ∑ ∑� � � �                           (3) 

 

Where ( )2 2 21 | | 2 | |k y k y rk kk kω ω ω∗Λ ≡ + − . Here the slow variation of 

2| | | |k rk q kNφ ω δ≈ Λ  and qNδ  is determined by wave kinetic equation. Thus, the growth 

rates of zonal flow then is  
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Eq. (4) can be rewritten by using the normalization of refs [6].  

 

( ) ( )
2

2 4 2

0
ˆ/ | / |q x y d k k n eq k m e L L Tγ α γ δφ µ≈ −                                                                  (5) 

 

3. Saturation level 
We write the “predator and prey” model equations similar to Ref [9] where the flow 

shear is equivalent to predator species whereas DRBM fluctuation level to pray species. 

Equations for fluctuations energy density kE  and shear flow velocity (zonal flows), are: 

 
2

1 2t k k k k k qa a Uγ∂ Ε ≈ Ε − Ε − Ε                                                                                         (6) 
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3t q q qU a U Uµ∂ ≈ Ε −                                                                                                      (7) 

 

Here 2

0| / |k k n eE e L L Tδφ≡ , ( / )q x qV c B φ′ ′< > = < ∂ > , 2

q qU V ′=< > , kγ  is the linear 

growth rate of fluctuations, 1k aγ ≈  describes non-linear damping of fluctuations due to 

anomalous diffusion, 2 4 2 2

2
ˆ( / )( / )d k x ya m q kα γ≈  and 2 4 2 2

3
ˆ( )( / )d k x ya m q kα γ≈  characterize 

Reynolds stress, driving flow shear that suppresses perturbations.  

Equations (6-7) have two stable points: (i) 0qU =  and 1/k k aγΕ = , and (ii) 

3 1 2 3( ) /q k iU a a a aγ µ= −  and 2/i aµΕ = . The former could be thought as a state of stable 

L-mode where Reynolds drive is weak; 2 1k ia aγ µ< , the fluctuation level is restricted to  

1/k aγΕ = ;    1/ 2 1/ 4 1/ 4| / | 2 ( / )( / ) ( / ) [( ) / ]k e s n e e e i e i ne T L R c m mδφ π ρ ν α α ε≈ +                  (8) 

The latter fixed point is like stable H- mode equilibrium for 3 1k ia aγ µ>  and the transition 

from L-H occurs when Reynolds drive is stronger enough so that 3 1k ia aγ µ= . For the 

stable H-mode equilibrium, the minimum amplitude of shear flow required is 

 
2 2 4 2 2ˆ( / )( / )q k d y xU m k qγ α≈                                                                                                  (9) 

 

In this case, the background level of fluctuations level is typically order of  

 
1/ 2 2

0
ˆ| / | ( / ) (1/ )( / )( / )k e i k d y x ne T m k q L Lδφ µ γ α≈                                                            (10) 

 

This is much below the mixing length saturation amplitude because collisional damping 

iµ  is typically less than kγ . What happens if the plasma density is ramped up in this 

state? One possibility is a violation the latter condition because of increasing collisional 

damping coefficient iµ .   Alternatively the flows could themselves be unstable to tertiary 

waves, which can take the place of additional collisionless damping as well as enhance 

the turbulent transport. In this scenario, the Greenwald density limit could be hit if the 

growth rate of tertiary wave 0Tγ > .   

 

4. Tertiary mode (Kelvin Helmholtz instability) 

 

Next, we determine instability threshold for tertiary mode and demonstrate that it 

becomes positive significantly before collisional damping start to play role. We consider 

1-D flow, which is independent of y coordinate and varies in radial direction, x , 

( ) cosq q xV x V q x′ ′= . As ( )qV x′  is periodic in x, we use Floquet theorem technique. 

Consider tertiary wave perturbations in the form: 

  

( ), ||sin ( ) T t

T T l T x x y

l l
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γφ φ φ= = + + +∑ ∑                                                  (11) 
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Here
 

xK , yK  and ||K  are the wave vectors along radial, poloidal and magnetic field, 

respectively and Tγ is the growth rate of the tertiary mode. For small wave amplitude, we 

truncate wave equation of tertiary mode by keeping the mode coupling among three 

adjacent modes (i.e. 0, 1n = ± ) [10-11]. This results in:  

 
2 2 2 21 2 2

||
ˆ ˆ(2 / ) [ , ] [ , ]T T T n T q qLγ φ β γ φ φ φ φ φ−

⊥ ⊥ ± ⊥ ⊥ ±∇ − ∇ ∇ = − ∇ − ∇� � � � � �                                       (12)                                  

 

Where ˆ /T T n sL cγ γ= , sρ⊥ ⊥∇ = ∇ , and /n e se L Tφ φ ρ=� . Linear growth of tertiary mode is: 
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Note that the necessary condition for unstable tertiary instability restricted to scale 

xk q K⊥ ⊥> > . To estimate the threshold of tertiary instability, we simplify by maximizing 

the driving term in Eq. (13), which requires 0xK → , 2 2

yq K> . Then we use || 1/ sK L∼ , 

ˆ ˆ/ ;sL qR s s=  is the magnetic shear parameter. The growth of qU  as a function of dα , α  

[6] can then be written as:  

 

2 2 2 2ˆ( / 2 ) ( / )T y x q kK q U sγ α γ= −                                                                               (14) 

 

Note that tertiary wave or Kelvin Helmholtz mode is unstable if  

 

 2 2ˆ ( / 2 )k y x qs K q Uγ α≤                                                                                                    (15) 

 

Thus the threshold of tertiary mode, leading to the decay of zonal, is essentially 

determined the growth rate of unstable modes which drive edge turbulence [6-7].  

 

5. Density limit scaling 

 

Combining the estimated qU  for H- mode equilibrium, Eq. (9) and Eq. (15), the threshold 

condition for stable tertiary mode is  

 
2 2ˆ ( )d ys F Kα α≥                                                                                                           (16) 

Here 2 2 8ˆ( ) 0.5 /y y xF K K q m= , is a constant number for high-m DRBM edge turbulence, 

ˆ ~ 0.5 1m −  typically [6-7] and / 1y xK q < . The threshold condition translates a relation 

between various plasma parameters sophisticated  

 
2 1/ 2 2 1/ 2 2 4 3/ 2ˆ

i e n as A T B L n q R∝                                                                                   (17) 
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The density limit in H-mode plasmas is normally related to the pedestal density pn . 

Therefore relation (17) has to be considered as relevant for the plasma parameters at top 

of the edge transport barrier. In order to eliminate the temperature from Eq. (17), adopted 

henceforth the same temperature for electrons and ions, we consider the edge transport 

barrier (ETB) heat balance. Following Ref. [12] we assume that the main contribution to 

the energy losses from the ETB is given by neoclassical contribution κneo to the ion heat 

conduction, i.e., /c neo pQ Tκ≈ ∆ , where cQ  is the influx of heat into the ETB from the 

plasma core, pT  the pedestal temperature and ∆  the ETB width. It has been shown in 

Ref. [4] that the Greenwald limit density corresponds well to the transition between the 

plateau and Pfirsch-Schlüter neoclassical regimes. At slightly lower densities the ETB 

plasma is in plateau transport regime with 1.5 0.5 2/neo iqT A n B Rκ ∼  [3]. In accordance with 

findings on diverse tokamaks see ref e.g., [13], we adopt that penetration of recycling 

hydrogen neutrals defines the ETB width and 1/n pL n σ∆ ≈ ≈ , where 0.4

0 0( / )pT Tσ σ= ⋅ , 

19 2

0 5.7 10 mσ −= ⋅  and 0 0.7T KeV=  [6]. Thus, the ETB power balance results in: 

 
2 2.1 2 0.5

c p p p iQ RB T n q A∝                                                                                                       (18) 

 

By combining relations (17) and (18) we finally get for the critical pedestal density at the 

threshold of tertiary mode: 
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                                                                                       (19) 

 

For the DIII-D density limit experiments in Ref. [14] performed at the plasma current 

1.3pI MA=  we get 0.92Grn ≈  and 20 30.85.10crn m
−≈ , in good agreement with 

observations. 

 

5. Conclusion 

 

In this study we have explored the modulational stability of the short scale DRBM 

turbulence to a long scale Zonal Flows in the edge. We also have estimated the 

saturation level of turbulence in a state of stable L-mode and the minimum amplitude of 

shear flow layer required for stable H-mode by using a “predator and prey” model. It is 

shown that when the collision damping is weak, the model predicts unrealistically low 

value of saturated primary turbulence, thus we have studied the tertiary instability of 

ZFs, which take the place of collisional damping of ZFs. Finally, a scaling of critical 

pedestal density closed to Greenwald limit at the threshold of tertiary mode is derived.   
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