

EX/S, EX/D, EX/W

S1/2

- EX/S Magnetic Confinement Experiments: Stability
 - 47 papers
- EX/W Magnetic Confinement Experiments: Wave-plasma interactions, current drive & heating, energetic particles
 - 58 papers
- EX/D Magnetic Confinement Experiments: Plasma-material interactions divertors, limiters, SOL
 - 50 papers

156 papers

Apologies: non exhaustive "issue driven" report Write to <u>jean.jacquinot@cea.fr</u> for suggestions to be included on the written summary

Stability

• Issues

- ELM's, RWM etc: occurrence strength understanding mitigation
- Disruption and runaway electrons
- Fast particles: AE's etc.
- Real time control

The ELM ISSUE

October 2010 11

Elm issue

- 2 different approaches:
 - Beat them: 2 "Quiescent" regimes proposed for ITER (see S1/1)
 - Alcator I-mode
 - DIII-D quiescent modes
 - Both with good confinement without ELMs
 - Seem ideal but scaling to ITER?
 - Join them:
 - Several methods of mitigation and pacing

ELM mitigation by perturbations

A wealth of results from JET, Mast, NSTX, JT 60 ...

- Density perturbations in the pedestal
 - Pellets: OK but only Fx5 \rightarrow reliability?
- Fast particles
 - Mitigation by fast particle driven RWM (JT60-U)
- Pacing with vertical jogs

- OK but only F ~ x 5; AC losses in supraconductors?

- Using 3D magnetic perturbations
 - Total stabilisation "proof of existence" from DIII-D with RMP n=3 m~11 coils, new results from JET (n=1,2; m?) and Mast but only partial stabilisation
 - Reliable pacing with fast pulses of n=3 coils m? (NSTX)

ELM mitigation by perturbations

- Mitigation may well come with a price to pay
 - On confinement quality
 - On threshold power (observed on RMP, n=3)
 - On rotation breaking with non resonant fields (disruption)
 - See also the new concern (R. Buttery) on the error field threshold to trigger 2/1 modes falls with proximity to tearing β limit

Understanding:

- Pellet pacing
 - Well accounted for by MHD simulations (Huysman)
- Effect magnetic perturbations
 - See excellent review by J. Callen at this conference
 - The RMP case of DIII-D is driven by ergodisation of magnetic fields in the pedestal. Right value of Chirikov parameter but uncertainty on the plasma response predictability??
 - Requires good alignment (range of q possible with optimized coil as proposed for ITER)
 - Understanding of non resonant case? Resonance with precursor?

➔ A strong case for pellet and internal coils but more work needed

Energetic particle driven Wall Mode triggers ELM with decreasing ELM amplitude Matsunaga, EXS/5-3 (Thu/PM)

- EWM (Energetic particle driven Wall Mode): destabilized at β_N>β_N^{no-wall}, around q=2 (ρ~0.6)
- EWM-triggered ELM: f_{ELM} / and $\Delta W_{dia} \rightarrow ELM$ loss by half
- Divertor diagnostics: oscillations in synchronization with EWM

 \rightarrow ion loss \rightarrow increase in $\nabla p_{edge} \rightarrow$ ELM trigger

JT60-L

Effect of fast-ion component on ELM stability

Disruption and Runaways

- ITER requirements for full scale operation:
 - 90% of plasma radiation during the thermal quench
 - < 1 MA of runaway electrons

Events during plasma disruption. S. Putvinski

Collisional RE dissipation requires exceeding a critical density given by Rosembluth-Putvinski theory. It is very high for ITER ~ 10²²m⁻³ Also MHD is not likely to deconfine REs in ITER (Izzo)

JJ S1/2 FEC 2010

Disruption and RE (2)

- New results from Asdex-U, Tore Supra, DIII-D, C-mod, JET
 - Massive gas injection with mixtures of He, Ar
 - > 50% radiated; <2% of RE left; forces on VV small
 - Uniform radiation would required 4 systems with large orifices
 - J. Wesley suggests maintaining the equilibrium of the RE beam to dissipate it slowly. Multiple injection suggested by Putvinsky.

→ Good progress but ITER radiation requirements not met yet

- And a much broader basis:
 - Diffusive model for halo width growth during VDE
 - Survey of JET disruption occurred in the last 10 years (T. Hender): causes, forces asymmetries and extrapolation to ITER (40MN). Rather good news but also a warning: "Runaway electrons are found to be lost to small wetted areas determined by small tile misalignments/irregularities"

Disruption mitigation by massive gas injection

M. Lehnen

halo currents / sideways forces

Ar/D₂ injection during VDE

Forces

- halo currents reduced by factor of 4
- sideways forces reduced by factor of 10
- both achieved for current quench times above the ITER eddy current limit

Heat loads

- more than 50% of thermal energy is radiated
- strong radiation peaking during pre-TQ (conservative estimate suggest that 4 injection ports are needed to prevent from Be melting by local radiation in ITER)

Runaways

- safely avoided for Ar or Ne mixed with 90% D₂
- reached only 2 % of critical density for avalanche suppression, which is essential for ITER
- pure Ar or Ne injection generates runaways

Fast particle Issues

- Requirements: avoid excessive losses of fast particles potentially dangerous for the machine and for the performance.
 - Sources: fusion born α 's or heating systems
 - Drive: microturbulence, sawteeth, Alfvén eigenmodes
 - ITER reference scenario estimated safe; advanced scenarios, in particular reverse shear are in danger.
- Results:
 - New powerful diagnostics (e. g. FIDA, HIBP, ..)
 - Results from DIII-D, LHD, HL-2A
 - 1st observation of e-BAE
 - Detailed results on GAM, Sawteeth, TAE, KAE
- Need for integrated predictions for ITER and reactor
 - Requires the nonlinear superposition of many modes
 - An urgent task for ITER!

Energetic Ion Losses are Observed at Frequencies Corresponding to Both Toroidal and Reversed-Shear Alfvén Eigenmodes D. Pace

 Majority of the loss activity appears at TAE frequencies; clear observation of some RSAE activity

Neutral beam prompt losses are accounted for in analysis

- Losses at the TAE frequency are observed in a narrow region of phase-space
 - pitch angle: $42^\circ \le \alpha \le 48^\circ$ (± 5°)
 - energy corresponds to full energy of neutral beam injection: 80 keV

D.C. Pace, IAEA, Daejeon, Korea - October 13, 2010

Ido, Todo

Geodesic acoustic mode (GAM)

Geodesic acoustic mode (GAM): a branch of zonal flow

Turbulence-driven GAM

Nonlinear coupling of micro-turbulence $\tilde{\phi}, \tilde{v}_{\scriptscriptstyle p}, \tilde{n}_{\scriptscriptstyle e}$

Energetic-particle driven GAM

Velocity space anisotropy in the energetic particle distribution function. Global GAM (GGAM) -MHD-

(JET: Berk H et al 2006 Nucl. Fusion **46**, S888, Boswell CJ et al 2006 Phys. Lett. A , **358**, 154)

Energetic-particle-induced GAM (EGAM) -Kinetic-(DIII-D:Nazikian R et al 2008, Phys. Rev. Lett. 101, 185001. Fu G 2008, Phys. Rev. Lett. 101, 185002.)

(LHD: Toi K et al, 22nd IAEA FEC, EX_P8-4) ${ ilde B}_n, { ilde n}_e, { ilde T}_e$

₽

In this study, ϕ is measured locally and directly using a heavy ion beam probe in the LHD plasmas.

Sensors, actuators, real time control

• Issue:

 Simultaneously control profiles, stabilize an increasing number of modes and maintain suitable plasma regime

• Progress:

- Multi actuator MHD control; Extrap, RFX, MST + many
- Example of diagnostics: 2D Te ECE imaging systems: 400 channels on KSTAR, results from yesterday (Park)
- NTM control with ECRH: 7 real time controllable launchers on TCV + ...
- "State Space controller" for RWM stabilisation (Sabbagh)
- Profile control of Advanced Tokamak (Moreau)

MHD feedback control

RFX-mod and **EXTRAP T2R** are equipped with a most comprehensive system of active coils

REAL-TIME CONTROL OF ADVANCED TOKAMAK SCENARIOS D. Moreau

- Control-oriented response models for profile control obtained from actuator modulation experiments (ITPA-IOS Joint exp. 6.1)
- Shown on JET (2008) and now on JT-60U and DIII-D (e.g. Ψ + Vtor + Ti)
- The missing link for closed-loop magneto-kinetic control on advanced scenarios and control simulations on ITER.

Time (s)

Limiter and divertor issues

- Snow flake divertor
 - An idea of Ryutov first tried on TCV → increased flux expansion, low frequency ELM's
 - Upgrades foreseen for NXTX and MAST
- Low recycling with Lithium with improved performance
 - Liquid lithium limiter on FTU (ETG stabilisation)
 - NSTX, TJ-II
 - Compatibility with impurity seeding

The "snowflake" divertor

W pollution, dust, gas inventory

• Tungsten issue

- W coated walls (Asdex-U)
 - Dominant W source is during ELMs but ELM flushing and divertor screening are effective. For ITER OK if F_{elm} >5Hz
 - N2 seeding \rightarrow 70% radiation, improved confinement, ΔZ moderate
 - JET tests in preparation
- W splashes if melted (Coenen, Textor) → reduced power handling, core contamination
- Dust transport in JT60-U
 - Low penetration in the plasma but hides under the divertor!
- Gas inventory (C walls in DIII-D)
 - No retention during the H phase, 20% during start-up (L phase)
 - Good recovery using thermo oxidation (20% O2; 80%)

➔ Reconcile this with other studies, well conditioned graphite?

Dust transport during discharges and dust deposition in vacuum vessel have been clarified.

- Dust transport measurement by fast camera
- Dust distribution measurement by Mie scattering using YAG laser
 - Dust ejection/transport from divertor and outer baffle tiles
 - Distribution peak in far-SOL
 - ⇒ No significant penetration into the edge and core plasma
- Dust collection: Dominant accumulation in shadow area particularly under divertor

Asakura, EXD/P3-02 (Wed/AM)

Heating, wave coupling

See S/2-2 for ITER hardware and heating mix (Wagner)

- ECRH
 - Disruption avoidance at high Beta N + modelling (Esposito)
- LHCD:
 - PAM launcher → match resiliency, active cooling, remote coupling (Tore-Supra) → suitable for ITER long pulse
 - Plans for SSO in EAST, KSTAR, HL etc.
- ICRH
 - Use of Elm resiliency schemes and compact antenna (JET)
 - Impurities with high Z walls → contradictory results from Asdex-U and Alcator-C mod. Sources or confinement??
 - Routine wall cleaning with field on (KSTAR, EAST, TS)
 - Large core rotation with MCFD (mode conversion flow drive)

ICRH ITER relevant systems

Pulse No 78068 Bt=2.6T/ lp=2.5T

NBI vs. high ICRF fraction H-modes → 8.4MW coupled on Type-I ELMs ~ 3MW from 3dBs

- ~ 4 MW from ECT
- ~ 1.4MW from ILA

see Durodié, EXW/P7-04, Sartori, EXC/P8-12

F. Romanelli

Three different ICRH matching system tested on JET in 2008-09

- ITER-like antenna
- External Conjugate T between antennas C & D

- 3dB hybrid couplers between antennas A & B

irfm	
------	--

Characterization of the properties of the PAM LHCD launcher

cadarache

- New launcher built in the frame of the LHCD system upgrade
- Based on the Passive Active Multijunction (PAM) concept created for providing efficient cooling of the launcher in the ITER environment (neutron load)

- ITER requirements:
 - Efficient cooling
 - Long distance coupling
 - ELMs resilience
 - Power density 33 MWm⁻² at 5 GHz
 - Long pulse capability

ICRF Mode Conversion Flow Drive Demonstrated on C-Mod Yijun Lin C-mod

- Strong toroidal flow with significant flow shear
- Favorable scaling with power and plasma current
- Also in JET (~ $\frac{1}{2}$ NBI rotation) T. Tala

Concluding remarks

- Impressive depth of physics and results
 - Diagnostics experimental procedures theoretical basis
 - Integrated physics multimode approach
- Revival of runaway, disruption and material studies

- Important and urgent for ITER

- 3 D magnetic field perturbations
 - Wealth of results and good prospect for more
 - A "star" in this summary but not a mature subject yet

→ requires more studies

Finally, lots of thanks to our host and IAEA for a great conference