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Objectives
� The objective of this work is to propose a system to assess  the 

concentration of radioactive materials dispersed in a 
contaminated spatial urban or semi-urban environment in real 
time
� The proposed system could be used to either indicate contaminated hot 

spots and dose calculation in real time.

� This system is based in:
� Use of three or four NaI(Tl) detectors asymmetrically shielded positioned

1m high above the ground of the studied environment;

� Use of Monte Carlo Method to simulate the NaI(Tl) detector’s response;

� Artificial Neural Networks to trained with the simulated data set to
quantify the contribution of each surface .



Introduction

� Contamination dynamics of urban and semi-urban surfaces by

radioactive elements after either an intentional release or a

nuclear/radiological accident:

� Complex modeling based on atmospheric dispersion models and

deposition models - weather conditions.

� Current status :� Current status :

� In situ gamma-ray measurements;

� Mathematical models to assess the dose at a given point in space due to

contamination on surfaces;

� Radioactive material distribution - on the surface, homogeneously

distributed in the soil and distributed in the soil as a function of depth;

� Single detector has been used, and the geometry of the source was an

approach to a semi-infinite space with correction for finite geometry;



Introduction

� Single detector

� the spatial model of the urban surface contamination (wall, ground, roof etc.) is

approached by the one-dimensional perception of the detector

� Multiple detectors – Three-D approach and hot spot localization� Multiple detectors – Three-D approach and hot spot localization

� 3” x 3” NaI(Tl) four-detector cross -shaped layout asymmetrically shielded ;

� 3” x 3” NaI(Tl) three-detector inverted-T layout asymmetrically shielded ;

� The efficiency of a detector is greater in the unshielded area facing the surface;

� The overall arrangement will be capable of identifying the photon’s incidence

angle based on the different response of each of the detectors to the incident

photons;



Introduction

� Geometry complexity and random distribution of the contamination -

No analytical method available

� Monte Carlo Method (MC) to simulate the response of each detector

to contaminated surfaces - Monte Carlo N-Particle Code (MCNP5)

� Artificial Neural Networks (ANN):� Artificial Neural Networks (ANN):

� Use of the MC obtained data to study of several topologies of ANN;

� Contamination assessment based on the response of each detector;



Metodology
� Proof of concept based on a very simple case using only one γγγγ energy – 662

keV.

� Testing the linearity of the response of the detectors to different

contamination concentration

� Obtaining suitable data sets to train and to test the pre-selected ANN’s

topologies, using the Monte Carlo Method to simulate the transport oftopologies, using the Monte Carlo Method to simulate the transport of

photons

� Training of different Artificial Neural Networks topologies to solve the

problem

� Optimizing the parameters – Detector’s layout, shielding thickness, training

data set (To better reflect the real case.)

� Studying the use of ANN in the energy range of interest – 50 keV to 3000 

keV
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Monte Carlo Method
� “Solving particle transport problems with the Monte Carlo method is simple - just

simulate the particle behavior.” LANL.

� The Monte Carlo method simulates the transport of photons or particles, following

their individual paths based on the process of interaction of the photons with the

matter.

� Monte Carlo Method simulate the history of a single particle from birth to death

based on the generation of random numbers:based on the generation of random numbers:

� Models collisions using physics equations & cross-section data;

� Models free-flight between collisions using computational geometry;

� Tallies the occurrences of events in each region;

� Saves any secondary particles and analyzes them later.

� MCNP5 – Is a Los Alamos NL well known and tested implementation of the MC

Method

� Photons from 1 keV till 1 GeV

� Follows 1e+09 photons per run



Artificial Neural Networks – ANN

� Supervised networks - learn by example – adjust the weights

� Feedforward, completely connected with 1, 2 or 3 hidden layers

� Ward – 2 e 3 hidden layers connected from the input to the output – It uses Gaussian

and complementary Gaussian to adjust different regions of the training data sets

� Learning algorithm – backpropagation

� Learning rate η e momentum α� Learning rate η e momentum α

� Mean squared error – A statistical measure of the differences between

the values of the outputs in the training set and the output values the

network is predicting

� Stop criteria

� Mean squared error = 1e-07

� Number of epochs since the last mean squared error = 1e+05

).()(.)1(.)1( nwnwnwnw +∆−−∆=+ ηα



Experimental setup� Simple case study

� A model street composed of a wall on

either side and the ground surface

� Four 3”x3” NaI(Tl) detectors, 1 m

above the ground and 5 m away

from each wall.

� Dimensions:

� Walls – 10m x 5 m;

NaI (Tl) Detectors

� Walls – 10m x 5 m;

� Ground (street)– 10m x 10 m .

� Cylindrical with 5cm thick lead

shielding:

� One detectors facing each wall. No

shielding in the surface of the detector

facing the wall;

� Two detectors facing the ground. No

shielding in the bottom Walls

Street

Lead Shielding



Proposed four-detector 

layout



Proposed three-

detector layout



� Testing the linearity with respect to the variation of the photons

concentration in each surface:

� It was obtained the response of each of the four detectors, using the MCNP5, for the

concentrations of 1e+05, 1e+06, 1e+07, 1e+08, 1e+09 and 8e+09 γγγγ.m-2 in each surface
for the energies of 662 keV:

Testing the Linearity of the detectors’ 

response

� No photons reached the detectors for surface concentration values

lower than 1e+05 γγγγ.m-2

� The code follows 1e+09 photons per run, to obtain the results to higher

values the surfaces were divided into eighths with 1e+09 γγγγ.m-2 in each
and summed up.



Linearity of the detectors’ response

The proportionality of the response could be used to derive other data 

sets  to train the ANNs. 



Detectors’ response and training data sets

� Response of each detector to contamination of the three

areas.
� Based on the verified linearity of the response, it was defined the ranges of

contamination of surfaces up to 8e+09 γ.m-2.

� Training used values -> 0, 1e+07, 5e+07, 1e+08, 5e+08, 1e+09 e 8e+09 γ.m-2 .

� Counting values were calculated for the four detectors.� Counting values were calculated for the four detectors.

� For values below 1e+07 γ.m-2 , due to low statistical detection, error values
were high. Therefore, values below that value were not used.

� The highest value obtained through simulation was 8e+09 γ.m-2 per surface.

� The training data sets were obtained by combining the above values of

contamination on each surface.

� 345 elements with 3 input variables (walls and ground) and 3 or 4 output values

(counting at the studied energy at each detector).



2.615 keV spectrum obtained with Monte Carlo Method simulation 



1.252 keV spectrum obtained with Monte Carlo Method simulation 



662 keV spectrum obtained with Monte Carlo Method simulation 



Artificial Neural Networks
training and testing

� Pre-selection of topologies of ANNs to study.

� Evaluation of training outcomes and choice of ANN's that showed better
results in terms of :
� R2 - coefficient of multiple determinations

� r - correlation coefficient and r2 - Coefficient of determination

� Test of these networks with two production data sets for the energy of 662� Test of these networks with two production data sets for the energy of 662
keV and choose the best candidate: :
� Data set 1

� Values within the trained data set range.

� Values - from 1e+7 to 1e+10 γ.m-2.

� Data set 2
� Values inside and outside the trained data set range;

� Values - from 0 to 1e+10 γ.m-2.

� Additional test of the chosen ANN for the energies of 1252 keV e 2615 keV.



Table 1 – Artificial neural network topologies, training time, and mean 

squared errors.

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Error(a)
 

case 1(b) tanh 4  logistic  20 logistic  3   1,00E-07 
case 2 tanh 4 logistic 50 logistic 3   2,00E-07 
case 3 tanh 4 logistic 100 logistic 3   1,00E-07 
case 4 tanh 4 logistic 10 logistic 10 logistic 3  1,60E-06 
case 5 tanh 4 logistic 20 logistic 20 logistic 3  1,50E-01 
case 6 tanh 4 logistic 7 logistic 7 logistic 7 logistic 3 1,40E-06 
case 7(b) tanh 4  logistic  20 logistic  20 logistic  20 logistic  3 1,00E-07 
case 8(b) tanh 4  logistic  40 logistic  40 logistic  3  1,00E-07 
case 9(b) tanh 4  logistic  40 logistic  40 logistic  40 logistic  3 1,00E-07 
case 10 tanh 4 Gaussian 10 (ward) Gaussian 10 com(ward) logistic 3  2,40E-05 

 

case 10 tanh 4 Gaussian 10 (ward) Gaussian 10 com(ward) logistic 3  2,40E-05 
case 11(b) tanh 4  Gaussian  20 (ward)  Gaussian  20 com(ward)  logistic  3  1,00E-07 
case 12 tanh 4 Gaussian 40 (ward) Gaussian 40 com(ward) logistic 3  1,00E-07 
case 13 tanh 4 Gaussian 7 (ward) Gaussian 7 com(ward) tanh 7 logistic 3 7,00E-07 
case 14(b) tanh 4 Gaussian 20 (ward) Gaussian 20 com(ward) tan h 20 logistic 3 1,00E-07 
case 15(b) tanh 4  Gaussian  40 (ward)  Gaussian  40 com(ward)  tanh 40  logistic  3 1,00E-07 
case 16 tanh 4 Gaussian 10 (ward) Gaussian 10 com(ward) logistic 3 (Jump)  5,00E-07 
case 17 tanh 4 Gaussian 20 (ward) Gaussian 20 com(ward) logistic 3 (Jump)  3,00E-07 
case 18 tanh 4 Gaussian 20 (ward) Gaussian 20 com(ward) logistic 3 (Jump)  4,00E-07 

Learning rate = 0.5 Momentum = 0.6 
a  Cases 1 – 9 simple feed forward networks.

Cases10–18WARDnetworks.
b  Mean squared error.
C  Training  stopped by the mean squared error criterion or when 100,000 epochs occurred after last min or mean squared error.



Table 2 – R2, r2 and correlation coefficient for the ANN’s.

  R2  r2  Correlation coefficient 
Wall 

Ground 

Wall 

Ground 

Wall 

Ground   Left Right Left Right Left Right 

Case 1 0 0 0 0,0426 0,0239 0,0884 0,2064 0,1546 0,2974 
Case 2 1 1 1 1 1 1 1 1 1 
Case 3 1 1 1 1 1 1 1 1 1 
Case 4 1 1 1 1 1 1 1 1 1 
Case 5 1 1 1 1 1 1 1 1 1 
Case 6 0 0 0 0,1887 0,1833 0,1019 0,4344 0,4282 0,3191 
Case 7 1 1 1 1 1 1 1 1 1 Case 7 1 1 1 1 1 1 1 1 1 
Case 8 0 0 0 0,2015 0,2163 0,074 0,4488 0,465 0,272 
Case 9 0 0 0 0,1889 0,182 0,0195 0,4346 0,4267 0,1396 
Case 10 0,9999 0,9998 0,9999 0,9999 0,9998 0,9999 0,9999 0,9999 1 
Case 11 1 1 1 1 1 1 1 1 1 
Case 12 0 0 0 0,0011 0,0009 0,0009 0,0326 0,0304 0,0305 
Case 13 1 1 1 1 1 1 1 1 1 
Case 14 1 1 1 1 1 1 1 1 1 
Case 15 1 1 1 1 1 1 1 1 1 
Case 16 1 1 1 1 1 1 1 1 1 
Case 17 0 0 0 0,2063 0,2259 0,1459 0,4542 0,4752 0,3819 
Case 18 0 0 0 0,1656 0,1596 0,0009 0,4069 0,3995 0,0305 

 



Table 3 – R2, r2 and correlation coefficient for the  ANN´s 7, 14, 11 e 15, for 

the energy 662 keV using the training and production data sets.

    R2  r2  Coeficiente de correlação 
Wall 

Ground 
Wall 

Ground 
Wall 

Ground 
 

  Left Right Left Right Left Right 

Training data set 

case 7 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 
case 11 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 
case 14  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Training data set 
case 14  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 
case 15 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Production data set 
(inside trained range)  

 

case 7 0,9986 0,9993 0,9984 0,9991 0,9995 0,9996 0,9995 0,9998 0,9998 
case 11 0,4952 0,9871 0,9969 0,7331 0,9882 0,9988 0,8562 0,9941 0,9994 
case 14 0,9999  0,9998 0,9994 0,9999 0,9999 0,9999 1,0000 1,0000 0,9999 
case 15 0,8043 0,9814 0,9775 0,8535 0,9819 0,9937 0,9239 0,9909 0,9969 

Production data set 
(outside trained range)  

 

case 7 0,0000 0,0762 0,3275 0,7433 0,6507 0,9042 0,8621 0,8066 0,9509 
case 11 0,1036 0,0765 0,0464 0,3374 0,3222 0,6569 0,5808 0,5676 0,8105 
case 14 0,1146 0,0725 0,0464 0,3479 0,2798 0,6527 0,5898 0,5290 0,8079 
case 15 0,1056 0,0764 0,0464 0,3593 0,3129 0,6568 0,5994 0,5593 0,8104 

 





    R2  r2  Coeficiente de correlação 

Energy  

Wall  

Ground  

Wall  

Ground  

Wall  

Ground  Left  Right  Left  Right  Left  Right  

Training set  

662 KeV 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

1252 KeV 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Table 4 – R2, r2 e Correlation coefficient for the ANN 14, for the training and 

production data sets for the energies of 662 keV, 1252 keV and 2615 keV.

Training set  1252 KeV 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

2615 keV 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Production set (inside range) 

662 KeV 0,9999 0,9998 0,9994 0,9999 0,9999 0,9999 1,0000 1,0000 0,9999 

1252 KeV 0,9998 0,9997 0,9995 0,9999 0,9999 0,9998 0,9999 0,9999 0,9999 

2615 keV 0,9997 0,9998 0,9998 0,9999 0,9999 1,0000 0,9999 1,0000 1,0000 

Production set (outside range)  

662 KeV 0,1146 0,0725 0,0464 0,3479 0,2798 0,6527 0,5898 0,5290 0,8079 

1252 KeV 0,0444 0,0511 0,0000 0,1756 0,1525 0,6921 0,4190 0,3906 0,8319 

2615 keV 0,0000 0,2006 0,0543 0,5034 0,2924 0,3168 0,7095 0,5407 0,5628 
 





shielding  
2.5 cm 

 
5 cm 

 
7.5 cm 

 
10 cm 

  
Detector 1  Detector 2 Detector 3 

 
Detector 1  Detector 2 Detector 3 

 
Detector 1  Detector 2 Detector 3 

 
Detector 1  Detector 2 Detector 3 

Training 

data set 

R
2
 

1.0000 1.0000 1.0000 
 

1.0000 1.0000 1.0000 
 

1.0000 1.0000 1.0000 
 

1.0000 1.0000 1.0000 

r
2
 

1.0000 1.0000 1.0000 
 

1.0000 1.0000 1.0000 
 

1.0000 1.0000 1.0000 
 

1.0000 1.0000 1.0000 

r 
1.0000 1.0000 1.0000 

 
1.0000 1.0000 1.0000 

 
1.0000 1.0000 1.0000 

 
1.0000 1.0000 1.0000 

Table 5 – R2, r2 e Correlation coefficient for the three-detector layout using the 

ANN 14, for the training and production data sets for the energy of 662 keV.

r 
1.0000 1.0000 1.0000 

 
1.0000 1.0000 1.0000 

 
1.0000 1.0000 1.0000 

 
1.0000 1.0000 1.0000 

Production 

data set 

(inside) 

R
2
 

0.9921 0.9376 0.9996 
 

0.9840 0.9984 0.9988 
 

0.9834 0.9901 0.9983 
 

0.9534 0.9892 0.9979 

r
2
 

0.9934 0.9581 0.9998 
 

0.9853 0.9987 0.9991 
 

0.9907 0.9953 0.9994 
 

0.9776 0.9952 0.9992 

r 
0.9967 0.9788 0.9999 

 
0.9926 0.9994 0.9996 

 
0.9954 0.9976 0.9997 

 
0.9887 0.9976 0.9996 

Production 

data set 

(outside) 

R
2
 

0.0000 0.0000 0.0950 
 

0.0000 0.0678 0.0220 
 

0.1476 0.0393 0.1719 
 

0.0000 0.0000 0.0119 

r
2
 

0.3779 0.0195 0.1843 
 

0.2622 0.2602 0.4004 
 

0.6822 0.4103 0.4338 
 

0.4172 0.5205 0.4591 

r 
0.6148 0.1395 0.4293 

 
0.5121 0.5101 0.6328 

 
0.8260 0.6405 0.6586 

 
0.6459 0.7215 0.6776 

 



Conclusions

� The use of the Monte Carlo calculations in combination with artificial

neural networks has been proven to be an adequate tool to calibrate

detectors’ system for highly complicated detection geometries.

� The four-detector and the three-dector 3”x3” NaI(Tl) layout had

proven to be adequate, calibrate with this method, to determine the

spatial contamination in urban and semi-urban areas.spatial contamination in urban and semi-urban areas.

� Several ANN topologies have responded accurately to the values of

the training data set and also to a production data set of value within

the range of the trained values.

� Lead shielding of 5 an 7.5 cm showed better results, and can be used.



� Within the range of the training data set, one of the proposed

network topologies (case 14) can be used to predict the values of

concentration of the photons on the surfaces based on the number

of photons that reach each one of the target detectors.

� Results show that the problem dealt within this paper is indeed very

complex and that generalization outside the training range could not

Conclusions

complex and that generalization outside the training range could not

be achieved at all, as shown by the results with the production set

with values outside this range. Therefore, the training data set

should be chosen to best represent the expected range of number of

photons emerging from the contaminated surface.



Next steps

� Study of this work to the energy range of interest ( up to 3000

keV) – test all the pre-selected ANN topologies in this range

� Study of hot spot localization – angle of incidence

� Select an adequate detector layout;

� Generate the data sets; and

� train ANNs to indicate the angle and the distance of a hot spot



Thank you!
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