

RADIOLOGICAL SURVEY OF THE ITREC PLANT

D. Manes*, M.Rinaldi**, G.Simone**, P.Tortorelli*, C.Vicini** *Sogin SpA, **Nucleco SpA

Vienna 5 – 9 July 2010

DECOMMISSIONING IN ITALY

- Italy stopped all its nuclear plants and installations in 1987 following a referendum.
- In 1999 Sogin was created with the duty to decommission Italian nuclear facilities and to manage the radwastes resulting from the past operation and from dismantling activities.
- One of those nuclear facilities is the Itrec Plant, whose radiological characterization is part of the Overall Decommissioning Plan

SITES TO BE DECOMMISSIONED

ITREC FACILITY DESCRIPTION

- The characterization program has been implemented as an initial step of the Overall Decommissioning Plan (ODP)
- The objective of radiological characterization is to collect sufficient information in order to assess the radiological status of the facility (quantity, type and distribution of radionuclides)
- Data collected are used in planning the ODP as well as sequencing decommissioning activities:
 - operating techniques: decontamination processes, dismantling procedures (hands on, semi-remote or fully remote working) and tools required;
 - radiological protection of workers, general public and environment;
 - waste classification;
 - ✓ resulting costs.

ITREC FACILITY DESCRIPTION

ITREC FACILITY DESCRIPTION

- ITREC facility was built for re-processing and re-assembly of Uranium and Thorium mixed oxide fuel elements from Elk-River Reactor (USA) spent fuel, in operation during '70s.
- Eighty-four assemblies were sent to Trisaia (1968-1970): 20 fuel elements were processed, , while 64 fuel assemblies are today stored in the ITREC Plant pool in stainless steel capsules.
- In 1990 the experimental program terminated.
- The SIRTE-MOWA facility was erected for liquid radwaste processing:
 - 80 m³ low level liquid waste were processed,
 - later, after SIRTE-MOWA optimization 3 m³ higher level liquid waste mixed with contaminated cleaning solution were processed

- Radionuclides to be investigated depend on the operational history of the facility.
- The main ones are:
 - ✓ Actinides: ²³³U, ²³⁴U, ²³⁵U, ²³⁸U, ²³²Th;
 - ✓ Fission products: ¹³⁷Cs, ⁹⁰Sr;
 - ✓ Major activation products: ⁶⁰Co, ⁵⁹Ni e ⁶³Ni in particular plant section;
 - ✓ ¹⁵²Eu, ¹⁵⁴Eu (fission and/or activation product)
- ETM Radionuclides
- HTM Radionuclides

PROCESS BUILDING

GROUND FLOOR: hot cell, "warm" cell, decontamination cell, fuel pool, control room, the labs, the offices, etc.

FIRST FLOOR cold reactants room, the nuclear warehouse, analysis cell, the sampling hall, the transmitter room, the processing cell hallway, etc.

SECOND FLOOR : venting ducts area, the plenum, the inwards fans of the warm and hot systems, the exausting fans of the warm system, etc.

- A physical inventory of the facilities was carried out based on the review of existing documentation and on site inspection
- Systems, Components and Structures to be surveyed have been identified with a code:

The Itrec plant characterization program includes 3 main tasks:

- 1. Scanning measurements: dose rate, surface contamination and qualitative gamma isotope mix analysis by means of Hand Held Spectrometric Systems (HHSS).
- 2. Management of Non-Destructive radiological Anlysis (NDA) for determination of ETM (Easy to Measure) radionuclides:

2.1. Planning

- 2.2. In-situ Gamma Spectrometry measurements
- 2.3. Data process and evaluation of results
- 3. Performance of Destructive radiological Analyses (DA) for determination of HTM (Hard to Measure) radionuclides and related Scaling Factor

- A radiometric survey (scanning measurements) of all Systems, Components and Structures (SSCs) inventoried is the first step of the characterization program.
- The measurements employing Hand Held Systems are:
 - ✓ Dose rate measurements

- Surface contamination measurements (performed into contact)
- Qualitative spectrometry measurement (Inspector 1000) to verify the presence and the ratio of most important gamma emitting radionuclides
- Scanning measurements have been performed to map the surface contamination and radiation dose and to locate radiation anomalies (hot spots) inputs for the NDA and for the DA tasks
 - Background measurement were performed for every SSC in areas were dose rates and/or contamination values were lower

13

STRATEGY AND METHODOLOGY

HAND-HELD INSTRUMENTS

DOSE RATE METERS	SZINTOMAT	TELETECTOR	CONTAMINA METERS	BERTHOLD LB124 SCINT
Detector	Scintillator ZnS	Geiger Müller	Detector	Scintillator ZnS
energy range	30keV – 3MeV	40keV – 1.3MeV	Beta efficiency	50 %
Dose rate range	0.02 μSv/h	0.10 μSv/h	Alpha efficiency	22,5 %

LRGS	INSPECTOR 1000
Detector	Nal
Energy range	50 – 3000 KeV
Efficiency calculation	ISOCS Canberra
Software gamma spectrometry	Genie 2000 Canberra

14

STRATEGY AND METHODOLOGY

- Gamma-Ray Imaging System was also performed to detect the position of the activity and the relative dose rates of selected hot spots.
- The main advantage of the GRIS system compared to others is that it superimposes visible and gamma images using the same optics

GAMMA-RAY IMAGING INSTRUMENTS

GRIS	CARTOGAM					
Detector	Csl(tl)					
Energy range	50 – 1500 KeV					
Spatial Resolution	Collimator 662 keV 1332 keV 50° (standard) 2.5° 4.5° 30° (optional) 1° 2°					
Software gamma spectrometry	Gamma view (Canberra					

STRATEGY AND METHODOLOGY

sogin

- The second task of the plant characterization program is the management of the Non Destructive Analysis.
- The main goals of the NDA are:
 - **1.** Identify the complete set of the ETM radionuclides (gamma emitters) using "In Situ" Spectrometric Gamma Measurements.
 - 2. Determine the surface activity or activity concentration of ETM radionuclides for single components and structures.
 - **3.** Update the subdivision of the facility components and structures in *Homogenous Groups*

Statistical Planning:

17

- The sampling design for the NDA is based on the interpretation and analysis of the radiometric survey results and historical data that show evidence of an homogeneus contamination distribution,
- Then an unbiased survey was used, and the minimum data number to characterize a SSC were decided to be 5.
- Three kinds of NDA were performed:
 - "In Situ" Spectrometric Gamma Measurements, using High Resolution Gamma Spectrometry (HRGS) and Low Resolution Gamma Spectrometry (LRGS)
 - Dose rate Measurements
 - Surface contamination (total and smear tests) measurements

A total of 5000 LRGS and 1000 HRGS were made

"IN SITU" SPECTROMETRIC GAMMA INSTRUMENTS

HRGS		FALCON 5000		
Detector	HPGe Canberra Extended Range	HPGe		
Energy range	50 – 3000 KeV	20 – 3000 KeV		
Relative efficiency	30%	20%		
Cooling system	Liquid nitrogen	electric		
Software efficiency calculation	ISOCS Canberra	ISOCS Canberra		
Software gamma spectrometry	Genie 2000 Canberra	Genie 2k Canberra		

- ✓ HRGS LRGS measurements were collimated measurements (30°)
- ✓ Measurements time was 1200 s for HRGS and 300 s for LRGS
- ✓ The Detector to object distance was different depending on dose rate, dead time, SSC conformation, interfering object into the field view.
- ✓ The object measured is assumed to have a geometry that can be reduced to a standard geometry (e.g cube, cylinder, sphere, surface).

STRATEGY AND METHODOLOGY

METHODOS AND THECNICS

- Data processing. Calculations make the following assumptions:
 - ✓ Floor/walls

20

- the activity is uniformly distributed over the whole surface
- ✓ Instruments, panels etc, etc,

100% of the activity is on 1 mm cm of dust on the surface

✓ Ventilation ducts

The activity is uniformly distributed over the surface (actual lateral surface and thickness used for calculation)

✓ Pipes and tanks

The activity is uniformly distributed over the inner surface

✓ Etc.

Having at least five values of isotopic activity for each SSC, a representative value of isotopic activity is obtained calculating the weighted average:

21

 $\overline{x} = \frac{\sum_{i=1}^{n} \left(x_i / \sigma_i^2 \right)}{\sum_{i=1}^{n} \left(1 / \sigma_i^2 \right)} \begin{bmatrix} - x_i = \text{activity concentration (Bq/cm² or Bq/cm³)} \\ - \sigma_i = \text{standard deviation (Bq/cm² or Bq/cm³)} \end{bmatrix}$

- Hot spots value do not contribute to the average (added to the average)
- For small components Bg/cm³ is than converted in Bg/g dividing for the density (standard value):
 - Concrete = 2,35 g/cm³
 - Metal = $7,86 \text{ g/cm}^3$
 - Technological = 1,8 g/cm³
 - Dust = 1,25 g/cm³

A Non Destructive Radiological Analysis report has been created for each SSC. The report presents:

Information related to the SSC

- Physical characteristics (dimensions, type, matrix) and picture of the SSC,
- Results of the scanning measurements: (link to the Inspector 1000 file report),
- Isotopic activity (Bq/cm² or Bq/g) for the SSC
- > Spatial distribution of isotopic activity (Cs-137) in the SSC (if assessable)
- Information related to the measurement points for the SSC
 - > ID, coordinates, dose rate, links to the HRGS and LRGS file reports

Pag. 1 di 2

Pag. 2 di 2

IDSSC PV1730G44NN

23

Tipologia	PV1	Pavimento
Materiale	CM	Cemento
Quantità	1	
UBICAZI Edificio	<u>ONE</u> 73	
Piano	0	
Locale	G44	

554

0

File Foto: PV1730G44NN.gif

MGAS File Falcon File Inspector1000 File ID Area X Y Z Dose [µSv/h] PV1730G44NN01.rpt PV1730G44NN01 153 64 0 PV1730G44NN01.rpt 1.2 PV1730G44NN01T 237 323 0 1,5 PV1730G44NN02 77 333 PV1730G44NN02.rpt PV1730G44NN02.rpt 0 0.2 PV1730G44NN02T 459 554 0 1,5 PV1730G44NN03 489 333 0 0.2 PV1730G44NN03.rpt PV1730G44NN03.rpt PV1730G44NN03T 445 863 0 1.5 PV1730G44NN04.rpt PV1730G44NN04 495 570 0 0,2 PV1730G44NN04.rpt PV1730G44NN05.rpt PV1730G44NN05 181 980 0 0,2 PV1730G44NN05.rpt PV1730G44NN06 216 761 PV1730G44NN06.rpt PV1730G44NN06.rpt 0 0,2 PV1730G44NN07 432 740 0 PV1730G44NN07.rpt PV1730G44NN07.rpt 0.2 PV1730G44NN08 427 1000 0 PV1730G44NN08.rpt 0.2 PV1730G44NN08.rpt PV1730G44NN09 689 685 0 PV1730G44NN09.rpt PV1730G44NN09.rpt 0.2 PV1730G44NN10 698 842 0 PV1730G44NN10.rpt PV1730G44NN10.rpt 0.2

INSPECTOR 1000

Y

Z

Spettrometro da campo portatile con rivelatore di tipo NaI misura integrata su SSC e misura su Area File Report PV1730G44NN.RPT LiveTime [sec] 300 Data 30/06/2009

FALCON 5000

Spettrometro da campo portatile costituito da un rivelatore BeGe - HPGe misura integrata su SSC e misura su Area File Report

Live Time [sec] Data

NGVIEW

- CARTOGAM: Sistema di misura per determinazione della distribuzione di dose - misura su SSC - Software di visualizzazione della distribuzione di attività gamma - analisi su SSC

MGAS (Mobile Gamma Assay System) Sistema di misura da campo portatile del tipo "Open geometry" - misura su Area

RISULTATI

Intensità di dose [µS	v/h]		0,2	$(MDA = 0.10 [\mu Sv/h])$				
Contaminazione Sup	. tot. β/	γ [Bq/cm2]	<mda< td=""><td>(MDA =</td><td colspan="3">= 0.005 [Bq/cm2]</td></mda<>	(MDA =	= 0.005 [Bq/cm2]			
Contaminazione Sup	. tot. α	[Bq/cm2]	<mda< td=""><td>(MDA =</td><td>0.01 [Bq/cm2])</td></mda<>	(MDA =	0.01 [Bq/cm2])			
Radionuclide		Attività [Bq/cm2]		Incertezza [Bq/cm2]	MDA [Bq/cm2]			
Cs-137		1,50E+01		1,18E+01	9,12E+00			
Co-60	<	7,75E+00						
Th-232	<	2,03E+01						
U-235	<	1,31E+01						
U-238	<	1.18E+03						

File NGView: PV1730G44NN.gif

IDSSC PV1730G44NN

MISURE NDA

"Radiological survey"

NDA Data sheet

	COORDIN			COORDINATI	E	Tabella dati Caratterizzazione NDA												
Codice Locale	Tipologia	Area	ID	x	Y	z	GO	Foto	Intensità di dose [µSv/h]	Contam super trasf [Bq,	linazione rficiale eribile /cm2]	ne Contaminazione superficiale totale [Bq/cm2]		Report MGAS	Report FALCON	Report CARTOGAM	Report INSPECTOR	Area [cm2]
								х		α	β/γ	α	β/γ	1	1	1	1	
G23	PR1	01	PR1730G23NN01	0	1270	179	СМ	1	0.1			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1265.81</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1265.81</td></mda<>	1			1	1265.81
G23	PR1	02	PR1730G23NN02	0	735	64	CM	1	0.1			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>706.5</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>706.5</td></mda<>	1			1	706.5
G23	PR2	01	PR2730G23NN01	95	1550	86	СМ	1	0.2			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>706.5</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>706.5</td></mda<>	1			1	706.5
G23	QE1	01	QE1730G23NN01	75	1550	71	TL	1	0.2			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>5805.9</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>5805.9</td></mda<>	1			1	5805.9
G23	QE1	02	QE1730G23NN02	75	1550	36	TL	1	0.2			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1808.64</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1808.64</td></mda<>	1			1	1808.64
G23	PR2	02	PR2730G23NN02	95	1550	33	СМ	1	0.2			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>706.5</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>706.5</td></mda<>	1			1	706.5
G23	PR3	01	PR3730G23NN01	142	1341	74	СМ	1	0.2			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1384.7</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1384.7</td></mda<>	1			1	1384.7
G23	PR3	02	PR3730G23NN02	142	1057	80	СМ	1	0.1			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1384.7</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1384.7</td></mda<>	1			1	1384.7
G23	PR3	03	PR3730G23NN03	142	732	60	СМ	1	0.1			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1133.54</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1133.54</td></mda<>	1			1	1133.54
G23	PR3	04	PR3730G23NN04	142	406	36	СМ	1	0.1			<mda< td=""><td><mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1384.7</td></mda<></td></mda<>	<mda< td=""><td>1</td><td></td><td></td><td>1</td><td>1384.7</td></mda<>	1			1	1384.7

- The main conclusion o the Radiological Survey is the preliminary classification of the SSCs in HGs.
- A HG is a collection SSC having the following common characteristics:
 - **1)** The same kind (e.g. metal, concrete, etc.) of materials.
 - 2) Concentration of total $(\alpha + \beta)$ activity (expressed in Bq/g or Bq/cm²) within the same order of magnitude.
 - 3) Similar isotopic composition (in terms of radionuclide activity concentration).
- The advantages of this approach are:

- Assessment of the plant materials inventory (materials classification and treatment may be effectively performed and planned and materials for clearance can be effectively identified and quantified);
- Optimization of the DA sampling design and implementation of the use of scaling factors.

7 HGs have been identified:

- I. All isotopes below MDA
- II. ¹³⁷Cs above MDA with values lower than 10³ Bq/g or 10 Bq/cm²
- III. ¹³⁷Cs and ⁶⁰Co above MDA
- IV. ²³²Th and ¹³⁷Cs above MDA
- V. ²³²Th, ¹³⁷Cs and ⁶⁰Co above MDA
- VI. ²³²Th, ¹³⁷Cs, ⁶⁰Co and ¹⁵⁴Eu
- VII. ¹³⁷Cs above MDA with values higher than 10³ Bq/g or 10 Bq/cm²

✓ ¹³⁷Cs

28

As it was expected ¹³⁷Cs is the isotope most widely detected above MDA. It's a fission product and is probably present jointly with ⁹⁰Sr (SF estimated during the DA characterization step)

✓ ⁶⁰Co

Activation product is present in components and areas involved in the first step of fuel reprocessing : fuel pool area (G45, G46), dissolution cell (G33), hot cell/chemical process (G32)

✓ ²³²Th

Present above MDA only in components and areas directly involved in the dissolution process: dissolution cell (G33), sampling hall (110), off gas (110)

✓ ¹⁵⁴Eu

Above MDA only in components and areas highly contaminated

A1

Slide 28

A1 A247514, 2010-07-02

- The third task of the plant characterization program is the performance of DA for quantitative determination of HTM radionuclides and related Scaling Factor (ratios of radioactive concentrations between DTM nuclides and key nuclides)
- In the SF method, the concentrations of DTM nuclides are evaluated by multiplying the concentrations of the key nuclide by the SFs calculated based upon radionuclide data obtained by DA analysis
- This method significantly reduces the number of samples that would otherwise have to be taken and analysed, reducing cost of the characterization.

- For a statistically significant correlation, initially 10 samples for each HG are taken:
 - \checkmark γ -emitter and ⁹⁰Sr by LS are analyzed in every sample ,

30

- ✓ ²³⁵U and ²³⁸U by ICP-MS are analayzed in 30 samples from IV, V and VI HGs.
- **SFs for every DTM for every HG is calculated according to the Epri criteria:**
 - ✓ SFs are determined from the log-mean average of the ratio of the DTM to the key nuclide

✓ the dispersion should be less than 10.

