Technical Meeting on In-situ Methods for Characterization of Contaminated Sites IAEA, Vienna, Austria, 5 – 9 July 2010

The Effective Solid Angle Concept and **ANGLE v3.0** Computer Code for Semiconductor Detector Gamma-Efficiency Calculations – Applicability to In-situ Characterization of Contaminated Sites –

S. Jovanovic, A. Dlabac, N. Mihaljevic

University of Montenegro Centre for Nuclear Competence and Knowledge Management Podgorica, Montenegro

Gamma-Energy Peak Efficiency

In any gamma-spectrometric (quantitative) measurement with semiconductor detectors, the question of converting the number of counts - collected by multichannel analyser (MCA) in a full energy peak - into the activity (concentration) of the sample/source cannot be avoided.

There are, in principle, three approaches to this issue, as follows.

1) Relative, where one tries to imitate as good as possible the source by a standard (or vice versa), while keeping the same counting conditions for the two. Paid enough care, the result is, in general, so accurate that cannot be surpassed by other methods.

However, we all know what "enough care" means in practice. Combined with the inflexibility in respect with varying source&container parameters (shape, dimensions, material composition), this represents *raison d'être* of the other approaches, as follows. 2) Absolute calculations (Monte Carlo methods) yield full energy peak efficiency (ϵ_p) or total efficiency (ϵ_{tot}) for a given counting arrangement.

It is essentially statistical treatment of the events which photons undergo - from being emitted by a source atom until the interaction with the detector active body including the treatment of the so produced electrons, positrons and other subsequent energy carriers.

Absolute approach is beautifully exact, on condition that we consider sufficiently large number of incident photons and that we know all the details about

- source, detector and intercepting layers' geometrical and compositional data
- the corresponding photon attenuation coefficients
- energy and angle dependent cross section for various photon interactions with the detector active body, and
- parameters characterizing electron/positron behaviour in the latter

At present, inherent statistical uncertainty of Monte Carlo methods, unsatisfactory manufacturers' detector specifications and relatively poor knowledge of the above physical parameters (some of) are limiting factors for its applicability. 3) Semiempirical models, trying to conciliate the previous two. Semiempirical models commonly consist of two parts:

experimental (producing one kind or another of reference efficiency characteristic of the detector) and
 relative-to-this ('efficiency transfer" – ET) calculation of ε_n

Inflexibility of the relative method is avoided in this way, as well as the demand for some physical parameters needed in Monte Carlo calculations.

ET contributes significantly to error compensation in ε_{p} .

Numerous variations exist within this approach, with emphases either to experimental or to computational part. Most of them simplify (or oversimplify) the physical model behind, i. e. the treatment of

- gamma-attenuation
- geometry and
- detector response

It was shown earlier (within the development of the k0-NAA method) that only simultaneous differential treatment of these three factors is essentially justified. This fact is transformed into the concept of the effective solid angle $\overline{\Omega}$ - a calculated value incorporating the three components, and closely related to the detection efficiency.

To the definition of the effective solid angle ($\overline{\Omega}$)

Given a gamma-source and a semiconductor detector, the effective solid angle is defined as:

$$\overline{\Omega} = \int d\overline{\Omega}$$

with V_S = source volume, S_D = detector surface exposed to the source ("visible" by the source) and

$$d\overline{\Omega} = \frac{F_{att} \cdot F_{eff} \cdot \mathbf{TP} \cdot \mathbf{n}_{u}}{\left|\mathbf{TP}\right|^{3}} d\sigma$$

Here T is point varying over VS, P point varying over SD, and <u>*nu*</u> the external unit vector normal to infinitesimal area $d\sigma$ at S_D. Eq. (1) is thus a five fold integral.

Factor F_{att} accounts for gamma attenuation of the photon following the direction TP out of the detector active zone, while F_{eff} describes the probability of an energy degradable photon interaction with the detector material (i.e. coherent scattering excluded), initiating the detector response.

The two factors include therefore geometrical and compositional parameters of the materials traversed by the photon.

With ε_p being proportional to $\overline{\Omega}$, the detection efficiency is found as:

$$\boldsymbol{\varepsilon}_{p} = \boldsymbol{\varepsilon}_{p,ref} \, \frac{\overline{\Omega}}{\overline{\Omega}_{ref}}$$

where index "ref" denotes reference counting geometry to which the actual one is relative.

The above ratio reduces, even significantly, error propagation from input (e.g. detector) data !

So as to apply this method the following should be known:

• reference efficiency curve (REC), usually obtained by counting calibrated point sources at a reference distance (e. g. 15-20 cm), and covering gamma-energies (E_{γ}) in the region of interest (e. g. 50 -3000 keV); considerable effort should be put in this phase to reach accurate (E_{γ}) function, but it pays off in further exploitation;

- geometrical and compositional data about
 - source
 - detector
 - intercepting layers (source container and holder, detector end cap and housing, dead layers, etc.);
- gamma-attenuation coefficients for all materials involved

For a cylindrical source coaxially positioned with the detector, and with radius smaller than that of the detector $(r_0 < R_0)$:

$$\overline{\Omega} = \frac{4}{r_o^2 L} \int_0^L (d+l) \, dl \int_0^{r_o} r \, dr \int_0^{\pi} d\phi \int_0^{R_o} \frac{F_{att} \cdot F_{eff} \cdot R \, dR}{\left[R^2 - 2Rr\cos\phi + r^2 + (d+l)^2\right]^{3/2}}$$

In the above, five fold integral is reduced to four fold due to axial symmetry. Disk and point sources are included in equation (for L=0, and L=0, r_0 =0, respectively).

(SOLANG, KAYZERO/SOLCOI)

Cylindrical source $(r_0 > R_0)$

For sources with radii larger than that of the detector $(r_0 > R_0)$ we obtain:

$$\begin{split} \overline{\Omega} &= \int_{V_1, S_1} d\overline{\Omega} + \int_{V_2, (S_1 + S_2)} d\overline{\Omega} &= \\ &= \frac{4}{r_o^2 L} \int_0^L (d+l) dl \int_0^{r_o} r \, dr \int_0^{\pi} d\phi \int_0^{R_o} \frac{F_{att} \cdot F_{eff} \cdot R \, dR}{\left[R^2 - 2Rr\cos\phi + r^2 + (d+l)^2\right]^{3/2}} + \\ &+ \frac{4R_o}{\left(r_o^2 - R_o^2\right) L} \int_0^L dl \int_{R_o}^{r_o} r \, dr \int_0^{\phi_o} d\phi \int_{-H}^0 \frac{F_{att} \cdot F_{eff} \cdot (r\cos\phi - R_o) \, dh}{\left[R_o^2 - 2R_o r\cos\phi + r^2 + (d+l-h)^2\right]^{3/2}} \end{split}$$
with $\phi_o = \phi_o(r) = \operatorname{arctg} \frac{\sqrt{r^2 - R_o^2}}{R_o}$

Marinelli geometry can be described as:

$$\begin{split} \overline{\Omega} &= \int_{(V_{1}+V_{2}),S_{1}} d\overline{\Omega} + \int_{V_{2},S_{2}} d\overline{\Omega} + \int_{V_{3},S_{1}} d\overline{\Omega} + \int_{(V_{3}+V_{4}),S_{2}} d\overline{\Omega} = \\ &= \frac{4}{r_{o}^{2}L + \left(r_{o}^{2} - r_{\phi}^{2}\right)L_{\phi}} \int_{0}^{L} (d+l)dl \int_{0}^{r_{o}} r dr \int_{0}^{\pi} d\phi \int_{0}^{R_{o}} \frac{F_{att} \cdot F_{eff} \cdot R \, dR}{\left[R^{2} - 2Rr\cos\phi + r^{2} + (d+l)^{2}\right]^{3/2}} + \\ &+ \frac{4R_{o}}{r_{o}^{2}L + \left(r_{o}^{2} - r_{\phi}^{2}\right)L_{\phi}} \int_{0}^{L} dl \int_{R_{o}}^{r_{o}} r \, dr \int_{0}^{\pi} d\phi \int_{0}^{R_{o}} \frac{F_{att} \cdot F_{eff} \cdot (r\cos\phi - R_{o}) \, dh}{\left[R_{o}^{2} - 2R_{o}r\cos\phi + r^{2} + (d+l-h)^{2}\right]^{3/2}} + \\ &+ \frac{4}{r_{o}^{2}L + \left(r_{o}^{2} - r_{\phi}^{2}\right)L_{\phi}} \int_{0}^{d} l \, dl \int_{r_{\phi}}^{r_{o}} r \, dr \int_{0}^{\pi} d\phi \int_{0}^{R_{o}} \frac{F_{att} \cdot F_{eff} \cdot (r\cos\phi - R_{o}) \, dh}{\left[R_{o}^{2} - 2R_{o}r\cos\phi + r^{2} + l^{2}\right]^{3/2}} + \\ &+ \frac{4}{r_{o}^{2}L + \left(r_{o}^{2} - r_{\phi}^{2}\right)L_{\phi}} \int_{0}^{d} l \, dl \int_{r_{\phi}}^{r_{o}} r \, dr \int_{0}^{\phi} d\phi \int_{0}^{0} \frac{F_{att} \cdot F_{eff} \cdot (r\cos\phi - R_{o}) \, dh}{\left[R_{o}^{2} - 2R_{o}r\cos\phi + r^{2} + l^{2}\right]^{3/2}} + \\ &+ \frac{4R_{o}}{r_{o}^{2}L + \left(r_{o}^{2} - r_{\phi}^{2}\right)L_{\phi}} \int_{-L\phi}^{d} dl \int_{r_{\phi}}^{r_{o}} r \, dr \int_{0}^{\phi} d\phi \int_{0}^{0} \frac{F_{att} \cdot F_{eff} \cdot (r\cos\phi - R_{o}) \, dh}{\left[R_{o}^{2} - 2R_{o}r\cos\phi + r^{2} + (l-h)^{2}\right]^{3/2}} + \\ &+ \frac{4R_{o}}{r_{o}^{2}L + \left(r_{o}^{2} - r_{\phi}^{2}\right)L_{\phi}} \int_{-L\phi}^{d} dl \int_{r_{\phi}}^{r_{o}} r \, dr \int_{0}^{\phi} d\phi \int_{0}^{\eta} \frac{F_{att} \cdot F_{eff} \cdot (r\cos\phi - R_{o}) \, dh}{\left[R_{o}^{2} - 2R_{o}r\cos\phi + r^{2} + (l-h)^{2}\right]^{3/2}} + \\ &+ \frac{4R_{o}}{r_{o}^{2}L + \left(r_{o}^{2} - r_{\phi}^{2}\right)L_{\phi}} \int_{-L\phi}^{d} dl \int_{r_{\phi}}^{r_{o}} r \, dr \int_{0}^{\phi} d\phi \int_{0}^{\eta} \frac{F_{att} \cdot F_{eff} \cdot (r\cos\phi - R_{o}) \, dh}{\left[R_{o}^{2} - 2R_{o}r\cos\phi + r^{2} + (l-h)^{2}\right]^{3/2}} + \\ &+ \frac{4R_{o}}{r_{o}^{2}L + \left(r_{o}^{2} - r_{\phi}^{2}\right)L_{\phi}} \int_{-L\phi}^{d} dl \int_{r_{\phi}}^{r_{o}} r \, dr \int_{0}^{\pi} d\phi \int_{0}^{\pi} \frac{F_{att} \cdot F_{eff} \cdot R \, dR}{\left[R_{o}^{2} - 2R_{o}r\cos\phi + r^{2} + (l-h)^{2}\right]^{3/2}} \end{split}$$

Accounting for detector crystal edge rounding ("bulettizing")

$$\begin{split} & \hat{D} = \frac{4}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_0^L dl \int_0^{r_0} rdr \int_0^{\pi} d\theta \int_0^{R_0 - \rho} F_{att} F_{eff} F_1(T, P_{S_1}) RdR + \\ & + \frac{4}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_0^L dl \int_0^{r_0} rdr \int_0^{\pi} d\theta \int_{R_0 - \rho}^{R_0} F_{att} F_{eff} F_{13}(T, P_{S_1}) RdR + \\ & + \frac{4R_0}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_0^L dl \int_{R_0}^{r_0} rdr \int_0^{\theta_0} d\theta \int_{-H}^{R_0 - \rho} F_{att} F_{eff} F_2(T, P_{S_2}) dh + \\ & + \frac{4R_0}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_0^L dl \int_{R_0}^{r_0} rdr \int_0^{\theta_0} d\theta \int_{-P}^{0} F_{att} F_{eff} F_{23}(T, P_{S_2}) dh + \\ & + \frac{4R_0}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_0^L dl \int_{R_0}^{r_0} rdr \int_0^{\pi} d\theta \int_{-\rho}^{R_0 - \rho} F_{att} F_{eff} F_3(T_m, P_{S_1}) RdR + \\ & + \frac{4R_0}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_0^d dl \int_{r_0}^{r_0} rdr \int_0^{\pi} d\theta \int_{R_0 - \rho}^{R_0 - \rho} F_{att} F_{eff} F_3(T_m, P_{S_1}) RdR + \\ & + \frac{4R_0}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_0^d dl \int_{r_0}^{r_0} rdr \int_0^{\pi} d\theta \int_{R_0 - \rho}^{R_0 - \rho} F_{att} F_{eff} F_3(T_m, P_{S_1}) RdR + \\ & + \frac{4R_0}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_0^d dl \int_{r_0}^{r_0} rdr \int_0^{\theta_0} d\theta \int_{-R_0 - \rho}^{-\rho} F_{att} F_{eff} F_3(T_m, P_{S_1}) RdR + \\ & + \frac{4R_0}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_0^d dl \int_{r_0}^{r_0} rdr \int_0^{\theta_0} d\theta \int_{-H}^{\rho} F_{att} F_{eff} F_{33}(T_m, P_{S_1}) RdR + \\ & + \frac{4R_0}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_{d-L_{\varphi}}^d dl \int_0^{r_0} rdr \int_0^{\theta_0} d\theta \int_{-H}^{-\rho} F_{att} F_{eff} F_{43}(T_m, P_{S_2}) dh + \\ & + \frac{4R_0}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_{d-L_{\varphi}}^d dl \int_0^{r_0} rdr \int_0^{\theta_0} d\theta \int_{-\rho}^{\rho} F_{att} F_{eff} F_{43}(T_m, P_{S_2}) dh - \\ & - \frac{4}{r_0^2 L + \left(r_0^2 - r_{\varphi}^2\right) \angle \varphi} \int_{d-L_{\varphi}}^{-H} dl \int_{r_0}^{r_0} rdr \int_0^{\theta_0} d\theta \int_{-\rho}^{\theta_0} F_{att} F_{eff} F_{5}(T_m, P_{S_4}) RdR \end{split}$$

🕹 ANGLE 3	
File Detector Container Geometry Source Other Calculat	tions Help
New Edit Geometry geometry geometry Modify Delete	
Detector	Container
Detector example #1	No container
Detector example #2	Container example #1 contaminated soil quasi-infinite cylinder
Detector example #3	Container example #2
Detector example #4	
Detector example #5	
Detector example #6	
Geometry	
No holder	
	Source
Geometry example #1	Source height: 100
	Source radius: 100 Source material: Plastic
	Other
	Energies: None
	Reference efficiency curve: Curve example
	All dimensions are in: Centimeters
Start Microsoft PowerPoint	EN 🔇 🕽 🕅 🕬 🥥 🥺 5:00 PM

detector data input

source container data input

geometry data input

Geometry change			X
Geometry Additional intercepting layers		g	
Geometry name: Geometry example #1		Sou	_
Holder outer radius: 4,3			
Holder cap thickness: 0,18		1	
Holder cap material: Plastic			
Holder wall thickness: 0,33			
Holder wall material: Plastic			
Holder height: 12,28			
			d-cap
			E .
Geometry description:	ок	Save as	Cancel

reference efficiency curve data input

ooints its:			Detector Detector name: Detector example #1
Εγ	⁵ p,ref	~	
53,17	9,78E-5		
80,88	0,0003423		Container: Curve example - Container
121,78	0,0004714		Geometry
122,06	0,0004703		Geometry: Curve example - Geometry
136,46	0,0004707		
160,61	0,000473		Source
223,23	0,0004043		Source height: 10.72
244,7	0,0004049		Source radius: 4.31
276,4	0,0003689		
302,8	0,0003441		Source material: Water
344,28	0,0003253	10	
355,95	0,0003137	ti -	^s p.ref
383,78	0,0002948		
411,11	0,0002624		
444	0,0002757		
661,65	0,0002027	~	
s ons: [keV 50 300 700	, keV] 300 700 2000	Polynom order 3 1 1	$ \begin{array}{c} 10^{-5} \\ 10^{-5} \\ 10 \\ 10 \\ 10^{2} \\ 10^{3} \\ E_{v}k \end{array} $
			Reference efficiency curve name: Curve example Reference efficiency curve description:
	oints ts:	Eγ %p,ref 53,17 9,78E-5 80,88 0,0003423 121,78 0,0004714 122,06 0,0004703 136,46 0,0004707 160,61 0,0004043 244,7 0,0004043 244,7 0,0003423 302,8 0,0003441 344,28 0,0003253 355,95 0,0003137 383,78 0,0002948 411,11 0,0002757 661,65 0,0002027	Ey Ep,ref 53,17 9,78E-5 80,88 0,0003423 121,78 0,0004714 122,06 0,0004703 136,46 0,0004707 160,61 0,0004043 244,7 0,0003689 302,8 0,0003441 344,28 0,0003253 355,95 0,0003137 383,78 0,0002948 411,11 0,0002757 661,65 0,0002027

output data file

	<u> </u>				
Output			X		
Output file:	Output exa	mple.out			
Detector name:	Detector ex	ample #1	0		
Container name:	Container e	xample #1	0		
Geometry name:	Geometry e	example #1	0		
Source height:	5.3				
Source radius:	1.1				
Source material:	Water		0		
Number of energies:	8		1		
Reference efficiency cur	ve: Curve exam	Curve example			
Gauss coefficient order:	10	10			
Calculation duration:	0:00				
Calculated values:			_		
Εγ	Ωeff	δp	^		
60	0.0338829265648614	0.00108880718600845			
90	0.0425408892554379	0.00276342161407703			
150	0.0451293445324021	0.00345571059953243			
250	0.0440890139553926	0.00279202312864821			
450	0.0419038351171812	0.00200148519534467			
700	0.0401160315285273	0.0015551848764458			
1200	0.0369330953298705	0.00111203872929305	~		

Copy to clipboard

🔯 Export to GammaVision

ANGLE frame is also easily adjustable to other semiempirical or Monte Carlo models for efficiency calculations, since communication with the user (data input/output) is nearly the same

Possibilities

 Any type of commercial semiconductor detector (HPGe, Ge-Li, well, LEPD)

 Practically any type of typical gamma source (point, disk, cylinder, Marinelli)

 Extraordinary flexible and user-friendly 32-bit Windows application

Main Advantages:

- Broad application range
- High accuracy
- Easy data manipulation
- Short computation times
- Flexibility
- Teaching/training aspect
- No detector "factory characterization"

When assigning uncertainties to ANGLE calculation results, several uncertainty-contributing components should be distinguished, originating from

Detector manufacturer
ANGLE user and
ANGLE software itself. These include:

- detector data, supplied by the manufacturer
- geometrical and compositional (chemical) data of the source, its container vessel and intercepting layers (between the source and the detector), introduced by the user
- reference efficiency curve, created or chosen by the <u>user</u>
- mathematical model and calculation method applied (<u>ANGLE</u>)
- gamma-attenuation coefficients and other physical/chemical parameter data used in calculations (ANGLE)

Testing Efficiency Transfer Codes for Equivalence (paper submitted to Appl. Rad. Isot.)

T. Vidmar (a), N. Çelik (a,b), N. Cornejo Díaz (c), A. Dlabac (d), O. B. Ewa (e), J. A. Carrazana González (c), M. Hult (a), S. Jovanović (d), M-C. Lépy (f), N.Mihaljević (d), O. Sima, (g), F. Tzika (h), M. Jurado Vargas (i), T. Vasilopoulou (h, j), G. Vidmar (k)

(a) European Commission, JRC, IRMM, Geel, Belgium

(b) Karadeniz Technical University, Trabzon, Turkey

(c) Centro de Protección e Higiene de las Radiaciones, La Habana, Cuba

(d) University of Montenegro, Podgorica, Montenegro

(e) Ahmadu Bello University, Zaria, Nigeria

(f) Commissariat à l'Énergie Atomique, Gif sur Yvette Cedex, France

(g) Bucharest University, Bucharest, Romania

(h) National Centre for Scientific Research 'Demokritos', Athens, Greece

(i) University of Extremadura, Badajoz, Spain

(j) National Technical University of Athens, Athens, Greece

(k) Institute for Rehabilitation, Ljubljana, Slovenia

Table 4: The various combinations of the codes, their types and the ET implementations considered in the study

Computer Code	ET Implem	entation	Code Type	
	FEPE	ET	Specialized	General
ANGLE		x	x	
EFFTRAN		x	х	
DETEFF 4.2	x	x	х	
EGS4	x			Х
GEANT 3.21	x	x		Х
GESPECOR 4.2	x		x	
MCNP4C	x			Х
MCNPX	x			Х
PENELOPE 2003	x			Х
PENELOPE 2008	x			Х
PENELOPE PENCYL	x		2	Х
ETNA		x	х	
MCNPX	X			Х

Figure 1: A schematic presentation of the setup for the case of the soil sample and the p-type

Efficiency transfer (ET) from voluminous source (large cylinder, aquatic solution) to:

Point source

- Large disc source (air filter paper)
- Cylinder (quartz matrix)

n-type and p-type detectors
Energy range 20 – 2000 keV

Table 7: Standard deviation of the population of the ET factors, as percent of its mean. The value exceeding 2% is marked in bold. The averaging and the standard deviation calculation were done over all the data sets (see text).

Energy	Point A	Point B	Soil A	Soil B	Filter A	Filter B
20		1.4	340.25	2.5		1.2
45	0.5	0.9	0.9	0.5	0.9	0.8
60	0.6	0.5	0.9	0.9	1.0	0.5
80	0.6	0.4	0.9	0.7	0.8	0.5
120	0.5	0.4	0.7	0.5	0.6	0.6
200	0.7	0.7	0.6	0.6	0.6	0.8
500	0.8	0.9	0.8	0.3	0.6	0.9
1000	0.7	1.1	0.5	0.5	0.8	0.9
2000	0.7	1.0	0.7	0.6	0.8	0.8

Table 8: The maximum deviation of the population of the ET factors from its mean, as percent of the mean. Values exceeding 2% are marked in bold.

Energy	Point A	Point B	Soil A	Soil B	Filter A	Filter B
20	-	3.1	-	7.6	-	3.4
45	1.2	1.7	3.1	1.3	2.2	1.4
60	1.2	1.1	1.9	2.3	2.5	1.0
80	1.2	1.0	2.0	1.6	2.0	1.1
120	0.9	0.8	1.8	1.6	1.2	1.1
200	1.1	1.4	1.2	1.6	1.2	1.4
500	1.4	1.9	1.7	0.5	1.1	1.5
1000	1.6	2.0	0.9	1.2	1.4	1.5
2000	1.9	1.9	1.5	0.9	1.4	1.3

 How far can our expectation go from detector manufacturers about detector data?

• What is a reasonable accuracy to expect from detector efficiency characterization?
Resolution _keV (FWHM) @ 1.33 MeV _keV (FWTM)

__keV (FWHM)@ __keV (FWTM)

Peak/Compton -

Cryostat Description or Drw. No. if special Vertical dipstick, type 7500

6.2 PHYSICAL/PERFORMANCE DATA

Date: November 29, 1982

tual performance of this detector when tested is given below. Digital printouts are also enclosed in the rear envelope of the instruction manual.

Coaxial one open end, closed end facing window ... Geometry

Diameter	49.4	mm
Length	48	mm
Weight	480	gm
Active area fa	cing window	18.7 m

P-core	Diameter	8		_mm	
P-core	Length	25		_mm	а А.,
Distanc	e from window_		5	_mm	

Thickness of n-layer 0.3 mm

LEAKAGE CURRENT AND CAPACITANCE

Volts	nAmp	pf
00.	0.010	279
200	0.010	220
300	-	
400		
500	0.010	160

.Volts	nAmp	pf
1000	0.010	111
1500	0.010	81
2000	0.010	, 66
2500	0.018	55
3000	0.031	50

Volts	nAmp	pſ
3500	0.040	37
4000	0.050	35
4500	0.063	30
5000	0.068	26

(+) 5000 V Recommended Operating Voltage:____

RESOLUTION AND EFFICIENCY

Isotope	Co ^{s 7}	Cs ^{1 3 7}	Co ⁶⁰	Th ²²³ .	
Energy (keV)	• 122	662	1332	2614	·
FWHM (keV.)			1.87	1, 2 2 1 2, 2 2 1 2, 1 2	

Accuracy of detector specifications is limited by the technological process of their production (dead layer, vacuum, crystal impurities, crystal tilt/shift, ...)

 Even two "identical" detectors from the production line may exhibit significantly different response to gammaradiation

 Major positive impact is due to partial canceling of input uncertainties for reference and actual counting geometry (ET error compensation) If not satisfied with detector data, more than one reference efficiency curve can be produced for the same detector – so as to closer match the actual samples to the most similar reference one (this option is valid rather for environmental monitoring than for k0-NAA), e.g.

- two point-source ref. eff. curves (0 cm and 20 cm)
- one cylinder ref. eff. curve
- one Marinelli ref. eff. curve

 Uncertainty should be estimated for each case separately, since depending on many factors (energy, geometry, input data reliability, ...)

Eventually, "uncertainty budget" shows that the best expected combined ε_n uncertainty would be:

- 1-2% for point sources
- 3-4% for cylindrical source
- 5-7% for Marinelli

(<100 keV and >2000 keV: less reliable)

ANGLE-Advanced-Efficiency-Calibration-Software[1].pdf - Adobe Reader

Find

00

107% -

_ 2

File Edit View Document Tools Window Help

H

ORTEC[®]

1

14

ANGLE

Red 4212.00

14.02.1

in Ne

-

Advanced Efficiency Calibration Software for High Purity Germanium Detectors

Service 204 States and

IN HI MINT IN A FREE & BOLL OF I

++

+++

- An easy way to create HPGe efficiency calibrations for Marinelli Beakers, bottles and other sample shapes directly from a point source calibration. (No replicate standards required.)
- Reads in GammaVision point source calibration, adjusts the calibration to the new geometry, and exports the revised calibration back to GammaVision.
- WORKS WITH ANY DETECTOR. No need for expensive

🖉 Blank Page..

- and time consuming "return to factory" characterization.
- Works with a wide variety of HPGe Detector types from any manufacturer – templates included.
- Works with the majority of container types commonly found in Nuclear Counting Laboratories – templates included.
- Reduces radioactive waste disposal problems and lowers

🛃 start 🔰 🐏 ANGLE in si...

Applicability to in-situ characterization of contaminated sites

ANGLE is readily applicable to radioactivity measurements in the environment. Several possibilities are straightforwardly at user's disposal

Regular" radioactivity measurements of

- voluminous (solid or liquid) samples collected at contaminates sites (either in cylindrical or Marinelli beakers), or
- filters collecting air radioactivity by means of air pumps ("disc" sources).

ANGLE supports these cases directly through combination of appropriate entries in Source and Container windows. Activity (A) of a particular nuclide is then simply derived from ANGLE-calculated full-energy detection efficiency and net gamma-peak area (N_p) recorded by multichannel analyzer (MCA) during counting time t_m :

A. $\varepsilon_p = N_p / t_m$

- Soil radioactivity can be measured by positioning the detector towards the ground or in a hole. These cases correspond to infinite cylinder and infinite Marinelli geometry, respectively. In practice, however, only limited area relatively close to the detector contributes relevantly to the measurement outside that area the contribution is negligible, either because of the distance or attenuation, or both. 1m source radius (cylinder or Marinelli) usually is good enough approximation.
- Note this model assumes radioactivity to be homogeneously distributed in the soil. An illustration of data entry for quasi-infinite cylindrical source is given.

In case of surface contamination infinite soil surface can be approximated by a large, finite disc. When surface radioactivity migrates to within certain depth into the soil, slab geometry can be applied. This is, in effect, a large thin cylinder from ANGLE calculations standpoint.

 Note that previous example (surface contamination) is, in mathematical terms, a special case of this one

ANGLE 3									_ 7 ×
File De	tector Container	Geometry Sou	irce Other	Calculations	Help				
	Edit Containe	er Delete container							
Container o	hange						×		13 11 3 MILENS
Container	Container coatings								
1	Container name:	Container example #1							
	Container type:	Cylindrical				Ŭ			
	Container inside radius:	100						nder	
	Container bottom thickness:	0						10000	
	Container wall thickness:	0				e F			
	Container foot height:	0							
	Container material:								
					8				
<u> </u>									
	Container description:	ontaminated soil quasi-infi	nite cylinder						
		1	ок [Save ac	Capce		Help	10-11-0-0-	sale grand to
	отесту ехатріе #1		<u>, , , , , , , , , , , , , , , , , , , </u>	Jave 33	Source height		Tielb	100	
					Source radius	:		100	
14 75				4	Source mater	ial:		Plastic	
21				6	Other	45412	6.45.74	169 × 11 ×	A 4 9 15
1					Energies:			None	
9					Reference eff	ficiency curv	e:	Curve example	1
					Calculation pr	ecision:		28 Continutors	
-	Net of the	AU	TA DAY		Hin unnensions	s are m	HPK CIT	centimeters	
🐉 start	🖉 (0 unread) Ya	ANGLE in situ	Instructions	% ն ն	GLE	📆 Jogi_Marin	elli 🧯	🖟 Angle	EN 🔨 🔨 🛒 6:00 PM

ANGLE 3	
File Detector Container Geometry Source Other Calculat	ions Help
🔂 🎸 🕕 😆	
New Edit Geometry Delete geometry geometry info geometry	
New geometry	
Geometry Additional intercepting layers	
Geometry name: Contamination measurement	
For what detector type: Other than well	Zonu
For what container type: Other than Marinelli	1 nfinite cylinder
Holder outer radius: 0	2
Holder cap thickness: 0	
Holder cap material:	
Holder wall thickness:	
Holder wall material:	
Holder height: 75	
Geometry description: Vertically positioned detector above the soil, 75 cm dist.	
ок	Cancel No. Help
	Source
Geometry example #1	Source height: 100
	Source radius: 100 Source material: Plastic
	Other
	Energies: None
	Calculation precision: 28
	All dimensions are in: Centimeters
Start () upread) Va () AMGLE in situ - () Instructions%	ANGLE Togi Marinelli 3u Angle EN 🖉 (A. EV) 6:13 PM

ANGLE 3	
File Detector Container Geometry Source Other Cal	lculations Help
New Edit Container container container info Modify Delete	
Detector	Container
Detector example #1	No container
Detector example #2	Container example #1
Detector example #3	Container example #2
Detector example #4	
Container change	
Container Container coatings	
Container name: Container example #2	
Container type: Marinelli	
Ge Container inside radius: 100	
Marinelli cavity radius: 5	
Marinelli cavity depth: 10	
Marinelli upper bottom thickness: 0	
Marinelli inner side thickness: 0	ter
Marinelli lower bottom thickness: 0	
Container material: Plastic	1
	e
Container description: none	ve example
ок	Save as Cancel S Help
🔧 start 🖉 (O unread) Yahoo! M 👜 TM In Situ - Abstract 🖤 ANG	LE-%20Belo%20 🖧 Angle EN 🔇 🖉 8:41 PM

🛃 start

🌉 ANGLE in situ - ppp 👘 🌔 (0 ur

🖉 (0 unread) Yahoo! ... 🛛 👜 ANGLE in situ - pap. .

situ - pap... 🛛 🛅 ANGLE

EN 🔇 🔥 🔊 🗿 12:06 PM

Production of X-rays by cosmic-ray muons in heavily shielded gamma-ray spectrometers

I. Bikit^{a,*}, D. Mrda^a, I. Anicin^b, M. Veskovic^a, J. Slivka^a, M. Krmar^a, N. Todorovic^a, S. Forkapic^a

^a University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
^b Faculty of Physics, University of Belgrade, Studentski Trg 12, 11000 Belgrade, Serbia

ARTICLE INFO

Article history: Received 6 January 2009 Received in revised form 22 May 2009 Accepted 22 May 2009 Available online 30 May 2009

Keywords: Cosmic-ray muons X-rays production Lead shield of Ge detector Secondary particles induced by muons Coincidence spectrum Effective cross-sections

ABSTRACT

Cosmic-ray (CR) muons both directly and indirectly contribute to the spectra of heavily shielded High Purity Germanium (HPGe) detectors, even in deep underground laboratories. Heavy elements are frequently used as the detector components or are occasionally placed close to the detector endcap, and their characteristic X-rays induced by cosmic-ray muons contribute to the low-energy region of the HPGe detector spectra. We study the production of X-rays in tungsten, gold and lead by cosmic-ray muons on the ground level, by means of a coincidence system consisting of a plastic scintillation detector and an extended range HPGe detector placed inside a 12-cm-thick lead shield. In this typical low-background arrangement, the shield with total mass of 725 kg acts as a source of secondary particles induced by CR muons. X-rays that originate from direct interactions of muons with the target material, the yield of which may be reliably estimated by Monte Carlo simulations, are excluded by this experimental setup, and only X-rays of W, Pb and Au samples produced by all secondaries from muon interactions with the lead shield are present in the HPGe spectra. The production rate of K_{α} X-rays per unit mass of all the elements studied (74<Z<82) is found to be close to 7×10^{-4} g⁻¹ s⁻¹. This

C ANGLE

Ø

i e

LabSOCS. For experimental verification, three HPGe detectors under various laboratory geometry configurations were used for this study. An overall comparison between experimental and calculated efficiency calibration curves is presented and comments on the various error sources affecting the final results are given. The deviations are generally below 10%, which could be acceptable for many applications. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: ANGLE code; LabSOCS code; Efficiency calibration codes; y-ray spectrometry; HPGE detectors

C ANGLE

ANGLE v2.1—New version of the computer code for semiconductor detector gamma-efficiency calculations

📆 606 (20...

S. Jovanovic^{a,*}, A. Dlabac^a, N. Mihaljevic^b

^a University of Montenegro, Faculty of Natural Sciences, Department of Physics, Dz. Vasingtona bb, Podgorica, Montenegro ^b University of Montenegro, Maritime Faculty, Department of Mathematics, Dobrota 36, Kotor, Montenegro

ARTICLE INFO

ABSTRACT

C ANGLE

Keywords: ANGLE software Efficiency transfer method Efficiency calibration Semiconductor detectors Gamma-spectrometry

🖉 (0 unre...

ANGLE I...

M ANGLE I...

New version of the commercially available ANGLE software for semiconductor detector gammaefficiency calculations is presented. ANGLE allows for accurate determination of the activities of gamma spectroscopic samples for which no "replicate" standard exists, in terms of geometry and matrix. A semi-empirical ("efficiency transfer") approach is applied, based on the effective solid angle calculations. Advantages of both absolute (Monte Carlo) and relative (calibrated-source-based) methods are combined—while minimizing potential for systematic errors in the former and reducing practical limitations of the latter. ANGLE is broadly applicable, accounting for most of counting arrangements in gamma-spectrometry practice (in respect to detector types and configuration, source shapes and volumes, matrix composition, source-to-detector distance, etc.). Besides the years of practical utilization in many gamma-spectrometry laboratories, accuracy of the software is successfully tested in a recent IAEA-organized intercomparison exercise—ANGLE scored 0.65% average deviation from the exercise mean for $E_{\gamma} > 20$ keV energies.

📜 ET pap...

Taper o...

© 2010 Elsevier B.V. All rights reserved.

TANGLE

EN < 🔥 💒 💿 12:11 PM

Ø

1

ANGLE V3.0

<u>http://www.dlabac.com/angle/files/angle_setup.exe</u> <u>http://www.ortec-online.com/software/angle.htm</u>

bobo_jovanovic@yahoo.co.uk, adlabac@t-com.me

Montenegro - a great heart of the Mediterranean -

