Content

- Historical background
- Primary target for cell damage
- Deterministic effects
- Stochastic effects
- Effects of in-utero exposure
- Practical application of fundamental knowledge
- Summary

Facts

- Radiation is a fact of life - all around us, all the time
- There are two classes of radiation
 - Non-ionizing radiation
 - Ionizing radiation
- The origin of the radiation
 - Natural radiation
 - Artificial (human-made) radiation

Types of Radiation

- Often considered in three different groups
 - Alpha (α), beta (β)
 - Gamma (γ), X-ray
 - Neutrons
Discovery of X rays (1895)

Wilhelm Conrad Roentgen

Discovery of Uranium’s Natural Radioactivity

Antoine Henri Becquerel Marie Curie

Basic Terms

• Activity: the quantity of radioactive material present at a given time
 • Unit: becquerel (one disintegration per second)
 • Symbol: Bq
 • Old unit: curie (Ci)

More information on terms: IAEA Safety Glossary
http://www-ns.iaea.org/standards/safety-glossary.htm
Doses and Units

Absorbed dose
Energy imparted by radiation to standard mass of tissue
[unit: Grey - Gy]

Equivalent dose
Absorbed dose weighted for the harm of different types of radiation
[unit: Sievert - Sv]

Effective dose
Equivalent dose weighted for the harm of different tissues
[unit: Sievert - Sv]

Sources of Ionizing Radiation

Average radiation exposure from all sources: 2.8 mSv/year

First Medical Findings

- First skin-burn attributed to radiation - 1901
- First radiation induced leukemia described - 1911
- First publication describing “a clinical syndrome due to atomic bomb” - 1946
Ionizing Radiation and Human Cell

- Primary target for cell damage from ionizing radiation is deoxyribonucleic acid (DNA) in chromosomes of cell’s nuclei.

$P_D \equiv aD$

First Possible Outcome: Damage is Repaired

1) Mutation repaired

2) Cell dies

3) Cell survives but mutated
Second Possible Outcome: Cell Death

Unviable Cell

Deterministic Health Effects

- A radiation effect for which generally a threshold level of dose exists above which the severity of the effect is greater for a higher dose
 - many cells die or have function altered
 - occurs when the dose is above given threshold (specific for the given effect)
 - severity increases with the dose

Deterministic Health Effects

- Data on deterministic health effects are collected from observation of:
 - side effects of radiotherapy
 - effects on the early radiologists
 - effects amongst survivors of the atomic bombs at Hiroshima and Nagasaki in Japan
 - consequences of severe accidents
 - In 1944-2004:
 - 428 registered emergencies (REAC/TS Registry of radiation accidents)
 - ~3000 overexposed people (whole body dose >0.25 Sv, H skin > 6 Sv, or H other organ > 0.75 Sv)
 - 134 fatalities
Deterministic Health Effects

<table>
<thead>
<tr>
<th>Organ or tissue</th>
<th>Dose in less than 2 days, Gy</th>
<th>Deterministic effects</th>
<th>Time of occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole body (bone marrow)</td>
<td>1</td>
<td>Acute Radiation Syndrome (ARS)</td>
<td>1 – 2 months</td>
</tr>
<tr>
<td>Skin</td>
<td>3</td>
<td>Erythema</td>
<td>1 – 3 weeks</td>
</tr>
<tr>
<td>Thyroid</td>
<td>5</td>
<td>Hypothyroidism</td>
<td>1st – several years</td>
</tr>
<tr>
<td>Lens of the eye</td>
<td>2</td>
<td>Cataract</td>
<td>6 months - several years</td>
</tr>
<tr>
<td>Gonads</td>
<td>3</td>
<td>Permanent sterility</td>
<td>weeks</td>
</tr>
</tbody>
</table>

Chernobyl experience:
- Acute Radiation Syndrome and Radiation burns

26.04.1986
Deterministic Health Effects After Chernobyl

- Very high doses on-site
- 134 cases of ARS among responders (firefighters and recovery operation workers):
 - 28 died in 1986 from a combination of high external doses of γ-exposure (2.2-16 Gy) and skin burns due to β-emitters
 - 17 died in 1987-2004 from various causes, not all linked to radiation
- No cases of acute radiation syndrome have been recorded among the general public

Deterministic Effects

- Radiation burns - recent experience

Third Possible Outcome:
Viable but Mutated Cell

Stochastic effects
Stochastic Health Effects

- A radiation-induced health effect, occurring without a threshold level of dose:
 - probability is proportional to the dose
 - severity is independent of the dose
- Stochastic health effects:
 - Radiation-induced cancers
 - Hereditary effects
- Late appearance (years)
- Latency period:
 - Several years for cancer
 - Hundreds of years for hereditary effects

Sources of Data on Stochastic Health Effects

- Occupational exposure
 - Early radiologist and medical physicists
 - Radium-dial painters
 - U-miners, nuclear industry workers
- A-bomb victims
- Overexposed from accidents
- Irradiated for medical reasons

Studies of Japanese A-bomb Survivors
Cohort of Hiroshima & Nagasaki (Life Span Study, LSS)

- Primary source of information:
 - 86,500 individuals of:
 - both sexes and
 - all ages
 - dosimetric data over a range of doses
 - Average dose – 0.27 Sv
 - ~ 6,000 individuals exposed in dose > 0.1 Sv
 - ~ 700 individuals exposed in dose > 1 Sv

LSS Solid Cancer Mortality

- 47 years of follow-up (1950-1997)
- Observed: 9,335 fatal cases of solid cancer
- Expected: ~8,895 fatal cases of solid cancer
 - i.e. ~440 cancers (5%) attributable to radiation

Summary of Epidemiological Estimates Cancer Risks

- Cancer mortality risk for fatal solid cancers
 - ~0.005% per mSv
Radiation-Induced Cancers: Chernobyl Experience
Incidence Rate of Thyroid Cancer per 100,000 Children and Adolescents as of 1986

(after Jacob et al., 2005)

Other Radiation-Induced Cancers

- "Liquidators"
 - Doubling of leukaemia morbidity in workers with D>150 mGy
 - Some increase of mortality (~5%) caused by solid cancers and cardiovascular diseases
 - Increased cataract frequency
 - doses recorded in the Registries range up to about 500 mGy, with an average of ~ 100 mGy

Other Radiation-Induced Cancers (2)

- General public
 - No increase of leukaemia
 - No increase of solid cancers except of thyroid cancer in children and adolescents (considered above)
 - Effective dose during 1986-2005 range from a few mSv to some hundred mSv with an average dose 10 - 20 mSv
Hereditary Effects

• Effects to be observed in offspring born after one or both parents had been irradiated prior to conception
• Radiation exposure does not induce new types of mutations in the germ cells but increase the incidence of spontaneous mutations

Descendents of Hiroshima and Nagasaki survivors were studied
• A cohort of 31,150 children born to parents who were within 2 km of the hypocenter at the time of the bombing was compared with a control cohort of 41,066 children

But, no statistical abnormalities were detected

In the absence of human data the estimation of hereditary effects are based on animal studies
• Risks to offspring following prenatal exposure:
 • Total risk = 0.0003 - 0.0005% per mGy to the first generation
 • Constitutes 0.4-0.6% of baseline frequency

(UNSCEAR 2001 Report: Hereditary Effects of Radiation)
Typical Effects of Radiation on Embryo/Foetus

- Death of the embryo or fetus
- Induction of:
 - malformation
 - growth retardation
 - functional disturbance
 - cancer
- Factors influencing the probability of effects:
 - Dose for embryo or foetus
 - Gestation status at the time of exposure

Severe Mental Retardation

- A study of about 1,600 children exposed in-utero at Hiroshima and Nagasaki to various radiation doses and at various developmental stages:
 - excess mental retardation was at a maximum between 8 and 15 weeks
 - Risk: 0.05% per mSv (8-15 weeks)

From Fundamental Knowledge to Practical Application

- Fundamentals
- Lessons learned
In Summary

- Radiation may cause two types of health effects: deterministic (e.g., radiation burns) and stochastic (e.g., radiation-induced cancer)
- Our knowledge of these effects forms the basis for the system of radiation safety and for response to radiation emergencies

Thank you