The IAEA future roles in support of technology and innovation: perspective of a 'mature' country

Vladimir Asmolov

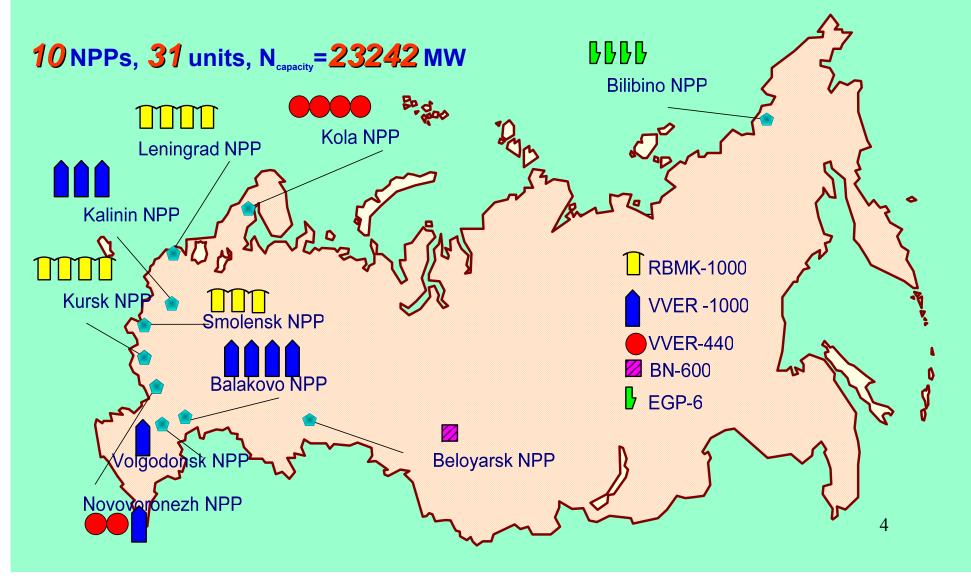
Deputy Director General - Director for Science & Engineering, Energoatom, Russia

IAEA, Vienna, September 2008

The revival of nuclear power implementation of objective capabilities of nuclear power

- Nuclear power "renaissance" External boundary conditions:
- irregularity in the distribution of global organic fuel resources
- growth of consumption in the world energy market

Government and public – global expectations: Expansion of nuclear power application to meet basic human needs


Nuclear power "renaissance" – Internal boundary conditions (proposed consumer properties):

- guaranteed safety (as safe as possible)
- cost-effectiveness (as efficient as possible)
- closing of nuclear fuel cycle:
 - spent fuel and radioactive waste management
 - fuel breeding

Available nuclear technologies for different purposes

Technology	Purpose
Water cooled thermal reactors	 Electricity generation and expansion of installed capacities Combined generation of electricity and heat Regional nuclear power supply
High temperature reactors	 High-grade heat New energy carriers
Fast reactors	Transition to the qualitatively new level: – in fuel employment – in radioactive waste and spent fuel management

Nuclear power of Russia at the beginning of XXI century 2007 - 158.7 Bln kWh

Russian program - priority tasks *Operational NPP*

Objectives	Contents of works
Program of operational NPPs upgrading for 2007 – 2012 Efficiency improvement for operational NPPs with VVER and RBMK reactors	 Activities aimed at the increase of power, capacity factor, fuel burnup, manoeuvring capabilities; Justification of the life-time extension based on the in-depth safety analysis

The program implementation is equivalent to the commissioning of 4 power units of NPP-2006 by 2012

Russian program - priority tasks VVER technology

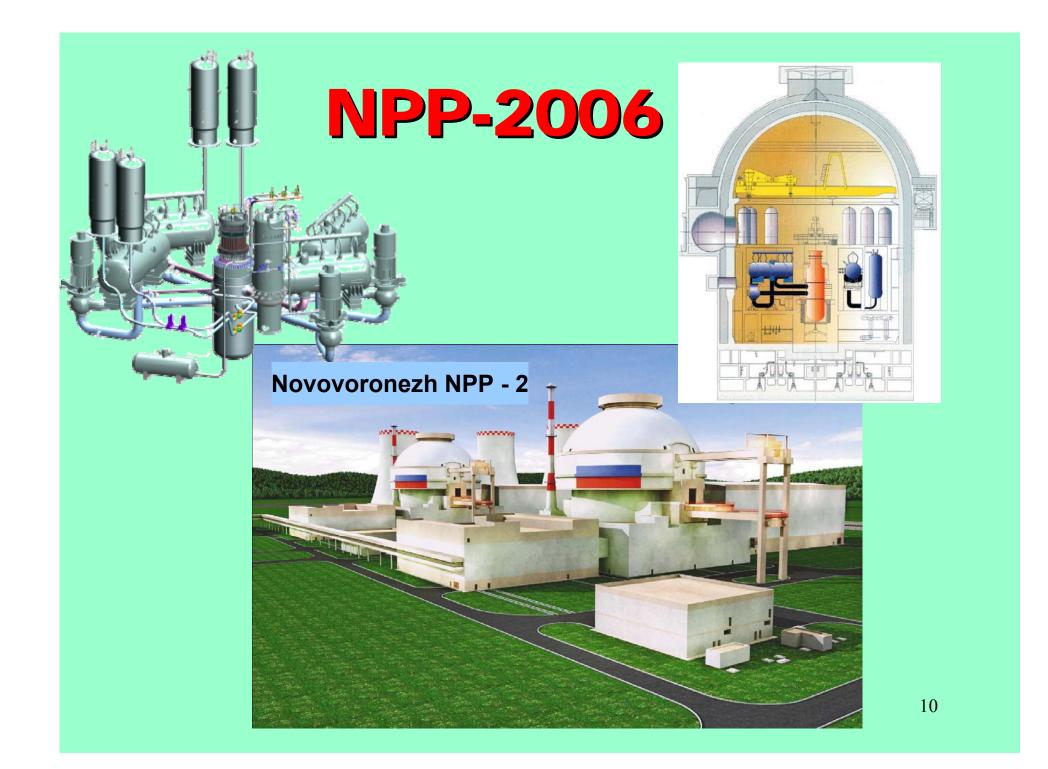
Objectives	Contents of works
 Federal program Increase of investment effectiveness: Efficiency increase; Improvement of fuel cycles; Increase of unit power; Reduction of construction terms; Reduction of material consumption 	 Development and implementation of the NPP- 2006 /1200 design; Development of NPP designs with reactors of low and average power for regional energy supply

The Russian Federal program objective characteristics based on NPP-2006 commissioning

Characteristic	2006	2010	2015	2020
NPP installed capacity, GW	23.2	24.2	33.0	41.0
Electricity generation, <i>TW•hour/year</i>	154.7	170.3	224.0	300.0
Nuclear electricity fraction in the total scope of electricity generation in Russia, %	16.0	16.0	18.6	20-23
Reduction of operating costs (by the level of 2006), %	100	90	80	70
Reduction of per unit investments, %	100	90	85	70

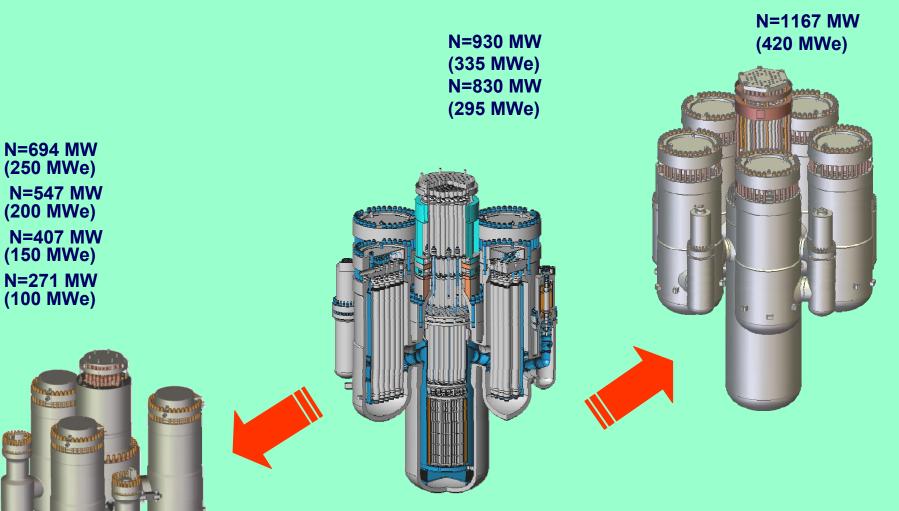
Guaranteed Safety

NPP 2006


Economic advisability

Achieved goals of the NPP-2006 design

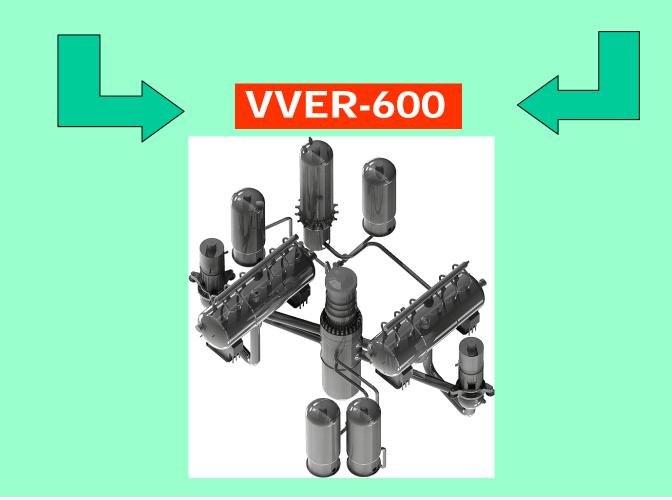
- Thermal power was increased up to 3200 MW(th) and the power unit (gross) efficiency was raised up to 36.2% due to:
 - elimination of excessive conservatism;
 - improvement of the steam-turbine unit flow diagram;
 - increase of steam pressure parameters at the SG outlet;
 - reduction of pressure losses in steam lines.


Economic efficiency was improved due to:

- optimization of passive and active safety systems;
- unification of the equipment used;
- diminishing of material consumption;
- shortening of the construction period.

Reactors for regional energy supply

VBER design power range



The VBER technology allows to create power units in the power range from 100 to 420 MWe based on the unified solutions

Conceptual approach to the NPP-2006/600 design

NPP-2006/1200

VVER-640 NPP

Floating NP with reactor unit of KLT-40S type

LENGTH, m	140.0
WIDTH, m	30.0
BOARD HEIGHT, m	10.0
IMMERSION, m	5.6
DISPLACEMENT TONNAGE, t	21 000

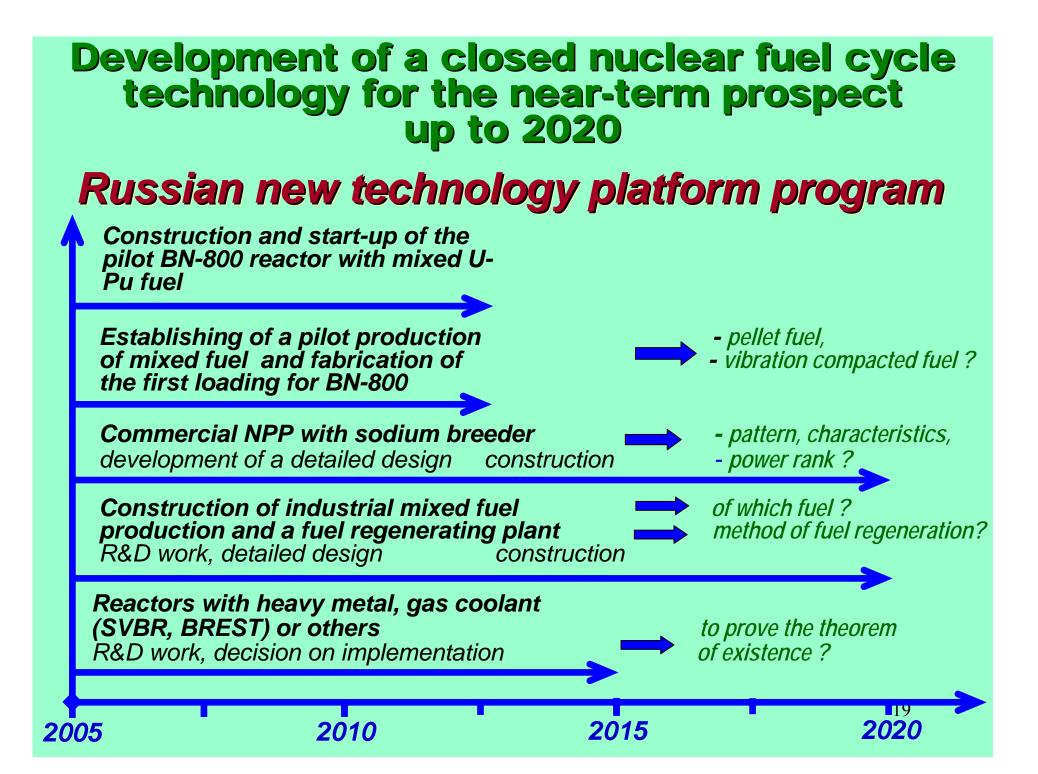
INSTALLED CAPACITY	
• ELECTRIC, MW	70 / 38
• THERMAL, Gcal/h	50 / 146.8
COST, billion rubles	9 – 10
CONSTRUCTION TERM	4 years
PRODUCTION OUTPUT	-
 ELECTRICITY, mln.kW-h/year 	455
• THERMAL ENERGY, thous.Gcal/year	900 /

System problems of modern nuclear power

 Low utilization efficiency of the mined natural uranium – less than 1%

 Permanently growing volumes of SNF and RW

General requirements to the future Nuclear Power System (NPS)


- Economical efficiency
- Guaranteed safety
- No limitations in regard to a raw material resources for a historically significant time span
- SNF and RW management the NP fuel cycle shall be organized in a way that ensures safe ultimate isolation of RW
- Power generation scale the share at national electricity market should be not less than 30%
- Energy generation structure shall ensure an opportunity to expand market sales (heat, new energy carriers, desalination) 16

Russian program - priority tasks Fast reactors

Objectives	Contents of works
<section-header><section-header></section-header></section-header>	 Development of requirements on fast reactors (fuel breeding, time for the outer fuel cycle in plutonium, safety, economics, staging, implementation terms); Development of the commercial NPP with fast sodium reactor; Development of technical proposals On nuclear fuel cycle pressing problems and technologies; On spent fuel management; On fast gas-cooled reactors; On fast reactors with heavy metal coolant

Analysis of the current status fast reactor development with different coolants

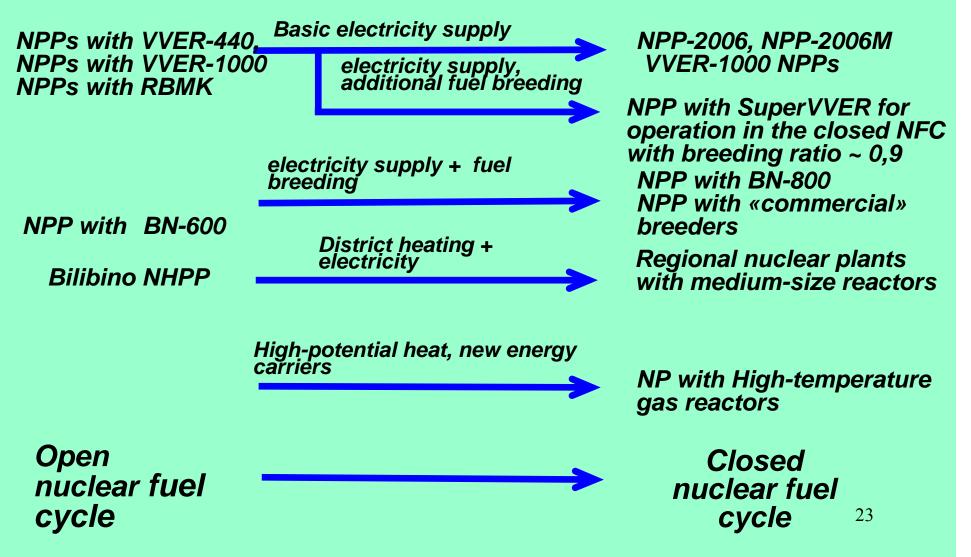
1. Fast reactors with sodium coolant	Operability and safety were demonstrated
2. Fast reactors with heavy metal coolants	There is a basis for the continuation of development to obtain a practical evidence of efficiency in the head-end (lead – bismuth) and test (lead) facilities
3. Fast gas- and steam- cooled reactors	At the level of concept studies

Russian program – long-term priority tasks VVER technology

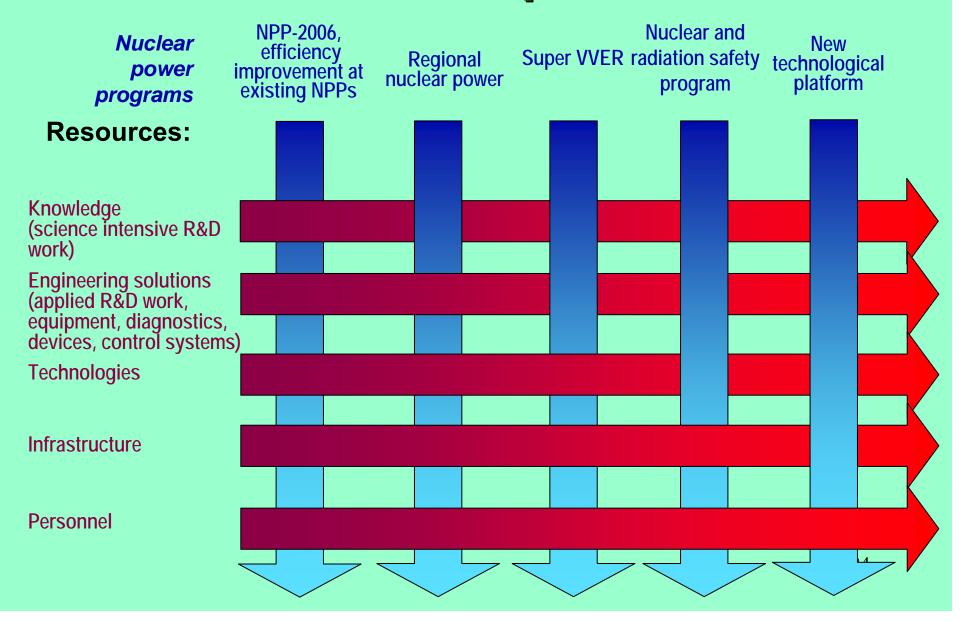
Objectives	Contents of works
Further development of the VVER technology	 Development and implementation of technical requirements on the VVER innovation design (super VVER) with fundamentally new characteristics in: economics operational characteristics safety ensuring fuel breeding

Requirements to VVER technology development for its use in combination with the breeders within the closed NFC:

- Fuel utilization (breeding ratio) (Fast neutron spectrum)
- Efficiency coefficient (supercriticality)
- Investment payback time (large modules prefabrication, new construction methods)


Determination of conceptual design scope for the Super VVER technology development

- A light-water vessel-type reactor in a NP system with closed fuel cycle with breading ratio ~ 0,9
- Power range: 600 – 1200 – 1600 ?
- Coolant: pressurized water? Supercritical pressure? Boiling? Moist steam?
- The core:
 - fuel oxide, carbide, metal to be chosen
 - fuel assembly dimensions to be changed
 - fuel element diameter to be changed
 - use of plutonium yes
 - use of advanced cladding materials yes


Optional look to the future of Russian nuclear power systems

Mid of XXI century

<u>Today</u>

Matrix of key programs and their resource provision

The IAEA have to facilitate the efficient and safe use of nuclear power

For "mature" countries

- 1. Further dissemination of experience with:
 - operation technologies;
 - management efficiency;
 - quality assurance;
 - knowledge management;
 - life time extension
- 2. The enhancement of the role to coordinate the international response to emergencies in accordance with signed conventions

For newcomers

The assistance in:

- The establishing of:
 necessary infrastructure;
 - authoritative guidelines
- 2. The disseminating
 - experience;
 - knowledge;
 - best practices
- 3. The providing
 - training;
 - peer reviews

The IAEA have to intensified attention on innovative activities

- 1. To coordinate expectations about technological developments across the full range of proposed designs (INPRO, TWG)
 - water cooled reactors
 - metal cooled reactors
 - gas cooled reactors
- 2. To provide priority to the improvement of important safety and economic characteristics
 - safety and security synergies
 - proliferation resistance
 - nuclear generation efficiency
 - construction time reduction
 - simplification

The IAEA have to intensified attention on innovative activities (continued)

3. To harmonize licensing procedures for the new reactor designs

- at the European level - European Utility Requirements

- at the OECD level – Multinational Design Evaluation Programme (MDEP)

Global Nuclear Order in the Context of Nuclear Renaissance

Goal of the global nuclear order is to ensure access for all countries to nuclear technology benefits in safe and secure manner

To achieve this goal it is necessary:

- Establishing and maintaining uniform requirements to necessary infrastructure for all involved (especially for newcomers)
- Safety and Security harmonization and synergy based on fundamental safety principles (defense indepth approach)
- Friendly environment and transparent rules for all players