Advances in Radiotherapy

Thomas Rockwell Mackie
Professor
Depts. Of Medical Physics, Human Oncology, and Engineering Physics
University of Wisconsin
Madison WI 53706

trmackie@wisc.edu
Financial Disclosure

I am a founder and Chairman of TomoTherapy Inc. (Madison, WI) which is participating in the commercial development of helical tomotherapy.
99% of Radiation Therapy Procedures are to Treat Cancer

Diagnostic Planar X-ray of a Crab
Somatic Mutations and Cancer

• Like wrinkles and other aging symptoms, cancer is usually the result of many somatic mutations.
• Reversing cancer is about as likely as reversing aging.
• There is more money spent on wrinkles than cancer, so it is likely that a cure for wrinkles will happen before a cure for cancer.
Sell betatron
Sell Cobalt unit
The cure for cancer will come from polyoma virus research

Telegraph from E.A McCulloch to H. Johns 1962
“It will take another 15 to 20 years for the new biology to revolutionize our concepts of cancer treatment”

E. Hall 1995
Imagine if Radiation Were A Drug

- It could target arbitrarily-defined anatomic sites.
- It would cause little damage to normal tissue away from the tumor.
- The site of its action could be verified precisely.
- Its side effects were well known.
- It could be non-invasively measured in small quantities.
- It would make other drugs more potent.
- Drug tolerance would not develop.
- Saving hundreds of thousands of people a year, it would surely be considered our most important anti-cancer drug.
100 % - diagnosed with cancer

70 % - have loco-regional disease on presentation

35 % are treated with radiation ± other treatment modality

25 % achieve loco-regional control

10 % fail with loco-regional recurrence ± metastases

10 % fail with loco-regional recurrence ± metastases

35 % are treated without radiation

25 % achieve loco-regional control

5 % fail due to physical causes

5 % fail due to biological causes

50 % Patients who will not survive

Adapted from Jerry Battista, London Regional Cancer Centre, Ontario
Societal Costs

- The direct costs of cancer in the US is about $80B annually.
- Radiotherapy costs about $10B.
- Radiotherapy equipment is about $2B.
- In addition there is over $150B in indirect costs due to disability and premature death.
Radiotherapy Costs in Perspective

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Marrow Transplant</td>
<td>10,000 to 125,000</td>
</tr>
<tr>
<td>Treatment of Heart Disease</td>
<td>10,000 to 100,000</td>
</tr>
<tr>
<td>Kidney Dialysis</td>
<td>20,000 to 50,000</td>
</tr>
<tr>
<td>Societal Acceptance</td>
<td>25,000 – 100,000</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>4,500 to 50,000</td>
</tr>
<tr>
<td>Radiation Therapy</td>
<td>350* to 1,800**</td>
</tr>
</tbody>
</table>

ASCO 1992

*Ontario Ministry of Health, Canada

**Perez IMRT, assuming 10 years gained

Adapted from Jerry Battista, London Regional Cancer Centre, Ontario
Radiotherapy Costs in Perspective

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Marrow Transplant</td>
<td>10,000 to 125,000</td>
</tr>
<tr>
<td>Treatment of Heart Disease</td>
<td>10,000 to 100,000</td>
</tr>
<tr>
<td>Kidney Dialysis</td>
<td>20,000 to 50,000</td>
</tr>
<tr>
<td>Societal Acceptance</td>
<td>25,000 – 100,000</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>4,500 to 50,000</td>
</tr>
<tr>
<td>Radiation Therapy</td>
<td>500 to 3,000</td>
</tr>
</tbody>
</table>

ASCO 1992

*Ontario Ministry of Health, Canada

**Perez IMRT, assuming 10 years gained

Adapted from Jerry Battista, London Regional Cancer Centre, Ontario
Radiotherapy Timeline

1895
- 100-400 keV X-Rays
- Rotation Therapy

1950
- Co-60
- Low Energy Linacs
- Betatrons

1965
- Computerized 2-D Planning
- High Energy Linacs
- Simulators

1980
- CT Scanners
- 3-D Planning
- Accurate Dosimetry

1995
- MRI, PET, PET-CT
- MLCs, Optimization, and IMRT
- Image-Guided Radiotherapy
Scientific Forces
Behind Our Field
Scientific Forces Behind Our Field

Nuclear and Particle Physics

Scientific Forces Behind Our Field

Nuclear and Particle Physics

Computer Science

Scientific Forces Behind Our Field

- Nuclear and Particle Physics
- Computer Science
- Imaging
Scientific Forces Behind Our Field

- Nuclear and Particle Physics
- Computer Science
- Imaging
- Biotechnology

Year:
- 1950
- 1960
- 1970
- 1980
- 1990
- 2000
Scientific Forces Behind Our Field

- Nuclear and Particle Physics
- Computer Science
- Imaging
- Biotechnology

2D Treatment Planning
2D Treatment Planning

2D simulation films or computer-generated “DRRs”
2D Treatment Planning

Tumors are hard to see in 2D images, especially port films, and you must rely on “landmarks.”

2D simulation films or computer-generated “DRRs”

Treatment machine port films
Planning workstations use 3D imaging and accurate dose calculations to allow highly “conformal” treatment planning.
CT Slices Forming a Patient Representation is the Modern Basis for Radiotherapy
The Tumor and Sensitive Structures are Outlined
The Beam Directions are Chosen
Preconditions for 3D Conformal Radiotherapy

• Early detection of cancer.
 – Blood testing (e.g., PSA test).
 – Mammography.
 – Imaging screening of selected patients.
• CT to produce accurate representations of the patient.
• Well trained radiation oncologist and physicists.
• Much of the developing world does not have the preconditions for modern radiotherapy.
The Gamma Knife

Gamma Knife Model C (Elekta)

201 Co-60 Sources Collimated by a “Helmet”
Traditional Linac Stereotactic Radiosurgery Equipment

Collimator set
Typically ~10-40mm diameter
Cranial Stereotactic Localizer
Stereotactic Arc Plans

Localizer Rods on 3D image
Optimization and Intensity-Modulated Radiotherapy (IMRT)

• *Let the computer do the work...*

Let the computer optimize the plan, varying the intensity within each beam, to “conform” and “spare” even more.
Optimization and Intensity-Modulated Radiotherapy (IMRT)

- *Let the computer do the work...*

Let the computer optimize the plan, varying the intensity within each beam, to “conform” and “spare” even more.
Optimization and Intensity-Modulated Radiotherapy (IMRT)

• Let the computer do the work…

Let the computer optimize the plan, varying the intensity within each beam, to “conform” and “spare” even more.
Prostate IMRT (Tomotherapy)

Dose Rate

Cumulative Dose
Dose Sculpting

2-D Planning

3-D Conformal

IMRT

Courtesy of J. Schreiner Kingston Regional Cancer Centre, Ontario
IMRT Significantly Reduces Rectal Complications

Zelefsky et al, J Urol, 2001
Head and neck plan with avoidance of the spine and parotids.
Re-Treatments

Re-treatments, using tomotherapy for patients not eligible for conventional photon radiation therapy due to cord tolerance.

Patients courtesy of UAB
Protons and Heavy ("Light") Ions

Medical Physics Handbooks 8

NUCLEAR PARTICLES IN CANCER TREATMENT

J F FOWLER

PSI Switzerland
Will the Long Term Future Be Protons?

Protons stop so integral dose is less.

Not so great lateral penumbra.
Dose Distribution Comparison

Protons

Low integral Dose.

90% line

Photons (Tomotherapy)

50% line
Why 3D Image-Guided Radiotherapy (IGRT)?

• Eventually most radiotherapy will be IMRT, even many palliative treatments, e.g., re-treatments.
• All IMRT should be image-guided:
 – IMRT is justified by sparing critical tissues (conformal avoidance) which produces higher dose gradients.
 – IGRT enables higher gradients to be delivered safely and effectively.
 – IGRT enables a smaller setup margins to be defined.
• In some radiotherapy sites, e.g., prostate, IGRT may be more important than IMRT.
• 2D imaging is inadequate to obtain volume information.
Setup Alignment with Ultrasound

When contour alignment to ultrasound is satisfactory, shift the patient to the new position.

Using Varian’s Ultrasound Localization System

From Dr. Wolfgang Tomé
Pitfall: Pubic Arch Interference

Probe placed over treatment isocenter.

Probe displaced by 1cm superiorly from treatment isocenter.

From Dr. Wolfgang Tomé, UW-Madison
CT in the Treatment Room

First CT

Then Treat

From Minoru Uematsu et al.
IJROBP 48, 432 (2000)
CT in Treatment Room

Siemens Primatom
“CT on Rails”

GE CT + Varian Linac

From Tim Holmes, St. Agnes Hospital
Cone Beam Imaging

Elekta Synergy

Varian Trilogy
Helical Tomotherapy Unit
Helical Tomotherapy Unit

- Control Computer
- Gun Board
- Linac
- Circulator
- Magnetron
- Pulse Forming Network and Modulator
- Data Acquisition System
- High Voltage Power Supply
- Beam Stop
- Detector
Tomotherapy Verification Scanning With the Treatment Beam

- Orange
- Parallel Plate Chamber
- Gold Seeds
- Hip Prostheses
Register Verification CT to Planning CT
Register Verification CT to Planning CT

TomoTherapy Operator Station -- University of Wisconsin

- Patient: Tenn Prostate FV
- Scan: Unknown
- Date: 03/01/97 3
- Plan date: Jul 11, 2003 4:17:51 PM
- Oncologist:

- Plan: Prostate 81
- Plan status: Approved
- DQA plan:
- Patient position: HFS

What’s Next:
- Manual Registration
 - Use manual controls to align the target volume(s)
 - Click Accept
 - Accept

Translational Adjustments (mm):
- Lateral (IEC Tl): -2.6
- Longitudinal (IEC Tl): -37.5
- Vertical (IEC Tl): 20.9

Rotational Adjustments (degrees):
- Pitch: 0
- Roll: 0
- Yaw: 0

- Transverse
- Coronal
- Sagittal

TomoImage Component
- Color:

- Composition
- Balance
- Checkers

Reference Image Component
- Isodose
 - ROIs: 53.5, 50, 47.5, 45, 40, 35, 25
- Dose: 50.0, 50.0

- Wednesday, October 15, 2003 11/21/17
Tomotherapy Registration of Lung Case
Strategy for Conformal Avoidance Radiotherapy

• Use generous treatment volumes.
• Outline normal sensitive tissues and concentrate on avoiding them.
• Use image-guidance to assure that the normal tissues are being avoided.
• Conformal avoidance radiotherapy is the complement of conformal radiotherapy.
In June 2005, the world’s first TMI patient was treated at City of Hope in Los Angeles.

From Dr. An Liu
Total Marrow Irradiation (TMI) vs. Total Body Irradiation (TBI)

From Dr. An Liu
With Better Avoidance of Normal Tissue Can We Shorten Courses of Therapy?

- In prostate CA, the tumor may repair even better than the normal tissues.
- In lung CA, rapid proliferation reduces the treatment control probability as the treatment is extended in duration.
- Provided better avoidance of sensitive tissues is maintained, fewer fractions of higher dose/fraction will provide both better tumor control and be less expense to deliver.
- Carefulness can be cost effective.
PET/CT will Become the Main Instrument for Radiotherapy Planning
Image-Guided Radiotherapy of the Future

- Image-based staging of the primary and regional field.
 - Determine hypoxic and highly proliferative regions using bioimaging and paint in higher dose.
 - Conformally avoid sensitive structures in the regional field.
- IMRT with 3-D image verification.
 - Less fraction quantity – greater fraction quality.
 - Adaptive radiotherapy to provide patient-specific QA of the whole course of therapy.
Image-Guided Radiotherapy of the Future (Cont.)

- Image-based monitoring of outcome.
 - e.g., PET scans for regional or metastatic development using a priori information.
- Aggressive treatment of recurrences or distant metastases using conformal avoidance to spare critical structures.
 - Better QA of first treatment will allow safer retreatments.
 - “Weeding the garden” with image-guided radiotherapy and prevent spread with chemotherapy and immunotherapy.
Oligometastases or “Weeding the Garden”

- Following definitive radiotherapy with local control we often have metastatic progression.
- Chemotherapy (analogous to pre-emergent herbicides) may be effective against 100 to 1000 cell tumorlets.
- With PET it is possible to infer the presence of tumorlets with 100,000 to 1,000,000 labeled cells.
- Perform PET scan followups to catch the emergent tumorlets.
- Weed with conformal avoidance hypofractionated radiotherapy before they can seed more metastases.
- Keep careful track of the cumulative dose delivered so the process can be repeated several times if necessary.
Treating Multiple Metastases Determined From PET Scans

Tomotherapy Treatment Plan

PET-CT Scans

Planned Using PET-CT

Courtesy of Chet Ramsey, Thompson Cancer Survival Center
Irradiation of Metastases with One Setup
100% - diagnosed with cancer

70% - have loco-regional disease on presentation

30% - have metastatic disease

35% are treated with radiation ± other treatment modality

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to physical causes

5% fail due to biological causes

35% are treated without radiation

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to biological causes

50% Patients who will not survive

Adapted from Jerry Battista, London Regional Cancer Centre, Ontario
100% - diagnosed with cancer

70% - have loco-regional disease on presentation

35% are treated with radiation ± other treatment modality

25% achieve loco-regional control

35% are treated without radiation

10% fail with loco-regional recurrence ± metastases

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to physical causes

5% fail due to biological causes

50% Patients who will not survive

Adapted from Jerry Battista, London Regional Cancer Centre, Ontario
100% - diagnosed with cancer

70% - have loco-regional disease on presentation

35% are treated with radiation ± other treatment modality

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to physical causes

35% are treated without radiation

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to biological causes

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to biological causes

50% Patients who will not survive

Adapted from Jerry Battista, London Regional Cancer Centre, Ontario
100 % - diagnosed with cancer

70 % - have loco-regional disease on presentation

35 % are treated with radiation ± other treatment modality

25 % achieve loco-regional control

10 % fail with loco-regional recurrence ± metastases

5 % fail due to physical causes

35 % are treated without radiation

25 % achieve loco-regional control

10 % fail with loco-regional recurrence ± metastases

5 % fail due to biological causes

30 % - have metastatic disease

10 % fail with loco-regional recurrence ± metastases

5 % fail due to biological causes

5 % fail due to physical causes

50 % Patients who will not survive

Adapted from Jerry Battista, London Regional Cancer Centre, Ontario
100% - diagnosed with cancer

70% - have loco-regional disease on presentation

30% - have metastatic disease

35% are treated with radiation ± other treatment modality

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to physical causes

35% are treated without radiation

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to biological causes

50% Patients who will not survive

Adapted from Jerry Battista, London Regional Cancer Centre, Ontario
100% - diagnosed with cancer

70% - have loco-regional disease on presentation

35% are treated with radiation ± other treatment modality

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to physical causes

35% are treated without radiation

25% achieve loco-regional control

10% fail with loco-regional recurrence ± metastases

5% fail due to biological causes

30% - have metastatic disease

5% fail due to biological causes

50% Patients who will not survive

Adapted from Jerry Battista, London Regional Cancer Centre, Ontario
Physics is Key to Radiation Therapy
Economic Forces Driving Our Field

• Cost containment.
• Demand for higher quality done more easily.
• In the developed world, radiotherapy is about 40 times more medical physics intensive than radiology.
• Expect that radiotherapy will be economically driven to be more like radiology where medical physicists are mainly quality assurance experts and radiation oncologists ultra-specialized.
• Much of that QA will be imaging related.
• Like medicine as a whole, radiotherapy will specialize around disease sites.
Change from Individual QA to QA of Automated Processes

- Machine QA processes will be built into the machines.
- QA processes for individual patients will be generated automatically.
- Physicists will be responsible for checking that the automated processes are performing correctly.
- Role will become more like that of a physicist working in radiology.
Future of Radiotherapy Physics

- For the next 20 years, in the developed world, there will be a steady increase in therapy medical physicists employed.
- The end of the baby boom and increased automation will end the rapid growth in the developed world.
- Radiotherapy physicists will require more training in imaging.
- Like radiology physicists, radiotherapy physicists will become QA experts.
Conclusions

• Imaging and computer science is increasing the capability but also the complexity of radiotherapy.
• Radiotherapy is achieving better sparing of normal tissues.
• Radiotherapy will be used for more indications.
• More therapy physicists are needed with increased knowledge of imaging and QA.