ADVANCES IN REPROCESSING OF SPENT FUEL: PARTITIONING

A.Mayorshin SSC RIAR, RUSSIA

Fuel cycle in nuclear power engineering of the 21 century

Closed fuel cycle > Optimization of technological system > Maximum level of inherent safety > Minimum quantity of wastes Optimization of fuel cycle costs

Principles

Advanced Closed Fuel Cycle

Principles

- > Optimization of technological systems
- Maximum level of "inherent" safety
- > Minimization of wastes flows
- > Optimization of fuel cycle cost

Requirements

- High level of safety
- Minimal impact on environment (radiation-migration equivalent for disposal of nuclear power engineering wastes)
- Maximum utilization of natural resources
- Non-proliferation

Requirements of new technologies of the fuel cycle

The future technologies, which can significantly extend the oxide fuel potential and improve technical-economical indices of the fuel cycle with regard to the present-day requirements, are of great interest.

Non-aqueous methods are considered as possible alternative technologies for the closed fuel cycle.

Main recent trends for application of molten salts

- Fast reactors and other advanced reactors
- Reprocessing of oxide spent fuel (MOX, Th-based, etc.)
- Reprocessing of metallic and nitride fuel (U-Pu and others)
- ****** Partitioning of HLW (Ln/Ac separation)
- Recycling of Molten Salt Reactor (or ADS) fluid fuel

RIAR activities in the field of fuel cycle

____<u>i</u>_____i

Since 1964 RIAR has been performing large-scale investigations in the following research lines:

- Development of dry fuel production and reprocessing technologies for different nuclear reactor types
- Development and testing of the fuel rod designs for different nuclear reactor types
- Investigation of the ways for waste management generated during production processes resulting from dry technologies
 Investigation of the actinide and fission product properties in different ion liquids

Pyrochemical processes

Basic research of the molten salt systems allowed for the development of technological processes for production of granulated uranium and plutonium oxides and mixed uranium and plutonium oxides. A distinctive feature of the pyrochemical technology is a possibility to perform all the deposit production operations in one apparatus - a chlorinator-electrolyzer

Pyrochemical reprocessing consist of the following main stages

- Dissolution of initial products or spent nuclear fuel in molten salts
- Recovery of crystal plutonium dioxide or electrolytic plutonium and uranium dioxides from the melt
- Processing of the cathode deposit and production of granulated fuel

Current status of pyrochemical process in RIAR:

Fundamental studies

Technological development

Industrial implementation

Fundamental studies of pyrochemical process

Properties of U, Pu, Th and Np in molten chlorides were studied in detail.

- The knowledge on physical chemistry and electrochemistry of basic FPs is enough for technological implementation
- Necessary direction for studies chemistry of Am, Cm, Tc in molten chlorides
- **Bevelopment of basis for new processes**
 - Reprocessing of nitride fuel
 - Partitioning of HLW

- From electrochemical point U and Pu oxides behave like metals. They are forming the complex oxygen ions MeO²ⁿ⁺, which are reduced on cathode up to oxides.
- Under high temperatures (> 400°C) UO₂ are electrically conductive.
- In the molten alkali chlorides uranium has the stable ions U(III), U(IV), U(V), U(VI). Highest states of Pu oxidation Pu(V) and Pu(VI) are stable only in the definite field of ratios for oxidation reduction potentials of the system.

Technological development

- For reprocessing and production of oxide fuel the main processes and equipment were developed and tested.
- * Total amount of produced fuel is about 6000 kg (MOX, UO₂, special types). About 30 kg of fuel from the BOR-60 and BN-350 reactors was reprocessed. The basis of technology was created. The feasibility study was carried out for industrial plant for closed cycle of the BN-800 reactor.

Pyroelectrochemical reprocessing of spent UO₂ and PuO₂ fuel

N

Pyroelectrochemical reprocessing of spent MOX fuel

Main equipment for production MOX-fuel

6 kg MOX-fuel

Crucible diameter 250 mm

30 kg MOX-fuel

Crucible diameter 380 mm

Granulated MOX-fuel particles obtained by pyroelectrochemical process

Particle density –	10,8 g/cm ³
O/M ratio -	2,0-2,03
Content of corrosion-active	
impurities, % no more:	
Carbon-	18·10 ⁻³
Fluorine-	2·10 ⁻³
Chlorine-	7·10 ⁻³
Total content of cationic	1244
impurities, % no more-	0,5
영상에서 한 방법에서 바람이 안 되었다. 이 것이 집에 집에 집에 가지 않는 것이 같아. 아무지 않는 것이 같아. 가지 않는 것이 같이 같이 같이 같이 같아. 나는 것이 않아. 나는 것이 같아. 나는 것이 않아. 나는 것이 같아. 나는 것이 것	

Experience on pyrochemical reprocessing of the BOR-60 and BN-350 irradiated fuel

—_≡_—_≡_ Fuel	Burn-up ,%	Mass, kg	Data of tests	Reactor
UO ₂	7,7	2,5	19721973	BOR-60
(U,Pu)O ₂	4,7	4,1	1991	BN-350
(U,Pu)O ₂	2124	3,5	1995	BOR-60
UO ₂	10	5	2000	BOR-60
(U,Pu)O ₂	10	12	2000-2003	BOR-60

PuO₂, UO₂ and MOX Decontamination factors (DF) from main FPs

Freedom	Main FPs				
Fuei туре	Ru- Rh	Ce- Pr	Cs	Eu	Sb
PuO ₂ for BN-350 (test, 1991)	50	220	> 3000	40	200
PuO ₂ for BOR-60 (test, 1995)	33	4050	4000	4050	120
UO ₂ for BOR-60 (test, 2000)	> 30	~	> 4000	> 200	~
(U,Pu)O ₂ for BOR-60 (test, 2001)	20 - 30	25	~ 10000	> 100	~

Experience on pyrochemical reprocessing of the BOR-60 irradiated fuel

MOX cathodic deposit after pyro-process Salt ingot after reprocessing test with the BOR-60 fuel

Pyrochemical processes

30 kg (U,Pu)O₂ deposit on cathode

Pyrochemical reprocessing of irradiated fuel

The following experiments were carried out :

>UO₂ SNF → granulated UO₂
>UPuO₂ SNF → granulated PuO₂
>UPuO₂ SNF → granulated UPuO₂

Demonstration experiment on UOX and MOX fuel reprocessing

S. Marthank	Р	rocess	Process		
Characteristics	UC	$D_2 \rightarrow UO_2$	MOX→MOX		
	Test	For production line	Test	For production line	
Yield of fuel component, %	95,91	> 99,6	94,83	>99,5	
Fraction of U and Pu in recycled products, %	2,90	Will be recycled	3,90	Will be recycled	
Technological losses, %	1,19	<0,4	1,27	<0,5	
DF in Cs	10000		> 1000		
DF in REE	> 100		> 100		
DF in noble metals	~ 10		~ 10		

Recycle of reprocessed fuel in BOR-60

- Vipacked UO_2 +PuO₂ fuel (mixture) achieved burnup ~ 15,1%,
- PIE were performed for fuel pins with a burn-up of 4,8 and 9,8 % h.a.
- Reprocessed MOX fuel was used for new fuel pins production and irradiation in BOR-60 started in June 2004

Microstructure and alpharadiography of vibropacked fuel, the burnup of 9.8 %

Methods for separation of MA and LLFP

During solid fuel reprocessing by molten halide salt methods:

- Cs, Sr, I remain in salt
- Np mainly precipitates together with U and Pu
- Am and Cm accompany REE
- Tc is collected as part of noble metals fraction

(Tc and I can migrate in gas phase during chlorination or fluorination)

Experience on pyrochemical HLW treatment

Vitrification of pyrochemical HLW

Phosphates	Spent salt	Phosphates +	
		Phosphates + Spent salt	
Pb(PO ₃) ₂ NaPO ₃	NaPO ₃ , AIF ₃ Al ₂ O ₃	NaPO ₃ , AIF ₃ Al ₂ O ₃	
vitrification, T=950ºC	vitrification without conversion, T=950 ⁰ C	vitrification without conversion, T=950°C	
28	20	36	
7*10 ⁻⁶	7*10 ⁻⁶	4*10 ⁻⁶	
400	400	400	
10⁷ Gr (for $\gamma \& \beta$) 10¹⁸ α -decay/g			
	Pb(PO ₃) ₂ NaPO ₃ vitrification, T=950°C 28 7*10 ⁻⁶ 400 10 ⁷ Gr (for γ 8)	Pb(PO_3)_2 NaPO_3NaPO_3, AIF_3 Al_2O_3NaPO_3Al_2O_3vitrification, T=950°Cvitrification without conversion, T=950°C28207*10-67*10-6400400107 Gr (for γ & β) γ	

Experience on pyrochemical HLW treatment

Ceramization of HLW arising from pyrochemical process

Charactoristics	Type of high-level wastes			
Characteristics	Phosphate deposit	Spent salt electrolyte		
Type of ceramics	monazite	Cosnarite (NZP)		
Method of introduction into ceramics	pressing, calcination , T=850 ⁰ C	Conversion to NZP from the melt or aqueous solution, pressing, calcination, T=1000 ⁰ C		
Quantity of waste introduced into ceramics, %	100	3040		
Leaching rate of ¹³⁷ Cs on 7-th day, g/cm2 * day	1*10 ⁻⁶	3*10 ⁻⁶		
Thermal stability, ⁰ C	850	1000		
Radiation resistance	5*10 ⁸ Gy(for γ and	d β) 10 ¹⁹ α- decay/g		
的名字是的合理和包括的有效中心的的名字是你在这些论是是的名字和APS	2月1日日日の1日日の日日日 日日日日日日日日日日日日日日日日日日日日日日日日日日	「「「「「「「「」」」」、「「」」、「」」、「」」、「」」、「」」、「」」、「		

Other directions for Pyro-process application Development of closed fuel cycle: * Fuel cycle for actinide burner reactor – DOVITA * Nitride fuel recycling for Fast reactors *** Molten salt reactor fuel recycling Applied directions: * Weapon plutonium conversion # U-AI fuel reprocessing # U-Mo fuel reprocessing**

Fuel cycle of actinide burner ----reactor-----

DOVITA fuel cycle

Activity on DOVITA Program

- # (U, Np)O₂ fuel pyrochemical production, irradiation and PIE (burn-up 12,5% and 20%).
- # UO₂-20%PuO₂-(3-6)%NpO₂ fuel pyrochemical production, irradiation.
- # (U,Pu,Am)O₂ fuel pyrochemical production, irradiation.
- * Targets with Am for transmutation in the BOR-60 reactor – pyrochemical production, vibropacking, irradiation
- Pure actinide isotopes irradiation
- **Behavior of Np, Am, Cm in pyrochemical processes.**
- Study of Am electrochemistry in molten chlorides

Micro- and macrostructure of irradiated fuel (U,Np)O₂ (B=19,7%)

Upper plane

Middle plane

Pyrochemical reprocessing of mixed nitride fuel

 ✓ Production of mononitride fuel from BREST reactor spent fuel on pyrochemical reprocessing stage

✓ Mononitride pellets production

 Manufacturing of fuel pins with Pbbonding

Assembling of fuel sub-assemblies
 for BREST reactor

Development level for Oxide Fuel Pyroprocess recycling technologies

Method	Fundamen- tal data	Laboratory testing	Pre- industrial testing	Industrial testing	
Pyro- process	available	For fresh and spent fuel	Only with pure MOX	Started for BN-600	
Vibro	available	For fresh and spent fuel	Only with pure MOX	Started for BN-600	
Waste	Studies is continued	Studies is continued			
Remote equipment	Tested at ORYOL Facility for BOR-60 and BN-600				

Current status of pyrochemical process in RIAR (Industrial implementation)

- Since 1981 the BOR-60 reactor has been using vibropacked fuel produced by dry method.
- The test facility for closing of the BOR-60 fuel cycle is under design.
- BN-600 12 fuel assemblies with MOX fuel were irradiated, 3 LTAs are under irradiation.
- Semi-industrial facilities are under modernization for future production of 50 BN-600 MOX FAs per year. The re-start of semiindustrial facilities will be in 2005.

Implementation prospects

REPROCESSING OF SPENT FUEL Pyroprocess for reprocessing of spent fuel and vibropac technology can be used as basis for recycling and production of BN-type MOX fuel in different scenarios of future fuel cycles

Conclusion: ADVANCES IN