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Abstract. A magnetic island can develop in the vicinity of a flow instability and/or a turbulent region. Un-
derstanding of the interaction between islands and flows is still an open question, the underlying mechanisms
depending on many parameters among which the nature of the instability, the size of the island and the close
presence or not of other islands. In this work, we present three separate studies, showing the influence of this
parameters on the triggered magnetohydrodynamic (MHD) activity.

1. Introduction

Pressure gradient instabilities can lead to the generation of turbulent flows and are located in
the vicinity of resonant surfaces. The role of such instabilities and, more generally, of the mi-
croturbulence island dynamics still needs investigations. Several experiments report the coex-
istence of both microturbulence and MHD activities showing some correlated effects[1, 2, 3].
For instance, such activities are observed in reversed shear plasmas in presence of a transport
barrier related to zonal flows and micro-turbulencet[4]. The rotation of magnetic islands can
lead to the sub-critical excitation of magnetic islands. The rotation can be modified by the pres-
ence or not of instabilities and/or turbulence. In this paper, we investigate the rotation of the
drift-tearing mode, focusing first on the role of the viscosity and the self-generated zonal flow
on the rotation frequency. The direction and the amplitude of the island rotation appears to be
strongly influenced by the viscosity (section 2). Linear and nonlinearly generated diamagnetic
velocities are also at the origin of the rotation of the plasma. In a second study (section 3),
we are interested in small islands in interaction with an interchange turbulence. We obtain and
characterize regimes where nonlinear diamagnetic effects are more important than the zonal
flow. In the last section (section 4), we show that the nonlinear interaction of two neoclassical
tearing modes can generate strong energetic fluctuations and enhance the MHD activity, even
if the resonnant surfaces are well separated .

2. Influence of the viscosity on the rotation of an island

The rotation of magnetic islands is an important factor for the sub-critical excitation of
magnetic islands via the polarization current[5, 6]. Moreover, once the rotation of magnetic
islands is locked by the resistive wall, the rotation of plasmas is also slowed down, which
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causes the degradation of the confinement: for example, the breaking of the transport barrier
and continuously the destabilization of the turbulence and the MHD activity.

In this study, we investigate the rotation of the drift-tearing mode. To this aim, we use a four-
field reduced set of two-fluid equations and examine the dependence of the rotation frequency
of magnetic islands on viscosity. Detailed study of nonlinear interactions in determining the
rotation frequency of magnetic island is presented.

Large aspect ratio tokamak plasmas (ε = a/R0 � 1, where ε, a and R0 are the inverse aspect
ratio, the minor and the major radii, respectively) in the cylindrical coordinate (r,θ,z) are con-
sidered. We introduce a reduced set of two-fluid equations derived from Braginskii’s two-fluid
equations[9], which describes the drift-tearing mode (the linearly unstable classical tearing
mode combined with pressure gradient). The model equations are
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ẑ ·∇ f ×∇g. (r̂, θ̂θθ, ẑ) indicate unit vectors. {φ,A,n,T, p} indicate electrostatic potential, vector
potential parallel to the ambient magnetic field, electron density, electron temperature and
electron pressure defined by p = n + T , respectively. {µ,η‖,η⊥,χ‖,χ⊥} are ion viscosity,
parallel resistivity, perpendicular resistivity, parallel and perpendicular thermal conductivity,
respectively. In the dissipationless limit, the energy is conserved. {δ,β} indicate ion skin
depth normalized by minor radius and plasma beta value at the plasma center, respectively.
The normalization is {εvAt/a → t, r/a → r, z/R0 → z}, where vA is Alfvén velocity. The
perturbed quantity f (r,θ,z, t) is assumed to vary as f0(r) + ∑m,n f̃m,n(r, t)exp{i(mθ−nz)},
where m and n are the poloidal and toroidal mode number. The perturbation f̃m,n(r) satisfies
boundary conditions: f̃m,n(0) = f̃m,n(1) = 0 for m,n 6= 0 and ∂ f̃0,0/∂r|r=0 = f̃0,0(1) = 0 (the
center and edge of plasma correspond to r = 0 and r = 1). The equilibrium quantities are

chosen such that q(r) = 1.5 + 0.5
(
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)3
(q(r) stands for the safety factor defined by 1
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r
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dr A0(r)), n

′

0(r) = −2β
ε r, T

′

0(r) = −2β
ε r, where the prime indicates the radial derivative.

The equilibrium current j0(r) is evaluated by the cylindrical MHD equilibrium. The stability
parameter for the tearing mode is given by ∆′ = 17.78 > 0. In the numerical simulation, we
set rs = 0.6,ε = 0.2,β = 0.01 and δ = 0.01 and default values of the transport coefficients are
chosen as µ = 10−5,η‖ = 10−5,η⊥ = 2× 10−5,χ‖ = 1,χ⊥ = 10−5. In this study, we adopt
a predictor-corrector scheme to calculate time evolutions, and a spectral method to evaluate
nonlinear terms, where only modes which satisfy m/n = 2 (resonant on the q = 2 surface) is
considered, for simplicity. The radial grid has 512 meshes, and the time step is 0.01. For the
spectral resolution, −4 ≤ n ≤ 4 Fourier modes are considered.

In our parameter regime, only (m,n) = (2,1) mode is unstable and other higher modes (the
drift wave) are stable. In the nonlinear simulation, magnetic island is excited at the rational
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Figure 1: Left: The time evolution of energy. Right: The radial pattern of zonal flow.

surface r = 0.6, and the so-called Rutherford growth regime and the nonlinear saturation are
observed. Figure 1 shows the time evolution of magnetic island and zonal flow. The growth
rate of zonal flow is double of that of magnetic island, i.e. zonal flow is quali-linearly excited
by magnetic island.

Figure 1 shows also the ion viscosity dependence of radial pattern of zonal flow velocity in
the nonlinear saturation level. Three cases are plotted: µ = 10−6, µ = 10−5 and µ = 10−4.
It is noted that the modification of saturation width of magnetic islands by ion viscosity is
neglegible. It is found that, the amplitude of zonal flow is monotonically decreasing func-
tion of ion viscosity. In addition, the radial pattern of zonal flow inside magnetic islands is
changed, according to the increase in ion viscosity. Zonal flow is generated by Reynolds stress
and Maxwell stress, associated with electrostatic and electromagnetic fluctuations of magnetic
islands, respectively. In our analysis, it is found that the strength ratio of Reynolds stress to
Maxwell stress is a monotonic increasing function of ion viscosity; Reynolds stress is stronger
in small ion viscosity regime, on the other hand, Maxwell stress is dominant in large ion vis-
cosity regime. Therefore, the radial pattern of zonal flow is controlled by ion viscosity through
changing the balance between Reynolds stress and Maxwell stress[8].

Figure 2 shows the rotation frequency of magnetic islands with different ion viscosity at the
nonlinear saturation level. The positive and negative signs correspond to the direction of the
electron and the ion diamangetic drift, respectively. It is found that the rotation frequency ex-
hibits a monotonic increasing function of ion viscosity. Especially, depending on ion viscosity,
the direction of the magnetic islands rotation is changed from negative to positive. We also ex-
amine the resistivity dependence, and it is found that the dependence of the rotation frequency
on the magnetic Prandtl number µ/η‖ shows a monotonic increase.

From the (2,1) component of Ohm’s law, the rotation frequency of magnetic islands ωr is
approximately given by the summation of diamangetic drift and zonal flow as ωr ≈ 〈ω̃∗〉+

〈ω̃E×B〉, where ω̃∗ = −δkθ

{

n′0 + ñ′0 +(1+αT )(T ′
0 + T̃ ′

0)
}

, ω̃E×B = kθφ̃′0,0, kθ = 2/r and 〈 〉

indicates the radial average inside magnetic islands[7]. The diamagnetic drift frequency has
the positive contribution, and zonal flow give the main mechanism to change the direction of
rotation.
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Figure 2: The rotation frequency of magnetic islands (〈ω̃∗〉t=0 = 5.4×10−3).

In conclusion, the rotation frequency of the drift-tearing mode strongly depends on the self-
generated zonal flow, where the competition between Reynolds stress and Maxwell stress
forms the energy sink of zonal flow, and the amplitude of zonal flow is controlled by the
magnetic Prandtl number. In future works, such effects of self-generated zonal flow on the
rotation of magnetic islands should be examined in more generalized cases, especially for the
neoclassical tearing mode.

2. Impact of the nonlinear diamagnetic effects on a small island

In this section, we study the interaction of a magnetic island with small scale turbulence.
More precisely, we focus on the effect of a pressure gradient, introducing an interchange like
mechanism, on a magnetic island driven by a tearing instability. We also provide some insights
on the origin of the nonlinearly generated island poloidal rotation.

A 2D slab reduced MHD based model, where interchange and tearing instability mechanisms
are present, is adopted. This is in fact a model similar to the one used by Ottaviani [7], except
we include curvature terms [10]. Typically, it involves a set of coupled equations for the
electrostatic potential φ, the pressure of the electron p and the magnetic flux ψ:
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⊥ψ

]

+χ⊥∇2
⊥p, (6)

∂tψ+[φ− p,ψ] = −v?∂yψ+η∇2
⊥ψ, (7)

For simplicity, a focus on the interaction of basic mechanisms is done. In particular, the linear
diamagnetic effect is suppressed, some interchange modes are unstable and a strong coupling
between the pressure and the magnetic flux is chosen (high beta regime). Compare with the
results of the previous paragraph, we should underline that we do not have parallel thermal
conductivity terms, ν = χ⊥ = η = 10−4 and ∆′ = 6. We also have 96 modes in the poloidal
direction and the radial grid has 128 points. We use an order 4 Runge-Kutta temporal scheme
and brackets are computed by means of a Harakawa scheme.

The important point is that the nature of the dynamics depends on the choice of the parameters.



5 TH/P9-8

0 1000 2000 3000 4000 5000 6000 7000
−25

−20

−15

−10

−5

0

t/τ
a

lo
g(

E
ne

rg
y)

Time Evolution of the Energies

 

 

E
m

 Magnetic Energy

E
p
 Pressure Energy

E
k
 Kinetic Energy

Saturated level of E
k
 when p = 0

Figure 3: Time Evolution of the Energies
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Figure 4: Snapshot of the fields after the bifuration

Analytically, we can show that it exists a critical resistivity value ηc such that if η > ηc, the
nature of the linear tearing instability is roughly the one classically obtained by setting p = 0;
but if η < ηc, the coupling between the pressure and magnetic flux is such that the island for-
mation is driven by the pressure perturbation and not the flow. In the ideal limit, it is obtained
ηc = 0.58 ∆′−1/2C5/2, where the coupling parameter is C = βe

2(ΩiτA)2 . βe, Ωi and τA are respec-
tively the ion cyclotronic frequency and the Alfvén time. Setting parameters such that η < ηc,
in figure (3) we show the time evolution of the magnetic, pressure and kinetic energies. Four
regimes are observed. First, a linear regime where the magnetic island is formed. Second, the
system reaches a quasi-plateau phase characterized by a slow growth of the energies. Then,
the interchange unstable modes growth and a bifurcation occurs. Finally, the system reaches a
new kind of dynamics. During the two first regimes, we can note that, from an energetic point
of view, magnetic flux and pressure both dominate, the kinetic energy being too weak to let
the flow stabilizes the island. In fact, owing to the high value of the coupling parameter, the
linear and nonlinear growths of the magnetic island are controlled by an interplay between the
pressure and the magnetic flux. More precisely, the magnetic island is maintained by pressure
cells located in the vicinity of the separatrices. Moreover, theses pressure cells first generate a
poloidal motion of the island and, second compress the current sheath. In these two regimes,
the electrostatic potential does not play any fundamental role in the dynamics. However, dur-
ing the second phase, a part of the kinetic energy is not dissipated into the magnetic island.
As a result, the kinetic energy increases gradually. In fact, far from the island, the current is
not significant and the flow is fed mainly by two mechanisms: incomming flow generated into
the island and electrostatic interchange process. Initially, the latter is energetically the weak-
est. At the end of the second regime, the flow has enough energy to let a coherent large scale
interchange process to occur outside the island and becomes in competition with the tearing
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Figure 5: Diamagnetic velocity (a) and zonal flow (b) versus radial direction at t = 5500τA

structure, both having pressure cells. This competition leads to a strong generation of small
scales which, back, participate at the dynamics.

Finally the two structures are not compatible and a transition occurs. This is around t ∼ 5100τA
in the figure (3) where an abrupt growth of the kinetic and pressure energies is observed. The
dynamical system finally adopts a new behaviour. On figure (4) snapshots of φ, p and ψ at
t = 5100τA are presented. It shows that the competition between interchange and tearing struc-
tures leads to a drastic change of the presure topology. In fact, after the bifurcation, a pressure
island appears inside de the magnetic island. Let us precise that whereas the magnetic island is
a quasi linear structure mainly linked to the mode ky = 1, the pressure island is a fully nonlin-
ear structure characterized by an increase of many modes energie (ky < 8) after the bifurcation.

The rotation of the magnetic island is of course affected by these processes and the formation of
the structures. Actually, from the beginning of the nonlinear regime (t = 2000τA), a poloidal
acceleration of the magnetic island is observed. Moreover, at the bifurcation (t = 5100τA),
a strong increase of the velocity and a change of direction of the nonlinear poloidal rotation
occurs. Some insights into the origin of this island poloidal rotation can be obtained. Indeed, as
a first approximation, we can summarize the sources of the poloidal motion of the island to the
action of both the self-generated zonal flow, vzon = ∂

∂x < φ >y, and self-generated diamagnetic
flow, vdia = ∂

∂x < p >y (brackets mean an average over the poloidal direction). In order to
understand more precisely the role of these flows in the island rotation, diamagnetic velocity
(a) and zonal flow (b) versus radial direction at t = 5500τA are presented on the figure (5). We
can note that in terms of amplitude the diamagnetic velocity is largely higher than the zonal
flow and so mainly governed the nonlinear island poloidal rotation.

3. Nonlinear interaction of multiple NTMs in tokamaks

Neoclassical tearing modes (NTMs) are driven by the perturbed bootstrap currents and can
limit the normalized plasma βN of a tokamak. Recent experiments on ASDEX and JET show
evidence of mode coupling effects influencing the evolution of NTMs [11, 12]. Past studies
suggest that the interaction can arise due to harmonic coupling of the waves [12, 13] or from
stochastic coupling due to overlapping of the modes [14].
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Here we have carryied out numerical simulation studies of multiple NTMs using a fully toroidal
code NEAR which solves a set of generalized reduced MHD equations [15, 16]. The model
equations are,

∂ψ
∂t

−∇‖φ = ηJ‖−
1
ne

b0 ·∇∇∇ ·πe

dU
dt

= BBB0∇‖

(

J‖
B0

)

+∇∇∇ ·
B0 ×∇∇∇p

B2
0

dp
dt

+Γp∇∇∇ ·V = −(Γ−1)∇∇∇ ·q

dV‖

dt
= −∇‖p (8)

where, U = ∇∇∇ ·
(

∇∇∇φ
B2

0

)

, J‖ = ∇2
⊥ψ, q = −χ⊥∇∇∇⊥p−χ‖∇∇∇‖p, d

dt = ∂
∂t +V ·∇∇∇, V = B0×∇∇∇φ

B2
0

+V‖

and other notations are standard. We have taken (m,n)=(2,1) and (3,1) as perturbed modes
(m is poloidal and n is toroidal mode number) to ensure well separated resonant surfaces. We
have a circular equilibrium obtained from TOQ code [17] with R/a ∼ 10, S (=τR/τA) is 105 and
toroidal β0 = 0.009. This equilibrium is stable for the (2,1) and (3,1) classical tearing modes
(∆′

< 0). These modes can be destabilized by the neoclassical driving term which is propor-
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tional to viscosity µe. The left panel of Fig.6 shows that coupled NTMs lead to oscillations
in the energy while there are no such oscillations for a single (3,1) NTM evolution. We have
noted that the nature of the oscillations depends on the plasma βp values. The right panel of
Fig.6 shows that coupled NTMs also generate large perpendicular flows. Unlike the pure clas-
sical tearing modes case in left panel of Fig.7, the flows in presence neoclassical viscosity term
are not restricted to their respective resonant surfaces as seen in right panel of Fig.7. Small
scale flows appear inside the resonance layer and an expanded flow pattern exists outside the
resonant surfaces providing coupling between the two modes. It is to be noted that none of
these phenomena appear for linear runs and these are basically nonlinear effects. We have also
observed that similar oscillations with neoclassical term for an equilibrium which is slightly
unstable (∆′

> 0). In absence of neoclassical term we have not seen any such oscillations. The
nature of these oscillations have some similarities with GAMs i.e. geodesic accoustic modes
[18, 19]. Just like GAMs, the oscillations are accompanied or triggered by higher φ(1,0), p(0,0)

and p(1,0) modes. The characteristic frequency of the oscillations, calculated from the power
spectrum of energy evolution of Fig.6 is found to be in the range of values typical for GAMs.
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