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Abstract Plasma rotation has many beneficial effects on tokamak operation including stabilization of MHD 
modes and suppression of microturbulence to sustain high beta equilibria and improve energy confinement. 
Plasma rotation has been observed in NBI, ICRF heated plasmas as well as in pure Ohmic plasma, in which case 
there is no momentum input. In this paper, the relaxed state with a mass flow but no momentum input is 
investigated. The analysis for the dissipation, injection and transform of generalized helicity shows that the pure 
ohmic plasma with an AC magnetic helicity injection may relax to a state with flow duo to the generalized 
helicity transform, which gives a possible explanation for plasmas rotation without momentum input. The 
relaxed state of plasma with rotation in Ohmically driven tokamaks with an arbitrary aspect ratio is explored 
using the principle of minimum total energy dissipation rate subject to the generalized helicity balance and the 
energy balance. The resulting Euler–Lagrange equations for plasmas with flow are solved analytically. The 
solutions describe the structure, transition, and sensitive parameters of the relaxed state with plasma rotation. It is 
found that there exist different types of relaxed states in the different regions of the parameter space for a 
specific device. The different plasma current profiles include the typical experimental profiles and the profiles 
with hole or reversed current in the central region. The results show that there exists a key parameter E0ν/B0η 
(where η is plasma resistivity, ν is plasma viscosity, B0 and E0 is related to boundary toroidal magnetic field and 
boundary electric field respectively) in determining the final relaxed states and there exists the critical value of 
this key parameter to induce the abrupt state transition. The results indicate the rotation characteristics for the 
minimum dissipation state. It is shown that plasma fluid vorticity and the plasma current density is in parallel 
with co-current or counter-current directions. The flow can even be reversed from co- to counter- (or counter- to 
co-) current direction during transitions.  

 
1. Introduction 
 
Plasma rotation in tokamaks has been observed in NBI (Neutral Beam Injection) [1-4], ICRF 
(Ion Cyclotron Resonance Frequency) [5,6] ,ECH（Electron Cyclotron Heating）[7] heated 
plasmas as well as in pure Ohmic plasma [8], in which case there is no momentum input. 
Profuse experimental phenomenon about plasma rotation not only presents various driven 
modes，also various rotation direction, plasma velocity magnitude and profile, the dependence 
of experimental parameters, the relativity to L-H transition and so on. Much effort has been 
devoted to investigate the properties of tokamak plasmas in the presence of macroscopic flow. 
There exist many experimental observations need theoretical explanation, including plasmas 
rotation in pure Ohmic discharge without momentum input.  
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Experiments have shown that in some cases tokamak plasmas tend to evolve to a 
‘self-consistent’ natural profile and under some conditions may evolve to other forms of states 
[9-11]. It implies that a relaxation mechanism may exist in tokamak plasmas. Basically, three 
different variation principles have been used in plasma physics. The first one is the minimum 
magnetic energy principle developed by Taylor [12, 13]. The principle leads to the force-free 
plasma equilibrium, which has successfully represented reversed-field-pinch (RFP) equilibria. 
The second is the minimum entropy production principle proposed by Hameiri and 
Bhattacharjee [14]. The third is the principle of minimum rate of energy dissipation presented 
for the first time by Montgomery and Phillips [15]. Many authors have applied the minimum 
energy dissipation principle to predict features of driven steady state for RFPs [15-17], direct 
current helicity injected torus [18-20] as well as inductively driven tokamaks [21-23]. In all 
the above papers no account was taken of mass flow. The effects of mass flow on the 
minimum dissipation states have been discussed for the first time by Montgomery et al.[24]. 
In recent years, experimental observations of tokamaks indicate that plasma rotation can be 
routinely obtained in experiments and has many beneficial effects on tokamak operation 
including stabilization of MHD instabilities and turbulence to improve the beta limit and 
confinement. So it is necessary to introduce a mass flow in the plasma relaxation theory. 
 
In this paper, the relaxed state of plasma with a mass flow but no momentum input in 
Ohmically driven tokamaks is investigated using the principle of minimum total energy 
dissipation rate subject to the generalized helicity balance and the energy balance. The 
resulting Euler–Lagrange equations are solved analytically. The solutions describe the 
structure, transition, and sensitive parameters of the relaxed state with plasma rotation, and 
may give a possible explanation for the experimental plasmas rotation without momentum 
input.  
 
At first we give an analysis for the dissipation, injection and transform of generalized helicity 
in sec.2. The Euler–Lagrange equations are given in sec.3. The main results for plasma 
current density and plasma rotation are given in Sec.4 and Sec.5. Finally, we give the 
summary in Sec.6. 
 

2. Analysis for the dissipation, injection and transform of generalized helicity 
 
The generalized helicity consists of magnetic helicity, cross helicity and kinetic helicity. We 
have generalized helicity for ion system as following  
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From plasma MHD equations we have ∫∫ ∫=⋅+ τσ QdSd
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 is the generalized helicity flow，Q is the dissipation density of the generalized 

helicity. We have Q=Qm+Qc+Qk                                  (3) 
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Where , ,  is the dissipation density of magnetic helicity, cross helicity and kinetic  mQ cQ kQ

helicity respectively. For idea plasmas, we have 

uBu
e
muE

e
mBEQc

rrrrrrr
×∇⋅×−×∇⋅−⋅= )(222                         (3.1) 

BEQm

rr
⋅−= 2                                                      (3.2) 

uBu
e
muE

e
mQk

rrrrr
×∇⋅×+×∇⋅= )(22                             (3.3) 

We can see that there exist the transform between magnetic helicity, cross helicity and kinetic 
helicity. The dissipation of magnetic helicity is absorbed by cross helicity through electric 
field force. Meanwhile, the transform between cross helicity and kinetic helicity is driven by 
electric field force as well as Lorontz force. It is found that the same transform also exists in 
non-ideal plasmas. Considering the non-ideal effects, we got the generalized helicity balance 
equation as following 
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The total dissipation density of the generalized helicity for non-ideal plasmas is as following 
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The total generalized helicity will be conservation for steady states, so the helicity injection 
will be balance with dissipation. The analysis for the dissipation, injection and transform of 
generalized helicity shows that the pure ohmic plasma with an AC magnetic helicity injection 
may relax to a state with flow duo to the generalized helicity transform. It gives a possible 
explanation for plasmas rotation without momentum input.  
 
3. The Euler-Lagrange equations of Rotating Plasmas in Tokamak 
 
The relaxed state is explored using the principle of minimum total energy dissipation rate 
subject to the generalized helicity balance and the energy balance. Applying the force balance 
condition for the non-idea rotating plasmas and assuming that plasma viscidity is contributed 
mostly from ion, we got generalized helicity dissipation density from (5) as following 
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Assuming plasma velocity and vorticity vanish on the plasma boundary, also Bn=0, we obtain 
the normal helicity flow on the surface from equation (6) as 
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Which is the AC magnetic helicity injection rate related to a pure Ohmic driven plasma. 
Finally, we obtained the functional for Ohmic plasmas with a magnetic helicity injection as  
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Where λ~  and  are Lagtangian multipliers, η and ν is the resistivity and viscosity 

respectively. Comparing the first and the second teams of the second line, we got the scale for 
the ratio of both terms as 
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Where rc is Larmor radius, L is the device scale, Rm and Rv is the magnetic-Reynolds number 
and Reynolds number respectively. We can neglect the first team of the second line for the 
states with Larmor radius much smaller than the device scale. Taking the first variation, we 
got Euler-Lagrange equation and the natural boundary condition as following 
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4. The Analytical solution of plasma current density 
 
The equation（10）is predigested to give an analytical analysis for plasma current prifiles. 
Selecting a square minor cross, η and ν is assumed uniform through whole plasma. The 
applied electric field and vacuum toroidal magnetic field is assumed to be inversely 
proportional to r. We got Euler-Lagrange equation for toroidal current density and magnetic 
field in the cylindrical coordinate as following. 
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The natural boundary condition is  
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BB0 and E0 is the vacuum toroidal magnetic field and applied electric field at r = r0 respectively 
(r0 is the major radius of tokamak). We can see that (13)-(15) has same forms as the equations 
without mass flow [23] but the λ and β is different, which includes plasma parameter C, 
assumed uniform through whole plasma here. Actually, the solutions of the plasma current 
profiles represent the configuration in the plasma center region duo to above uniform 
assumation for parameters η, ν and C. 
 
The resulting Euler–Lagrange equations for plasmas with flow are solved analytically. We get 
the analytical solution for toroidal current density [22, 23] 

jφ(r, z) = Y(r, z) + E0 r0/2ηr                                         (19) 

Where Y(r, z) is the solution of the homogeneous equation related to (13), with the boundary 
condition 
Yb= (βE0/2η- E0/2η-λBB0/2) r0/rb = α (β, λ) r0/rb                                 (20) 
 
We have the solution of Y as 
Y(r, z)=Y1(r, z)+Y2(r, z).                                          （21） 
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Where J1, N1, I1 and K1 are respectively Bessel and modified Bessel functions.  

For given ν, E0 /η and B0, the values of α and λ should be obtained consistently by the energy 
and helicity balance conditions. However, the process cannot be accomplished using an 
analytical method.  
 
The analytical analyses indicate that for a device of given dimensions, Y is only related to λ 
and α, where λ determines the form of Y. Different forms of Y are obtained in different λ 
ranges as analyzed in Ref.[ 22-23]. The final current profile is mainly determined by λ, also 
related to the relative magnitude of two terms of Y and E0 r0/2ηr. Similar to the case without 
plasma flow, there exist different types of relaxed states in the different regions of the 
parameter space for a specific device. The different plasma current profiles include the typical 
experimental profiles and the profiles with reversed shear, while the current may have a hole 
or even reverse in the central part as shown in FIG. 1.  

 
FIG 1, Plasma current profile reversed in the central region for the dimensions of JT-60U (R0 = 3.4 m, 
a = 1.2m, h = 4.6m), with the parameters of λ = 2.3 m-1, α = 1.71 MA/m2, E0 /η=11.61 MA/m2  
 
The analysis also shows that there exists a key parameter E0ν/B0η in determining the final 
relaxed states and there exists the critical value of this key parameter to induce the abrupt 
state transition. We can see that the key parameter for rotating plasma is different from the 
case without mass flow (E0/B0η).  
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5. The plasma fluid vorticity of the relaxed state in Ohmically driven tokamaks 
 
The plasma fluid vorticity is obtained from equation (11)  
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When λ>0 , we have 0~
1 >′λ (ω

r
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directions). When λ<0, we have 0~
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counter-current directions). This means that for one value of λ (or one current density form), 
we have two possible fluid vorticity dirictions, in co-current or counter-current directions. For 

the solution 1
~λ ′ , the fluid vorticity diriction changes from co-current to counter-current 

direction smoothly when λ is changing from less than zero to more than zero. But for 2
~λ ′  

solution, the fluid vorticity diriction changes from counter-current to co-current direction 
abruptly.  
 
6. Summary 
 
The relaxed state of plasma with rotation in Ohmically driven tokamaks with an arbitrary 
aspect ratio is explored using the principle of minimum total energy dissipation rate subject to 
the generalized helicity balance and the energy balance. The resulting Euler–Lagrange 
equations for plasmas with flow are solved analytically. The solutions describe the structure, 
transition, and sensitive parameters of the relaxed state with plasma rotation. It is found that 
there exist different types of relaxed states in the different regions of the parameter space for a 
specific device. The different plasma current profiles include the typical experimental profiles 
and the profiles with hole or reversed current in the central region. The results show that there 
exists a key parameter E0ν/B0η in determining the final relaxed states and there exists the 
critical value of this key parameter to induce the abrupt state transition. The results also 
indicate the rotation characteristics for the minimum dissipation state. It is shown that plasma 
fluid vorticity is in parallel the plasma current density in co-current or counter-current 
directions. The flow can even be reversed from co- to counter- (or counter- to co-) current 
direction during transitions. The results show that the pure ohmic plasma with an AC 
magnetic helicity injection may relax to a state with flow. 
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