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Abstract The nonlinear development of double tearing modes (DTMs) mediated by 
parallel electron viscosity in a large aspect ratio torus is simulated. The emphasis is 
placed on the mechanisms for the fast growth and sheared flow generation in the 
development of the DTMs. Four nonlinear developing stages: the early growth, transition, 
fast growth and decay, are found. In comparison with the helical magnetic flux contour, 
the fast growth is revealed to be associated with the reconnection and annihilation of the 
magnetic islands formed by the reconnection of equilibrium magnetic field in early stage 
of the mode development. The quantitative scaling of the growth rate and the flow shear 
with respect to electron viscosity is presented. The stabilization effect of a vortex flow 
generated in tearing mode development on ion temperature gradient modes is also 
demonstrated stronger than that of a mean or streamer flow of same magnitude.  

 
1. Introduction 
 
A non-monotonic safety factor q profile is desirable for advanced tokamak (AT) 

operation with internal transport barriers (ITBs). The latter are formed preferentially in 
proximities of low safety factor q rational flux surfaces and often coincide with 
occurrence of magnetohydrodynamics (MHD) activities in experiments [1-6]. The double 
tearing modes (DTMs) are known to develop preferentially around the surface of 
minimum q close to a rational value. On the other hand, ITB formation is commonly 
accepted as a result of turbulence suppression by sheared flows in AT discharges [7-9]. 
Therefore, the relation between low q rational flux surfaces, MHD activities, flow layer 
formation, turbulence suppression, and ITB formation is essential for understanding the 
experiments. The interaction between MHD activities and transport inducing turbulence, 
in general, and possible causal relationship between DTM and the ITB triggering, in 
particular, is one of research focuses [9-12]. In addition, characteristics of nonlinear 
DTMs are important for understanding tokamak plasma behaviors in discharges with 
negative magnetic shear (NMS) [13, 14]. The nonlinear fast growth and flow layer 
formation in development of DTMs and single tearing mode (STM) have been studied in 
slab geometry [15-19]. The fast growth and flow layer formation in nonlinear 
development of DTMs is studied for large aspect ratio toroidal plasmas in this work. The 
mechanisms for the fast growth and sheared flow generation in the mode development 
are investigated in detail. The effects of the sheared helical or vortex flows, formed in the 
tearing mode development, on the ion temperature gradient modes (ITG) are also 
investigated in a sheared slab. 
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2. Physics model and basic equations 
 
We consider a large aspect ratio torus with a major radius R0 and minor radius a. A 

cylindrical coordinate (r, ,θ ϕ ) is employed. The magnetic field and plasma velocity are 
expressed in terms of two scalar potentials: the poloidal flux function ( , , )rψ θ ϕ , 

              0 ,B B ϕ ψ ϕ= −∇ ×                             (1) 
and the stream function ( , , )rφ θ ϕ , 

              0V v ϕ φ ϕ= +∇ × .                            (2) 
  With electron viscosity included, the Ohm’s law becomes 
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from the ϕ -component of Eq.(3). Here, η  is the plasma resistivity, eμ  is the parallel 
electron viscosity diffusion coefficient, em  is electron mass, en  is electron density, and 
e and c are, respectively, the electron charge and speed of light, B0 is the toroidal 
magnetic field at the magnetic axis, and 0v  is equilibrium toroidal velocity. 

The ϕ -component of the curl of the equation of plasma motion may be written as 
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where ρ  is the plasma mass density and μ  is the fluid viscosity. Then, the basic 
governing reduced MHD (RMHD) equations are derived from Eqs. (1), (4) and (5) as 
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Here, 2χ ψ⊥= ∇ , 2U φ⊥= ∇ ， and the Laplacian and Poisson bracket are defined as,  
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 The usual normalizations are employed such that lengths are normalized to a, magnetic 
fields are to ( )B aθ , time is to 4 / ( )pa a B aθτ πρ=  etc. In addition, /r paS τ τ=  is the 

magnetic Reynolds number with 2 24 /r a cτ π η=  being the magnetic diffusion time, 
/e v paR τ τ=  is the viscosity diffusion Reynolds number, while 2 4 2 24 /v e e en a e m cτ π μ=  

is the electron viscosity diffusion time, and /i i paR τ τ=  with 2 /i iaτ ρ μ= . 
 
3. Fast growth and velocity Shear layer formation  
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Fig. 1. The linear growth rate and the scaling  
index α of R αγ −∝  versus 1/R. 

The equilibrium configuration with non-monotonic q profile is employed [14],  
 
 
 
The parameters are chosen such qc=1.05, 01, 0.412,rλ = =  0.273, 0, 3r Aδδ = = =  that 
two resonant q=3 surfaces are located at r1=0.31 and r2=0.53. 0 0v =  is assumed. 

The numerical code for solving the 
nonlinear partial differential equations (6, 
7) is benchmarked with an eigenvalue 
code in the linear stage and with the 
results in [14] for nonlinear simulations. 
The eigenfunctions from the eigenvalue 
code, with the lowest m and n, multiplied 
with a small factor, are taken as the initial 
conditions. The initial values for the other 
components are all taken to be zero. The 
boundary conditions are that the 
perturbations and their radial derivatives 
are zero at the center (r=0) and the plasma 
boundary (r=1). The maximum 2000 grid 
points are employed in the radial direction and the results are checked to be independent 
of the number of the grid points. 

The DTMs mediated by electron viscosity are studied. Shown in Fig. 1 are the linear growth rate 
and the scaling index α of R αγ −∝  versus 1/R. The transition from the scaling of 

1/3Rγ −∝  to 1/5Rγ −∝  is clearly demonstrated for increasing 1/R [15]. 
The time evolution of the perturbed total kinetic and magnetic energies for R=5 610× , 710 , 

5 710× and 810 , and of energies of the lowest seven harmonics for R= 810 is given in Fig.2. After a 
short linear growth, the total perturbed kinetic energy goes through four developing stages: the early 
growth, transition, fast growth and decay when R 75 10≥ × in contrast to the cases of R 710≤ where 
there are no fast growth stages. In addition, there are no fast growth stages in the perturbed 

 
magnetic energy either. The harmonic analysis indicates that the fast growth is dominated 
by the m=3/n=1 harmonic but may be relevant with the appearance of the higher 
harmonics at the transition stage. The appearance around t=250 and significant growth of 

Fig.2, The time evolutions of the perturbed total kinetic and magnetic energies for 
R=5 610× , 610 , 5 710× and 810 , and the energies of the first seven harmonics for R= 810 . 
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the m=0/n=0 magnetic perturbation, which induces variation of the equilibrium magnetic 
configuration, seem to be the cause of the transition or transient saturation. Shown in Fig. 3 
are the contours of the helical magnetic flux at t=200, 400, 420, 440, 460, 480 500, and 520 for 
R= 810 . There are two chains of magnetic islands located at the two q= 3 rational surfaces 
before t=400. The magnetic islands grow rather fast with the inner and outer chains 
moving outwards and inwards, respectively. The islands of the two chains start to 
reconnect with each other after the flux between them is all reconnected out due to the 
fact that the fluxes inside the two chains are opposite to each other. It is this secondary 
reconnection and the annihilation of the magnetic islands formed in the first reconnection 
of equilibrium magnetic field in the early development of the mode that is responsible for 
the fast growth of the kinetic energy from t=450 to 500. The m=0/n=0 magnetic 
perturbation is saturated and the higher harmonics start decay after t=500.  
 

The contours of the stream function at t=200, 400, 420, 440, 460, 480, 500, and 520 are 
given in Fig.4 for R= 810 . There is not an apparent two chain structure, illustrating the 
approximate constant displacement amplitude of the DTM over the region between the 
two rational surfaces. In addition, the flow and is shear are mainly confined in the 

Fig.4. The stream function contours at t=200, 400, 420, 440, 460, 480, 500, and 520. 

Fig. 3. The helical magnetic flux contours at t=200, 400, 420, 440, 460, 480, 500, and 520.
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Fig. 6. The amplitude 
profiles of the m=3/n=1 
harmonic of the poloidal 
flux function. 

vicinity of the r2=0.53 rational surface for t ≤ 420 when the magnetic islands keep 
growing. The contours begin distortion when the two island chains start to reconnect with 
each other and to annihilate.  To see this more clearly, the profiles of the amplitudes of 
the m=3/n=1 harmonic of the stream function φ  (a), the velocity vθ  (b) and its radial 
gradient (c) are given in Fig. 5. It is clearly shown that significant m=3/n=1 harmonic 
velocity and its shear appear around the two resonant flux surfaces at t=300 and then 
grow very fast. In comparison, the amplitude of the m=6/n=2 harmonic given in Fig. 5(d) 
is more than one order of magnitude smaller than that of the m=3/n=1 harmonic. This is 
an important indicator that the flow with the largest poloidal scale length dominates in the 
entire process, especially in the early stage, of the mode development. 

 
Shown in Fig. 6 are the amplitude profiles of the 
m=3/n=1 harmonic of the poloidal flux function, the 
extensions  of which are equivalent to the profiles of 
the perturbed radial magnetic field and relevant to the 
widths of the magnetic islands. Keeping this in mind 
and in comparison with Fig. 5, it is rather evident that 
the flow shear layers are mostly confined in the regions 
just outside the magnetic islands. This is an inevitable 
result due to the facts that magnetic energy released in 
nonlinear development of the modes converts to kinetic 
energy and the coherent plasma motion, perpendicular 
to magnetic field, is prohibited in ideal MHD region, 
and, therefore, is confined in the tearing layer.  
 
4. Effects of helical flow on ion temperature gradient modes 
 

Self-consistent study of the effects of the helical sheared flow and magnetic islands 
spontaneously generated in the development of tearing modes on micro-instability and 
turbulence is a big challenge. The effects of a helical flow on ITG modes, neglecting 
magnetic island structures, are discussed in a sheared slab as the first step in this Section. 
The helical flows reduce to vortex flows (VFs) in the slab. The VF is considered static 
and expressed with the stream function,  

( )sin( ) ( )sin( )T TX T m Tx k y f x k yφ φ φ= = ,                            (10) 
where ( )f x  is the normalized radial profile of the VF and Tk  is its poloidal wave 
vector. mφ  is the amplitude.  

The nonlinear electrostatic gyrofluid model in a 2-dimensional (2D) slab ( 0z∂ = ) is 

Fig. 5. The profiles of the amplitude of the m=3/n=1 harmonic of the stream function 
(a), the velocity (b) and its shear (c), and the profile of the amplitude of the 
m=6/2=1harmonic of the stream function (d).
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Fig. 7. The radial profile f(x)  
of the stream function  

( )sin( )T m Tf x k yφ φ=  (a) and  

employed with the above external VF included [20],  
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where, y y y T y T yk k k k k k k′ ′′ ′′′ ′′′′+ = + = − = , 1 iK η= +  and 
2

( 1)y yk kV δ φ⊥= ∇ + − , 1δ = (0) 
for zonal flow (fluctuating components). The notation and normalization as well as the 
magnetic configuration are the same as that in [20]. This set of mode coupling equations 
derived in the same way as that in [20] clearly shows the interaction between a VF and 
ITG modes through both radial and poloidal couplings by the last two terms on the right 
hand side (RHS) of each equation.  

The Equations (11)-(13) are numerically solved by using of a 2D initial value code. 
The simulation box is 100x iL ρ=  and 20y iL πρ= . Fixed and periodic boundary 
conditions are imposed at 1

2 xx L= ±  and y=0, 
Ly, respectively. The other parameters are 

2.2iη = , 0.1μ η χ⊥ ⊥ ⊥= = = , and Tk = 0.1. 
The representative structure of the VF with two 
vortices on each side of the rational surface, 
generated in development of a single tearing 
mode, is shown in Fig. 7. Besides the VF, a 
streamer-like flow (SF) of sin( )T m Tk yφ φ= and 
a mean flow (MF) of ( )T m f xφ φ=  are 
introduced in helping to understand the 
complicated stabilization mechanisms of the VF 
with comparison. Fig. 8 shows the effects of the 
three external flows on the ITG mode linear 
growth rate for different magnetic 
shears, /n ss L L= . The growth rate increases 
first and then decreases when the amplitude of 
the MF increases for the three cases as is well documented [20]. The stabilization effect 
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Fig. 8, The linear growth rate of the ITG modes versus 
the magnitude mφ of the MF, SF and VF (the lines 
with red squares, blue dots and green triangles), for 
magnetic shear s=0.4, 0.2, and 0.1. 

of the SF decreases dramatically with decreasing magnetic shear. 
The effect of the VF is the strongest and the mechanism is relatively complicated. As 

indicated in Eqs. (13-15), a MF, dependent on x, couples a mode to other modes of 
different radial scale lengths through the first term of the last two terms on the RHS of 
each equation. Whereas a SF, dependent on y, couples a mode to other modes of different 
poloidal wave vector yk ’s through the second term of the last two terms on the RHS of 
each equation. Generally speaking, coupling to more unstable modes increases the 
growth rate of the unstable mode under consideration and thus the whole coupled system, 
and vice verse. Spectrum 
analysis (not shown here) for 

3mφ = and s=0.4 shows that 
most unstable modes are 
limited approximately to the 
regions of 0.1 5xk< <  and 
0.3 1.1yk< < in the wave 
vector spectra with the 
maximum growth rate 

0.99γ =  at ky~0.7 in the 
absence of any flows. The 
unstable ky-spectrum does not 
change significantly whereas 
the kx-spectrum expands to 
the region of kx >2.5, where 
the growth rates of the modes are lower, when there is a MF. The result is the opposite 
with a SF; the unstable kx-spectrum does not change significantly while the ky-spectrum 
expands to both 0.2 yk>  and ky >1.1 regions, where the growth rates of the modes are 
lower.  In the case of VF, the unstable kx-spectrum expands to higher kx  region as it 
does in the case of a MF, whereas the unstable ky-spectrum expands to both 0.2 yk>  and 
ky >1.1 regions as it does in the case with a SF. In addition, the both expansions are 
broader probably due to enhancement of each other. Therefore, the strongest stabilization 
effects of a VF on ITG modes than those of a MF or a SF of same magnitude in most of 
the parameter regimes studied are demonstrated and physically understandable. 
 
5. Summary and discussion 

The numerical study of the electron viscosity DTMs and the generation of the 
helical MHD flows in the development the modes is extended from quasi-linear 
simulation in a slab [15, 16] to nonlinear simulation in a large aspect ratio torus. The 
characteristics, such as strong poloidal sheared flows located at the boundaries of the 
magnetic islands in the nonlinear stage, found in the slab geometry are qualitatively 
confirmed. Quantitatively speaking, in-out asymmetry of the induced helical velocity 
profiles is found.  The shear at the outer boundary of the islands is higher than that at the 
inner, in contrast to the slab case [15]. The shear of the velocity was estimated as~105/s 
for ( )B aθ =1.7T, a=0.4m, ne=1019/m3 from the numerical results for R=108. This is 
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comparable with the growth rate of the drift instabilities in tokamak plasmas.  
  As an important part of multi-scale dynamics, the interaction between tearing modes 
and turbulence is under intensive investigation in plasma physics [10-12]. The subject 
includes two aspects, the effect of turbulence on tearing modes, and the influence of 
tearing modes on turbulence and turbulent transport. This is a challenge since it concerns 
multi- spatial and temporal scales. Physically, a tearing mode consists of two elements: 
magnetic perturbation, forming magnetic islands, and plasma motion including the helical 
flows studied in this work. The ultimate aim of the subject is to study the drift wave 
turbulence dynamics in a realistic toroidal configuration with magnetic islands and 
plasma flows. Before being able to do so, as a first step, we try to understand the 
characteristics of the flows and then to put the flows as an input for a turbulence study in 
a configuration without magnetic islands in this work. The preliminary results show that 
the stabilization effect on a vortex flow on ITG modes is higher than that of a mean or 
streamer flow of same magnitude. This may provide insight into the relation between low 
safety factor q rational surfaces, MHD activities, flow layer and ITB formation in 
reversed magnetic shear configurations. Works on linear and non-linear development of 
tearing modes and turbulence self-consistently, taking into account the multi- spatial 
(from 0.1mm to 0.1m) and temporal (from 0.01 ms to 1ms) scales are in progress. 
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