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Abstract: The current presentation contains two parts: our revisit of the gyrokinetics theor
and the application of our newly developed gyrokinetic theory to investigate the resistive waﬁ
mode stability in ITER. For the gyrokinetics theory, we explain why part of the conventional
gyrokinetics formalism needs to be revamped [1] and show the salient features of our newly
derived gyrokinetic equation: 1) recovery of the magnetohydrodynamics (MHD) limit in both
perpendicular and parallel directions — not for conventional theory; 2) retrieve of the finite

Larmor radius effects missing from the conventional theory. For the application of our theory,
we describe our numerical effort to implement our newly developed gyrokinetic equation by

extending our existing AEGIS (Adaptive EiGenfunction Independent Solution shooting code)
[2] to AEGIS-K codes. The success in recovering full MHD with our newly derived gyrokinetic

theory allows us to study the resistive wall modes in a self-consistent nonhybrid kinetic manner.
AEGIS-K code is then applied to study the low rotation stabilization of the resistive wall modes
in the ITER AT scenario. The particle-wave resonances, the coupling of the shear Alfvén
continuum damping, the trapped particle effect, and the parallel electric field effect are all taken
into account. Our preliminary numerical results show that the low rotation stabilization of the

resistive wall modes in ITER AT scenario with considerable high beta (f.i., By = 3) is achievable.
1. Introduction

Resistive wall mode stability is a major concern for ITER. It has been shown previously
that the kinetic and Alfvén resonances can play a significant role in stabilizing the resistive
wall modes [3, 4, 5]. However, a fully kinetic analysis of the resistive wall modes is a
challenging issue. First, the conventional gyrokinetic equation cannot recover MHD and
most existing kinetic MHD codes are hybrid in nature. Second, the coupling of Alfvén
continuum damping requires high-resolution computation of the modes at the singular
surfaces, which is difficult to achieve with usual non-adaptive codes. Even in the hybrid
scheme, it is unclear how the kinetic and Alfvén resonances are coupled and how the
parallel electric field affects the stability. All of these issues point to the need for a
systematic kinetic analysis of the resistive wall modes in ITER.

Our current effort aims to resolve these difficulties by developing a fully kinetic analysis of
the resistive wall modes in ITER. To achieve this goal, the theoretical formalism should,
on the one hand, be based on first principles and therefore must be non-hybrid; and
on the other hand, should be numerically implementable. Our approach is to derive an
extended gyrokinetic formalism that can recover the MHD limit. Our achievement of
the recovery of MHD from our newly developed gyrokinetics enables us to extend the
MHD stability analyses directly to a fully kinetic analysis without invoking the hybrid
kinetic-fluid hypothesis.

Recovering the MHD equations from gyrokinetics is not trivial. We find that the con-
ventional gyrokinetic formalism needs to be significantly modified in order to maintain
consistency of ordering and recover the MHD limit. Two major modifications need to be
made simultaneously: 1) a sufficiently high-order equilibrium distribution function must
be used; 2) the gyrophase-dependent part of the perturbed distribution function and its
coupling to the gyrophase-independent part of the perturbed distribution function should
be included. The details are outlined in Sec. 2.
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The success in recovering full MHD with our newly derived gyrokinetic theory now allows
the possibility to study the resistive wall modes in a non-hybrid consistent manner. We
implement numerically our newly developed gyrokinetic theory by extending our existing
AEGIS [2] to AEGIS-K codes. With the kinetic effect and the coupling of the shear Alfvén
resonances taken into account, we are able to study the low rotation stabilization of the
resistive wall modes in ITER AT scenario. The numerical work is presented in Sec. 3.

Summary and discussion are given in Sec. 4.
2. Revisit of the linear gyrokinetics theory

The classic electrostatic gyrokinetic formalism was developed in 1960s [6, 7]. Later, the
electrostatic gyrokinetics was extended to the electromagnetic one [8, 9]. Most of the
gyrokinetic treatments employ the eikonal ansatz for studying the high n modes (n is
the toroidal mode number). Recently, a gyrokinetic formalism for long wavelength modes
was developed in Ref. [10], in which a great effort has been made to derive the ideal
MHD equations from gyrokinetic formalism. The gyrokinetic formalism provides the most
efficient way of obtaining the appropriate reduced kinetic equations while still retaining
the finite Larmor radius (FLR) effect. However, we show that part of the conventional
formalism needs to be revamped in order to recover the ideal MHD and the missing FLR
effects. While details have been published in Ref. [1], here we explain only why the
conventional linear gyrokinetic theory needs to be corrected, together with the outline of
the new features of our newly developed gyrokinetics formalism. There are three reasons
to revisit the linear gyrokinetic theory.

First, in the conventional gyrokinetic theory, only the lowest order equilibrium distribution
function (i. e., Fypo(X 1, p,€)) is used. Equilibrium distribution function in this order is
symmetric with respect to the parallel velocity v and therefore cannot yield the parallel
equilibrium current — the so-called Pfirsch-Schliiter current. This makes the conventional
gyrokinetics to be unable to retain the Jy X 6B effect in the perpendicular momentum
equation completely. To repair it, the higher order equilibrium distribution function needs
to be kept, especially the part of the neoclassical distribution function [11], which gives
the Pfirsch-Schliiter current, needs to be kept.

Second, one can easily prove that, even if the neoclassical distribution function is retained,
the gyrophase average eliminates this effect. This shows that the gyrophase dependent
part of the gyrokinetic distribution function (i.e., the high harmonic components with
respect to the gyrophase Fourier decomposition) needs to be solved in order to retain
the Pfirsch-Schliiter current effect. There are further reasons to keep the gyrophase-
dependent part of the gyrokinetic distribution function. Note that, to compute even
(density, pressure) or odd (current) velocity moments in the particle space, one needs to
include the gyrophase dependent part of the gyrokinetic distribution function for com-
pleteness [12, 13]. We further note that there is coupling between the gyrophase-averaged
part and the gyrophase-dependent part of the gyrokinetic distribution function through
the term &;0f/0a, where « is the gyrophase, with subscript “1” denoting the first order
and dot representing the derivative along the unperturbed particle orbit. Only this cou-
pling is taken into account, the parallel MHD equation of motion can be retrieved in the
proper limit. This coupling also gives rise to additional FLR effects.

Third, we note that the complete gyrophase derivative should be & = —Q(X) + &4, with
i =v-Va+(1/Qv X e+ V,Q, and Vo = (Vze) - €1+ (v /v7) Ve - (v X ).
In the ¢ expression, the last term is new and results from the guiding center transform
of the gyrofrequency 2(x). This correction is required for ordering consistency. It is due
to the inclusion of this correction, the correct MHD parallel equation of motion can be
recovered (in 0A = & X B representation).

The set of our newly derived gyrokinetics and Maxwell equations are given in Ref. [1].
Here, we just outline the new features. First, we have repaired the conventional gyroki-
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netics formalism, so that the MHD equation can be recovered in the proper limit. Second,
we find that the usually used FLR modification of the type w? — w(w — w,;) in the second
order is incomplete. We recover many additional FLR effects. The complexity of the
FLR terms is similar in nature to the Braginskii gyroviscous tensor [14]. Actually, the
conventional results about FLR effects based on the introduction of the Bessel functions
Jo and J; are incomplete in general. We also find that FLR effects in the perturbed
collisionless gyrokinetic equation depend on the equilibrium distribution function, which
requires collisional closure. We also note that even in the zero-order FLR expansion (i.e.,
k1 p; — 0) our newly derived gyrokinetics equation is different from the conventional drift
kinetic equation (see Eq. (2)). This difference results from the inclusion of the coupling
of the gyrophase-dependent part of the distribution function through &;0f /0« term. We
explain the cause for this difference as follows. The definition of the guiding center de-
pends on the choice of the gyrophase. Only the guiding center theory with oscillating
part oy included in the gyrophase definition can agree with the gyrokinetic theory of the
lowest order.
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Figure 1: The cross section of the ITER Figure 2: The safety factor profile, with
AT configuration with poloidal equal-arc the maximum step size and region separa-
length and radial packed grids shown tion for shooting shown.

3. Numerical investigation of the resistive wall modes in ITER by AEGIS-K
code

In this section we describe our numerical work to implement our newly developed gyroki-
netic theory by extending our existing AEGIS [2] to AEGIS-K [15] codes. Since AEGIS
formalism is based on the adaptive numerical scheme, we are able to resolve the coupling
between the kinetic and the shear Alfvén resonances. For simplicity, we have dropped
the FLR effects in our first effort. As discussed in the last section, even in this limit our
starting equations are different from the conventional guiding center formalism. The basic
set of equations is as follows: the perpendicular momentum equation

—pmw?€, = 6J X B+J X 6B — V3P — VL/d?’v(mpuOB)éGO(m),
(1)
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the gyrophase-independent part of the gyrokinetic equation

’UH . VG()(X) - ZwéGo(X)

.m .m 0 .
= wapMoBFgoVL - € +2w7: (0B — vff) Fyos + € — iw T

and the quasineutrality condition

1 T, 1

op = —

- d*v6Goi. (3
1+ZTZ€.L"I’L() v 0 ()

To be specific, we point out that the
right hand side of Eq. (2) is different from
the conventional guiding center equation.
We consider only the low rotation sce-
nario as proposed for ITER. We there-
fore include the rotation effects by re-
placing w with w + n2 in Egs. (1) - (3).
In our set of equations the wave-particle
resonances, the shear Alfvén continuum
damping, the trapped particle, and the
parallel electric effects are all taken into
account. We have not considered the pre-
cessional drift resonance as Ref. [5], since
we note that considering (w,) resonance
alone is insufficient for ordering consis-
tency. Noting that (wq) /w. ~ a/R, in-
clusion of (wy) effect needs also to take
into account w,; effect (i.e., k2 p? effects)
for consistency. Due to this complicity,
we postponed this part of work to the
next step.

Figure 4: The real part of the unstable
resistive wall mode in the presence of ro-
tation.

.0014

L0012
0008

L0004

V E

-.0004
*.00@6:
*.00@8:
*.0010:
7.0012:

Copra 00y
[

Zei

Fgoé(pa

i

Figure 3: The typical unstable resistive wall
modes without rotation computed by AEGIS.
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Figure 5: The imaginary part of the un-
stable resistive wall mode in the presence
of rotation.
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We consider the ITER AT configuration. The numerical equilibrium is generated by
the TOQ code. The case we present here has the following parameters: the average
beta (5) = 3.41%, the beta normal Sy = 3.00%, [/aB = 1.14, qy = 2.48, ¢, = 5.34,
Gmin = 2.19, q95 = 4.19, the elongation k, = 1.8, and the triangularity , = 0.41. The
plasma cross section is given in Fig. 1. The safety factor profile is shown in Fig. 2. At
this beta value, the critical ideal wall position is b = 2.59. A typical resistive wall mode
computed by AEGIS code with parameters: the wall position b = 1.8 and the normalized
growthrate 1.24 is given in Fig. 3. We note that AEGIS code is in complete agreement
with GATO in the ideal MHD computation [1].

With kinetic effects included, we find the
rotation stabilization channel. A typical 10
unstable kinetic mode is given in Figs 4 |
and 5 for the parameters: b=1.8 and nor- ,
malized growthrate 0.32. One of the ad- I
vantages of AEGIS-K code lies in that 8 ’
it preserves the ideal MHD roots. This
can be seen from the comparison between
Fig. 3 and 4. The resistive wall mode
growthrates for the Sy = 3.00 equilib-
rium described above are plotted in Fig.
6 for various rotation frequencies. Note
that in this presentation the rotation fre-
quency is normalized by the Alfvén speed

B?/(uopR?q?) at the magnetic axis. 2
or normalized rotation frequency about

Q0 = 2 x 107* a complete stabilization -
for any wall position can be achieved. -
In comparing with the results in Ref. 1.251.51.75 2 2.252.52.75
[3], the order of this critical rotation fre- Vall position
quency seems to be reasonable. This
needs to note that the notation frequen- Figure 6: The growth rate versus wall position.
cies in Ref. [3] is scaled by the appar- The dot dashed curve represents the resistive
ent mass effect. Using 1 + 2¢* as an esti- wall mode growthrate without rotation. The
mate, this scale is about 20. The product solid curves are the growth rates with the nor-
2x107* - 20 is about 0.004. These analy- malized rotation frequency (x107*) as param-
ses show also that the effects found in the eter.
current kinetic computation is not purely
due to the Alfvén continuum damping.
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4. Summary and discussion

In this presentation we outline our newly developed gyrokinetics formalism and describe
our application of this new formalism to study the low rotation effect on the resistive wall
mode stability in ITER AT scenario with kinetic description.

In the reformulation of the gyrokinetics we point out that three corrections or modi-
fications to the conventional formalism are necessary: (1) the higher order equilibrium
distribution function needs to be included; (2) the gyrophase dependent part of the gyroki-
netic distribution function needs to be taken into account, and (3) a missing term for the
gyrophase expression of the first order needs to be picked up. With these corrections or
modifications made, our theory is able to recover the MHD equation both in the perpen-
dicular and parallel directions. Due these corrections or modifications, we also find that
the FLR effects are represented by far more terms than the usual results simply by the
Bessel functions Jy and J;. This helps to explain why the Braginskii gyroviscous tensor
is much more complicated than the FLR effects predicted by the conventional gyrokinetic
theory.
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In the application of our newly derived gyrokinetics theory, we have developed AEGIS-K
code. With AEGIS-K, we have studied the low rotation stabilization of the resistive wall
modes in the ITER AT scenario with kinetic description. The results are promising. Our
preliminary numerical results show that at least for Sy = 3.00 a full rotation stabilization
is possible. AEGIS-K code allows a first ever nonhybrid study of the resistive wall modes
in tokamak configuration, with the parallel electric field effect and the coupling of the
shear Alfvén resonance taken into account.

Finally, we would like to point out that the significance of our new gyrokinetics theory
and AEGIS-K code is beyond the current application to the n = 1 resistive wall modes,
especially in view of that AEGIS-K is not limited to low-n modes — it is applicable also
to the intermediate and high n modes. Besides, the matrix size in the AEGIS numerical
scheme is smaller than that based on the usual radial decomposition method. This feature
allows AEGIS or AEGIS-K to be extended to 3D application. We also would like to point
out that, although AEGIS-K numerical scheme is effective and powerful, the AEGIS-K
code is still new. Further tests, especially to compare with the existing codes like MARS,
will be carried out in the future.

This research was supported by the Office of Fusion Energy Science of the U.S. Department
of Energy under Grant DE-FG02-04ER54742
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